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Electricity Tariff Aware Model Predictive
Controller for Customer Battery Storage with

Uncertain Daily Cycling Load
Dejan P. Jovanović, Gerard F. Ledwich, and Geoffrey R. Walker

Abstract——To optimally control the energy storage system of
the battery exposed to the volatile daily cycling load and elec‐
tricity tariffs, a novel modification of a conventional model pre‐
dictive control is proposed. The uncertainty of daily cycling
load prompts the need to design a new cost function which is
able to quantify the associated uncertainty. By modelling a
probabilistic dependence among flow, load, and electricity tar‐
iffs, the expected cost function is obtained and used in the con‐
strained optimization. The proposed control strategy explicitly
incorporates the cycling nature of customer load. Furthermore,
for daily cycling load, a fixed-end time and a fixed-end output
problem are addressed. It is demonstrated that the proposed
control strategy is a convex optimization problem. While sto‐
chastic and robust model predictive controllers evaluate the
cost concerning model constraints and parameter variations. Al‐
so, the expected cost across the flow variations is considered.
The density function of load probability improves load predic‐
tion over a progressive prediction horizon, and a nonlinear bat‐
tery model is utilized.

Index Terms——Residential energy systems, battery storage,
model predictive control, nonlinear optimization, cost of daily
electricity consumption.

I. INTRODUCTION

TO cover the cost of daily electricity consumption world‐
wide, it is necessary to allocate between 1% and 9% of

the annual earnings [1]. Electricity tariffs significantly con‐
tribute to household electricity expenditures [2]. At the same
time, electricity tariffs are necessary to cover the costs need‐
ed for the sustainable operation of the power grid [3]. How‐
ever, some tariff scenarios may have a disruptive impact on
a household budget depending on the load profile and socio-
economic characteristics of the household [4]. The economic
viability of different tariff schemes depends on the integra‐
tion with a household battery energy storage system (BESS)
[5]. In this paper, optimal BESS control strategy is examined

which considers a probabilistic load profile, different tariff
schemes and the cost-minimization for customers. One of
the control strategies frequently used for BESS control is
model predictive control (MPC), which is a cost-minimiza‐
tion iterative optimization method over a finite prediction ho‐
rizon [6]. This strategy relies on the underlying process mod‐
el. Regardless of its widespread use for BESS control, a con‐
ventional MPC (CMPC) does not directly include load pro‐
files, different tariff schemes and optimized benefits of the
customers. We present a novel modification of a CMPC
which accommodates load variability, different tariff profiles
and finally provide the globally optimal solution for the cus‐
tomer.

In [7], distributed and decentralized MPC of a residential
BESS is designed. Load variability is flattened using averag‐
ing over the receding horizon. Terminal constraints are not
considered. Reference [8] considers a rule-based MPC con‐
troller. Rules are based on the operation constraints of the
BESS. The BESS control is defined as an optimal tracking
problem, while the references are assumed to have smooth
trajectories. In [9], an MPC-based approach is proposed to
optimize the energy cost to the end-user. The two-stage strat‐
egy is developed separating the BESS control action be‐
tween the energy deficit and excess. Load volatility is sup‐
pressed by introducing weights assigned to the cost of out‐
put error. In this way, customer benefits are significantly re‐
duced. The inequality constraints are not imposed on a
BESS. The concept of the end-user-driven microgrid is intro‐
duced in [10]. The end-user can consume and share the pow‐
er only with the utility grid. A dynamic MPC-based optimi‐
zation approach is used for optimal scheduling of power and
battery energy. The method proposed in [11] combines an
MPC with a Gaussian processes-based prediction for photo‐
voltaic (PV) generation and demand. It is concluded that
when the prediction is associated with the MPC, a shorter
MPC horizon provides more accurate control. The prediction
method outperforms the rule-based MPC algorithm. In [12],
the MPC is applied to prevent the energy storage saturation.
A mixed-integer multi-time scale stochastic optimization
based on the MPC is proposed in [13] for a home energy
management. The cost function is minimized subject to bud‐
get and power constraints, so that the indoor temperature is
maintained at the reference level. In [14], a variable predic‐
tion horizon of MPC is applied to hybrid power systems. A
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switched multiple-input multiple-output state-space model is
proposed. To sum up, the load cycling variation is not con‐
sidered in the existing literature. Also, load variability is nei‐
ther explicitly modelled nor included in the control strategy.
The receding horizon is assumed to have a fixed length, nor‐
mally a day ahead. Finally, the convexity of the optimization
strategy of the BESS is not explicitly demonstrated.

Model predictive controllers rely on dynamic models of
the process [6]. Consequently, a BESS model has to facili‐
tate the understanding of charging-discharging dynamics [15]
and efficiencies [16], [17]. The modelling of the dynamics
for different battery types is presented in [15]. The model‐
ling of battery efficiency is complex and the results present‐
ed in [16] and [17] show that the internal energy losses
when the energy is released in discharging are lower than
the losses when the energy is consumed in charging [18].
The reduction of battery life is related to a very slow cumu‐
lative chemical process. Thus, the long-term effect can not
be included in the strategy for battery control. Instead, the
impact of battery utilization on its lifetime is accounted for
by penalizing the battery charging value. The approximation
is that the battery life is related to the energy processed, i.e.,
the total accumulated inflow of current over time [19]. The
optimal battery sizing is considered in [20].

In the literature of end-user MPC-based battery control, a
quadratic cost function is commonly accepted. The model
generally used in the battery control is a state-space model.
The cost function minimizes a distance between the model
predictive output and a given set-point signal [6], [21]. The
electricity price is not necessarily included in the quadratic
cost function [8], [10], [14]. Alternatively, the electricity
price is included without the assumption that the electricity
price depends on energy flow [7], [11] - [13]. From the cus‐
tomer’s viewpoint, the existing strategies do not directly ad‐
dress benefits for customers.

In this paper, we propose a novel globally optimal control
strategy for household BESS affected by uncertain daily cy‐
cling load and electricity tariffs. Global optimality is
achieved by using a new cost function that models a probabi‐
listic dependence between flow, load and electricity tariffs.
We prove that the expected value of the proposed cost func‐
tion depends on the expected value of the net load and ap‐
plied electricity tariffs. The electricity tariffs are modelled as
a function of flow. Based on the newly proposed cost func‐
tion, a novel modification of a CMPC is recommended. A
horizon is of variable length since the battery usage is pre‐
dominately defined by the peak load in the morning and eve‐
ning. Finally, a model of a household BESS is a linear time-
varying switching model since it depends on the energy flow
direction. We propose a strategy that directly incorporates a
switching model in the cost function. The block diagram of
problem description is shown in Fig. 1.

The remainder of the paper is organized as follows. In
Section II, the BESS modelling is described. Section III de‐
scribes the methodology of the proposed BESS control. Re‐
sults are given in Section IV and conclusions are presented
in Section V.

II. BESS MODELLING

Subsystems that make up a BESS form a control unit, a
communication link and a smart meter. A control unit regu‐
lates the energy stored in the batteries driven by a variable
local demand and tariff rates. The existence of a communica‐
tion link is assumed, across which the information about tar‐
iff changes is provided to the control unit in real time. A
smart meter measures how much the energy is flowing be‐
tween the power grid and a household equipped with a
BESS. A simplified block diagram of the system is present‐
ed in Fig. 2, where F(t) is the power exchanged with the
power grid and measured by the smart meter; L(t) is the net
load defined as a difference between local demand and local
generation; and u(t) is the battery power controlled by the
BESS. The main characteristics of the system are summa‐
rized in the following. The energy capacity of the BESS is
given by Ec. Realistic modelling of the charging and dis‐
charging process of the battery requires realistic values for
charging losses α- and discharging losses α+. The charging
process is assumed less efficient than a discharging process
[16], [17]. The maximum power rating of the converter is Pc.

Based on these characteristics, a state-space model of the
household BESS is given as:

Et + 1 =Et - ᾱutDT (1)

+
�

u(t)

F(t)L(t)

Power gridHousehold

BESS

Fig. 2. A household with a BESS.

Daily cycling load

Future uncertainty in the net load
Nonlinear daily recurrent load

Electricity tariffs

Shape the net load for better outcome
Ensure economic viability

Cost function

Capture probabilistic behaviour
(expected cost over uncertain net load;

 expressed in units of money)

MPC

Provide the optimal solution for BESSs
Generate income by trading battery energy

Battery

Require cost effective control
Expand the lifetime

Fig. 1. Block diagram of problem description.
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where Et + 1 is the instantaneous battery energy at time in‐
stance t + 1; DT is a time interval during which a control sig‐
nal ut defines the instantaneous power delivered by a con‐
verter; and ᾱ is defined as:

ᾱ= {α+ ut > 0
α- ut £ 0

(2)

In this paper, the losses in a battery are defined as a func‐
tion of inverter efficiency since it is possible to map all the
losses at the DC side of an inverter [8]. The state of charge
of a battery system SOCt + 1 [22], [23] is modelled by:

SOCt + 1 = SOCt -
ᾱutDT

Ec
(3)

The application of complex battery models [15], [17] is
not considered in this paper since it will not affect the over‐
all design process.

Constraints are imposed on ut, which requires that:

-Pc £ ut £Pc (4)

Additionally, the minimum and maximum energy levels of
the battery impose the constraints on acceptable values of in‐
stantaneous energy, so that the following relations can be ob‐
tained as:

Eres £Et + 1 £Ec (5)

where Eres is the contracted level of energy reserve required
for bidding the BESS [24]. Finally, the constraint ensures
that the energy level of BESS at the end of time horizon has
the predefined value Eend:

EtH
=Eend (6)

where EtH
is a fixed end output.

From (1) and (2), it follows that the underlying model of
the system in Fig. 2 is a linear time-varying switching mod‐
el since (1) depends on the power direction. Subsequently,
the control of battery energy storage is a nonlinear control
problem. Besides the nonlinearity, a control problem of bat‐
tery energy storage is constrained with a set of operation lim‐
itations given by (4)-(6).

The power flow balance of the system in Fig. 2 is disrupt‐
ed by cyclic random dynamics of the household net load. It
is essential to incorporate those dynamics in the control
method and evaluate the cost across the net load variability.

III. PROGRESSIVE MPC (PMPC) FOR UNCERTAIN DAILY

CYCLING LOAD

In this section, the definition and properties of a novel
modification of MPC are introduced. The problem is set as a
nonlinear convex optimization problem constrained with the
set of inequalities and equalities.

A. Properties of Proposed Optimal Strategy

As a convex optimization problem, MPC of the finite hori‐
zon [t1tH] is defined as:

{min
u

C(u)

s.t. φ i (u)£ 0 i = 12...l
ψ j (u)= 0 j = 12...m

(7)

where C(u) is the cost function; uÎRH is the optimization

(control) variable; φ i (u) is the convex function; and ψ j (u) is
the affine function [25]. Since (1) is the forward difference
approximation of the first derivative, it follows that the non‐
linear constraints (5) are convex [25]. The equality con‐
straint (6) is affine for the finite horizon [t1tH], since (1) can
be rewritten as an affine transformation of the following
form:

Φ(u)=Au+ b (8)

where A=-diag{DT...DT}H×H is a linear transformation; u=
[ᾱu1ᾱu2...ᾱuH]T is the optimization (control) vector; and b=
[Et1

Et2
...EtH

]T. Note that at the finite horizon [t1tH], a fixed-

end output EtH
at a fixed-end time tH can be written as:

EtH
=Et1

-∑
τ = t1

tH - 1

ᾱuτDT (9)

where uτ is the component of u at the horizon point τ. With
the constraints satisfying the convex optimization conditions,
it remains to prove that the cost function is convex as well.

Generally, the total costs are determined by electricity tar‐
iffs and customer load. The total costs on the time interval
tÎ[t1tH] is defined as:

Ctot = ∫
t1

tH

g(F(t))dt (10)

where g(F(t)) is the integrand that represents an instanta‐
neous cost, which depends on power flow and electricity tar‐
iffs:

g(F(t))= T(F(t))F(t) (11)

where T(F(t)) is the function of flow F(t), which models the
electricity tariff. Since the main goal is to obtain a global op‐
timal solution, the conditions of a convex optimization need
to be verified. The first step is to prove that (11) is convex.

Theorem 1: an instantaneous cost (11) is a convex func‐
tion.

Proof: for any sequence of flow F(t) at time instances
tÎ{t1t2...tn} and set of positive constants 0< η i < 1,
iÎ{12...n}, function (11) can be written as:

g ( )∑
i = 1

n

η i F(ti) = T ( )∑
i = 1

n

η i F(ti)∑
i = 1

n

η i F(ti) (12)

Assuming that for each individual flow instance, F(ti) is
possible to choose its own tariff rate T(F(ti))> 0, so that the
following can be obtained as:

g ( )∑
i = 1

n

η i F(ti) = T ( )∑
i = 1

n

η i F(ti)∑
i = 1

n

η i F(ti)£

∑
i = 1

n

η i T(F(ti))F(ti)=∑
i = 1

n

η i g(F(ti)) (13)

Since the inequality (13) has the form of Jensen’s inequal‐
ity [25], then the convexity of (11) follows.

By a theorem of calculus [26], which states that an inte‐
gral of a convex function is also convex, and theorem 1, it
follows that the integral (10) is a convex function. There‐
fore, it follows that the proposed strategy defined by (7) -
(10) is a convex optimization problem which guarantees that
every local minimum is a global minimum [25].
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B. Expected Cost Function

Generally, T(F(t)) could assume multiple electricity tariff
rates. However, to simplify the theoretical considerations, a
particular case of two electricity tariff rates is evaluated as:

T(F(t))= {T0 F(t)< 0

T1 F(t)³ 0
(14)

where T0 is the feed-in tariff; and T1 is the grid-spot tariff.
The difficulty with a direct calculation of the total costs in
(10) is related to the random behaviour of the load. Conse‐
quently, to optimize an integral (10), an operator of mathe‐
matical expectation needs to be applied to it. As a result, the
following equation is obtained:

J=E{Ctot}=E{∫t1

tH

g(F(t))dt} (15)

where J is the performance index calculated as the expected
value of the total cost; and E is the operator of the mathe‐
matical expectation. Interchanging the integral with the ex‐
pectation is possible if and only if an integrand g(F) is
bounded [27]. The condition is satisfied since all variables in
g(F) are constrained by their maximum values. After inter‐
changing the integral with the expectation and by approxi‐
mating the integral with a sum, (15) becomes:

J=E{Ctot}=∑
τ = 1

H

E{gτ (F)}DT (16)

where gτ (F) is defined as in (11) but computed at time τ. It
follows that the problem of calculation of J comes down to
calculate the mathematical expectation of gτ (F). The expect‐
ed value of a function is given as:

E{gτ (F)}= ∫
F
gτ (F)pFdf (17)

where pF is the probability density function (PDF) of a ran‐
dom variable F. The expectation in its unfolded form is
based on (4), which is given as:

E{gτ (F)}= T0 ∫
-¥

0

fpFdf + T1 ∫
0

¥

fpFdf (18)

The expectation of the instantaneous cost is split into two
integrals. The integrals quantify the cost of expected values
of a negative and a positive power flow component. The
compact form of (18) is given as:

E{gτ (F)}= T0E{F-}I{ }F < 0 + T1E{F+}I{ }F ³ 0 (19)

where I{ }× is the indicator function for given condition. The

expectations E{F-} and E{F+} depend on grid flow F. In ad‐
dition, based on Fig. 2, the power flow F(t) is a function of
load L(t) and battery flow u(t). The flow balance equation
Fk|t from Fig. 2 is given as:

Fk|t = Lk|t - uk|t (20)

where t is the real-time instance at which the system vari‐
ables are measured; k is the simulation index denoting the
MPC prediction step with respect to t; Lk|t is the net load;
and uk|t is the battery flow. Since uk|t is a result of the MPC
algorithm from previous control period t - 1, the value of uk|t

is known and fixed at a time when the integral (18) is calcu‐

lated, so that the value of uk|t is fixed for the purpose of eval‐
uation in (20). A change of variables in (18) using (20) trans‐
forms the expectations E{F-} and E{F+} into:

E}}}}{F-}= ∫
-¥

0

fk|t pF ( fk|t)dfk|t= ∫
-¥

uk|t

(lk|t - uk|t)pF (lk|t - uk|t)dfk|t (21)

E{F+}= ∫
0

¥

fk|t pF ( fk|t)dfk|t= ∫
uk|t

¥

(lk|t - uk|t)pF (lk|t - uk|t)dfk|t (22)

Given the relation (20) between random variables F and
L, it is required to define a relation between the cumulative
distribution functions (CDFs) ΦL and ΦF. The CDF of a real-
valued random variable X is defined as ΦX (x)=P(X £ x)
[28]. The relation between CDFs is obtained as:

ΦL (l)=P(L£ l)=P(F + u£ l)=P(F £ l - u)=ΦF (l - u) (23)

From (23), it follows that the relation between PDFs for F
and L is given by pL (l)dl = pF (l - u)df. Also, assuming that
uk|t is constant and independent from lk|t, it follows from (23)
that dl = df. Finally, the expressions for expected values in
(24) and (26) transform to the following equation:

E}}}}{F-}= ∫
-¥

uk|t

(lk|t - uk|t)pL (lk|t)dlk|t= ∫
-¥

uk|t

lk|t pL (lk|t)dlk|t-

uk|t ∫
-¥

uk|t

pL (lk|t)dlk|t=Euk|t
{L-}- αuk|t

uk|t (24)

E{F+}= ∫
uk|t

¥

(lk|t - uk|t)pL (lk|t)dlk|t= ∫
uk|t

¥

lk|t pL (lk|t)dlk|t-

uk|t ∫
uk|t

¥

pL (lk|t)dlk|t= ∫
uk|t

¥

lk|t pL (lk|t)dlk|t-

uk|t ( )1- ∫
-¥

uk|t

pL (lk|t)dlk|t =Euk|t
{L+}- (1- αuk|t

)uk|t (25)

where Euk|t
{L-}, Euk|t

{L+} and αuk|t
are calculated as:

Euk|t
{L-}= ∫

-¥

uk|t

lk|t pL (lk|t)dlk|t (26)

Euk|t
{L+}= ∫

uk|t

¥

lk|t pL (lk|t)dlk|t (27)

αuk|t
= ∫

-¥

uk|t

pL (lk|t)dlk|t (28)

To compute the expected values (26) and (27) and the
weighting factor (28), given an arbitrary load PDF pL (lk|t),
Markov chain Monte Carlo (MCMC) methods can be used.
However, in the following for the sake of computation sim‐
plicity, a random load is modelled with Gaussian distribution
Lk|t N (μk|tσ 2

k|t), where μk|t and σk|t are the parameters of
Gaussian distributions.

C. Comparative Study of Simulation-based Cost Function

The calculation of (19) is required in the the expected
cost function (16) at every real-time instance. Based on the
calculation, the optimal control action sequence of MPC is
obtained. To demonstrate the advantages of the newly pro‐
posed cost function, it needs to be compared with a cost
function used in a CMPC which is based on (20). Therefore,
the net load Lk|t is substituted with the average value of net
load μLk|t

. This type of cost function is called the expected

load cost function.
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To quantify the differences between cost functions, a syn‐
thesized example is created when a sudden jump in demand
happens, so that the demand is higher than the generation. In
the case of expected cost function, the probabilistic net load
is modelled with the Gaussian distribution with μL = 1 kW
and the parameter σLÎ{0.511.5}. In the case of the expect‐
ed load cost function, only the mean value E{Lk|t}= μL is
used as the predicted net load value. In both cases, the pre‐
diction horizon is 24 hours. For the Gaussian distribution, in‐
tegrals (26) and (27) can be calculated algebraically apply‐
ing the following equation:

E{X}= 1

σ 2π

|

|

|
||
|∫

α

β

xe
-
( )x - μ

2

2σ2 dx

z =
x - μ
σ

=

1

σ 2π
∫

p

q

(σz + μ)e
z2

2 σzdz = σ
2
π

(e-0.5p2

- e-0.5q2

)+

μ
2 ( )erf ( )q

2
- erf ( )p

2
(29)

where μ and σ are the parameters of Gaussian distribution
used to calculate the expected value of the random variable
X; p= (α- μ)/σ; and q= (β - μ)/σ. Similarly, the integral in
(28) can be calculated by:

αuk|t
=

1
2

é

ë
êê

ù

û
úúerf ( )r

2
+ 1 (30)

where r = (uk|t - μL)/σL. It is worth noting that the expected
cost depends on two parameters μL and σL, while the expect‐
ed load cost function solely depends on μL.

In Fig. 3, battery control values are presented to illustrate
the essential difference between the two types of cost func‐
tions. The response to the sudden increase in demand is ob‐
tained by using the expected load cost function, which
shows that the battery is discharged only to match the de‐
mand. For the expected load cost function, the battery charg‐
ing happens before and after demand increases. The battery
response obtained by applying the expected cost function ex‐
hibits different behaviours, i. e., the battery is discharged
above the demand for considered cases and the level of the
discharging depends on the Gaussian distribution parameter
σL. For smaller values of σL, higher discharging is achieved.
In Fig. 4, battery energy values are presented, demonstrating
that the expected cost function enables higher charging ener‐
gy compared with the expected load cost function.

Figure 5 illustrates the calculation of expected cost flow.
For the expected load cost function which depends only on
μL, the expected cost flow is the linear function of battery
control. For the expected cost strategy, the expected cost
flow is a nonlinear function of battery control. As the bat‐
tery control approaches μL, the expected positive flow is pro‐
portionally increasing with σL. Contrarily, the expected nega‐
tive flow is decreasing as σL increases.

In conclusion, waveforms of battery control signals in Fig. 3
are the results of the optimization process, minimizing the
power exchanged with the power grid. The expected cost ap‐
proach is demonstrated with more flexibility. Based on the

expected cost function in the following subsection, the vari‐
able length horizon of MPC methodology is proposed to
deal with the explicit cycling nature of the load.

D. PMPC

In conventional MPC [6], the end of the horizon is shifted
towards the future at each time instance. The resulting con‐
trol sequence is bounded by a set of constraints, both in‐
equality and equality. One of the limitations of applying the
equality constraints to a CMPC for daily cycling load con‐
trol is that the value at the end of horizon affects the control
sequence. Since the horizon is passing through intervals with
different values of load imbalance, it follows that the control
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sequence will depend on load value at the end of the hori‐
zon. However, in the case of the household with a BESS
with the cycling nature of the load, a different strategy is re‐
quired. Compared with the CMPC, the proposed control
strategy assumes that the end of the horizon is fixed and fin‐
ishes at a low power time. This assumption is justified by
the fact that the load profile, on average, has a 24-hour re‐
current interval. Consequently, the battery usage is predomi‐
nantly defined by the peaks in the morning and evening,
while after the peak in the evening, the battery usage is less
demanding. In this way, the horizon is reducing while pro‐
gressing towards the end of a recurrent interval. This control
strategy is called PMPC since the horizon duration is vari‐
able and finally stops at a low value of battery demand.

The algorithm steps are summarized in Algorithm 1. As
the inputs, the algorithm takes the previously computed con‐
trol sequence [uk|t] k = 12H and the predicted load
[μ̂Lk|t

σ̂Lk|t
] k = 12H on the finite horizon H.

As stated before, to increase the battery life, it is impor‐
tant to penalize the inflow variability. To achieve this goal,
the expected cost function (16) is extended by adding a pen‐
alty term -λuk|tI{uk|t < 0} for inflows, where λ is a weighting fac‐

tor and the negative sign makes the penalty term positive, as
shown in lines 3 and 4 of Algorithm 1. As a result, the con‐
trol sequence [uk|t] k = 12...H is calculated. As with the
CMPC [6], from the sequence obtained, only the first con‐
trol signal u1|t + 1 is used by the battery controller.

Note that the computation time of the proposed control
strategy is determined by three major contributors as stated
in [29]. The results in the following section are obtained us‐
ing the interior point optimization method which takes the
advantage of the convex cost function.

IV. RESULTS

The advantages of the PMPC over the CMPC are demon‐
strated in this section. The PMPC is based on the expected
cost function and the fixed-end horizon, while the CMPC ap‐
plies the expected load cost function and a fixed 24-hour pre‐
diction horizon. Both of them are tested using the same
BESS model (1), whose parameters are summarized in Table
I. The loss terms in (2) are calculated based on the loss coef‐
ficient α, which are α- = α= 0.96 [30] and α+ = α-1 = 1.0417.

The PV generation is modelled by average daily curve
[31]. Considering the load demand, the generic profile type
2 [32] is used with well-defined peak loads in the morning
and evening.

The net load is defined as a difference between a house‐
hold demand and PV generation, as shown in Fig. 6. The
flat electricity tariffs are applied. The feed-in tariff T0 is 0.05
$/kWh while the grid-spot tariff T1 is 0.25 $/kWh.

The CMPC and PMPC are compared for the net load giv‐
en in Fig. 6. The control actions are presented in Fig. 7. In
Fig. 7, uCMPC and uPMPC are the control actions for CMPC and
PMPC, respectively. The control sequence obtained by the
CMPC based on the expected load cost function consistently
attempts to follow the net load. In the case when it is not
feasible, the control action reduces to smaller values. The
most significant issue is that the CMPC is missing out to
support the power grid during the peak time in the morning
and evening. The PMPC supports the power grid during the
peak time. Besides, the advantage of the PMPC over the
CMPC is the ability of PMPC to additionally charge the
BESS during a day when additional energy is available due
to PV generation.

As a result of applying different cost functions, the ob‐
tained control sequences result in different dynamical behav‐
iour for a household BESS. Battery energy level presented
in Fig. 8 shows that the control strategy of PMPC has two
main advantages over the CMPC. ECMPC and EPMPC are the
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Algorithm 1: PMPC

1. Procedure of PMPC: [uk|t] [μ̂Lk|t
σ̂Lk|t

] k = 12H

2. E{gk|t (F)}=T0E{F-}I{ }F < 0 +T1E{F+}I{ }F ³ 0

3. E{Ctot}=∑
k = 1

H

E{gk|t (F)}DT - λuk|tI{uk|t < 0}

4. min
u1|t + 1...uH|t + 1

E{Ctot}

5. return u1|t + 1

6. End procedure

TABLE I
PARAMETERS OF BESS MODEL

Pc (kW)

5

Ec (kWh)

10

Eres (kWh)

2

Eend (kWh)

5

α

0.96

DT (hour)

0.5
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energy storages for CMPC and PMPC, respectively. Firstly,
the amount of the energy which is stored in the battery dur‐
ing a day reaches the maximum level allowed by the im‐
posed constraint (Ec £ 10 kWh). Secondly, the energy levels
at the end of a day are different. Whilst the battery energy
level for PMPC satisfies the fixed-end point constraint (Eend =
5 kWh), it is impossible to control the energy level achieved
by the CMPC at the same time instance. The fixed 24-hour
prediction horizon does not allow the fixed-end point control
in the case of a daily cycling load.

The insights into predicted control sequences for both
CMPC and PMPC are presented in Figs. 9 and 10, respec‐
tively, which show the control sequence uk|t for different t
and k. For the CMPC, each control sequence has the 24-hour
prediction horizon, while the prediction horizon of PMPC
ends at a fixed-end point, which is the midnight for this case.

In Fig. 9, two types of responses in the predicted control
sequence are observed. Initially, the control sequence is rea‐
sonably smooth (the horizon indexes between 1 and 34).
However, the predicted control signal exhibits abrupt chang‐
es. The main reason is that the predicted net load starts to
have both the intervals with positive and negative values.
Therefore, the CMPC makes a decision to average the pre‐
dicted control sequence in response to the changes of signs
in the net load. As the result, the CMPC decides to stop dis‐
charging the BESS and even to start charging the BESS dur‐
ing the peak time in the evening. In Fig. 10, the predicted
control sequence of PMPC is smooth except for the last few
samples when PMPC attempts to satisfy the fixed-end con‐
straint Eend = 5 kWh. The main advantage of the PMPC with
expected cost function over the CMPC with the expected
load function is that it successfully controls the fixed-end
constraint by incorporating the cycling nature of the load.
The control actions of CMPC and PMPC for noisy genera‐
tion and demand are presented in Figs. 11 and 12, respective‐
ly.

Note that the time-of-use (TOU) price and dynamic rates
can be considered as well using the proposed control strate‐
gy by adapting (14). These rates are defined as the tariff
pairs T(F(t))Î{[T 1

0 T 1
1 ][T 2

0 T 2
1 ][T N - 1

0 T N - 1
1 }] . The strate‐

gy operates in the same way as for the flat tariffs and avoids
energy purchase during the peak time.

The last group of the results demonstrates the advantages
of the newly proposed control strategy in the presence of
noise, which has the standard normal distribution with stan‐
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dard deviation as σ = 0.125. The assumption is that both dai‐
ly PV generation and demand are affected by random inter‐
ference. The random PV generation models the change of
weather conditions, while the random demand models the
variability of a household consumption. In order to assess
the benefits of the PMPC, it is necessary to generate multi‐
ple random realizations for both the PV generation and de‐
mand. Using Monte Carlo experiments, a hundred realiza‐
tions are generated and the evaluation of the CMPC and the
PMPC are obtained. The battery energy level for CMPC and
PMPC for noisy generation and demand is shown in Fig. 13.

The benefits of PMPC with expected cost function is sum‐
marized in Fig. 14, where the histograms are plotted togeth‐
er with estimated PDFs. The mean and standard deviations
corresponding to the CMPC μCMPC and σCMPC are $5.11 and
$0.29, respectively. The blue line is the Gaussian PDF for
μCMPC. Similar, the red line is Gaussian PDF for σCMPC.

The mean and standard deviations for the PMPC μPMPC

and σPMPC are $4.76 and $0.28, respectively, implying that
the PMPC with the expected cost function has a smaller to‐
tal cost compared with that of the CMPC with the expected
load cost function.

V. CONCLUSION

To optimally control a household BESS, a novel modifica‐
tion of an MPC is proposed. A probabilistic evaluation of a
new cost function incorporates the random nature of cycling
customer load, intermittent nature of the PV generation and

variable tariffs. The probabilistic calculation of the cost func‐
tion is applied on the horizon whose length changes progres‐
sively. A progressive horizon technique includes a fixed-end
time and a fixed-end output. It is shown that for such con‐
straints defined, an optimization problem has a globally opti‐
mal solution. Economic viability of the proposed control
strategy is demonstrated using Monte Carlo experiments.

Finally, the proposed control strategy enables a household
daily cost reduction in the presence of electricity tariffs and
an uncertain daily cycling load.

Future work will include load prediction analysis using
different PDFs and their expected values. Additionally, the
coordination of multiple household battery packs will be con‐
sidered. Also, the application of unsupervised learning algo‐
rithms for the adaptation of load PDF will be investigated.

REFERENCES

[1] OECD. (2019, Jan.). Purchasing power parities (PPP) (indicator). [On‐
line]. Avalable: https://data.oecd.org/conversion/purchasing-power-pari‐
ties-ppp.htm

[2] V. Venizelou, N. Philippou, M. Hadjipanayi et al., “Development of a
novel time-of-use tariff algorithm for residential prosumer price-based
demand side management,” Energy, vol. 142, pp. 633-646, Jan. 2018.

[3] E. Klaassen, C. Kobus, J. Frunt et al., “Responsiveness of residential
electricity demand to dynamic tariffs: experiences from a large field
test in the netherlands,” Applied Energy, vol. 183, pp. 1065-1074, Dec.
2016.

[4] V. Azarova, D. Engel, C. Ferner et al., “Exploring the impact of net‐
work tariffs on household electricity expenditures using load profiles
and socio-economic characteristics,” Nature Energy, vol. 3, pp. 317-
325, Apr. 2018.

[5] G. Brusco, A. Burgio, D. Menniti et al., “The economic viability of a
feed-in tariff scheme that solely rewards self-consumption to promote
the use of integrated photovoltaic battery systems,” Applied Energy,
vol. 183, pp. 1075-1085, Dec. 2016.

[6] E. Camacho and C. Bordons, Model Predictive control. London:
Springer, 2007.

[7] K. Worthmann, C. M. Kellett, P. Braun et al., “Distributed and decen‐
tralized control of residential energy systems incorporating battery stor‐
age,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1914-1923,
Jul. 2015.

[8] S. Teleke, M. E. Baran, S. Bhattacharya et al., “Rule-based control of
battery energy storage for dispatching intermittent renewable sources,”
IEEE Transactions on Sustainable Energy, vol. 1, no. 3, pp. 117-124,
Oct. 2010.

[9] A. Mahamadi and S. Sastry, “Model predictive controller for battery
management systems,” in Proceedings of 2015 International Confer‐
ence on Computing, Control, Networking, Electronics and Embedded
Systems Engineering (ICCNEEE), Khartoum, Sudan, Sept. 2015, pp.
21-26.

[10] T. G. Paul, S. J. Hossain, S. Ghosh et al., “A quadratic programming
based optimal power and battery dispatch for grid-connected mi‐
crogrid,” IEEE Transactions on Industry Applications, vol. 54, no. 2,
pp. 1793-1805, Mar. 2018.

[11] J. Lee, P. Zhang, L. K. Gan et al., “Optimal operation of an energy
management system using model predictive control and gaussian pro‐
cess time-series modeling,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 6, no. 4, pp. 1783-1795, Dec. 2018.

[12] E. Perez, H. Beltran, N. Aparicio et al.,“Predictive power control for
PV plants with energy storage,” IEEE Transactions on Sustainable En‐
ergy, vol. 4, no. 2, pp. 482-490, Apr. 2013.

[13] Z. Yu, L. Jia, M. C. Murphy-Hoye et al., “Modeling and stochastic
control for home energy management,” IEEE Transactions on Smart
Grid, vol. 4, no. 4, pp. 2244-2255, Dec. 2013.

[14] B. Zhu, H. Tazvinga, and X. Xia, “Switched model predictive control
for energy dispatching of a photovoltaic-diesel-battery hybrid power
system,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 3, pp. 1229-1236, May 2015.

[15] O. Tremblay and L. A. Dessaint, “Experimental validation of a battery
dynamic model for EV applications,” World Electric Vehicle Journal,
vol. 3, no. 2, pp. 289-298, Jun. 2009.

3

4

5

6

7

8

9

10

En
er

gy
 (k

W
h)

ECMPC
EPMPC

0 5 10 15 20 25
Time (hour)

Fig. 13. Battery energy level for CMPC and PMPC for noisy generation
and demand.

2.0

1.5

1.0

0.5

0
4.03.5 5.04.5 6.0 6.55.5

Total daily cost ($)

Pr
ob

ab
ili

ty
 d

en
sit

y

CMPC
PMPC

Fig. 14. Benefits of PMPC with expected cost function.

147



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 1, January 2022

[16] J. B. Copetti, E. Lorenzo, and F. Chenlo, “A general battery model for
PV system simulation,” Progress in Photovoltaics: Research and Ap‐
plications, vol. 1, no. 4, pp. 283-292, Apr. 1993.

[17] J. F. Manwell and J. G. McGowan, “Extension of the kinetic battery
model for wind/hybrid power systems,” in Proceedings of European
Wind Energy Conference and Exhibition (EWEC), Thessaloniki,
Greece, pp. 284-289, Jun. 1994.

[18] K. Li and K. J. Tseng, “Energy efficiency of lithium-ion battery used
as energy storage devices in micro-grid,” in Proceedings of IECON
2015–41st Annual Conference of the IEEE Industrial Electronics Soci‐
ety, Yokohama, Japan, Nov. 2015, pp. 5235-5240.

[19] S. B. Peterson, J. Apt, and J. Whitacre, “Lithium-ion battery cell deg‐
radation resulting from realistic vehicle and vehicle-to-grid utiliza‐
tion,” Journal of Power Sources, vol. 195, no. 8, pp. 2385-2392, Aug.
2010.

[20] X. Wu, X. Hu, X. Yin et al., “Optimal battery sizing of smart home
via convex programming,” Energy, vol. 140, pp. 444-453, Dec. 2017.

[21] L. Wang, Model Predictive Control System Design and Implementation
Using MATLAB. London: Springer, 2009.

[22] C. Bian, H. He, S. Yang et al., “State-of-charge sequence estimation
of lithium-ion battery based on bidirectional long short-term memory
encoder-decoder architecture,” Journal of Power Sources, vol. 449, p.
227558, Feb. 2020.

[23] X. Hu, H. Jiang, F. Feng et al., “An enhanced multi-state estimation
hierarchy for advanced lithium-ion battery management,” Applied En‐
ergy, vol. 257, p. 114019, Jan. 2020.

[24] M. Merten, C. Olk, I. Schoeneberger et al., “Bidding strategy for bat‐
tery storage systems in the secondary control reserve market,” Ap‐
plied Energy, vol. 268, p. 114951, Jun. 2020.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cam‐
bridge University Press, 2004.

[26] M. J. Cloud, B. C. Drachman, and L. P. Lebedev, Inequalities With Ap‐
plications to Engineering. New York: Springer International Publish‐
ing, 2014.

[27] W. R. Wade, “The bounded convergence theorem,” The American
Mathematical Monthly, vol. 81, no. 4, pp. 387-389, Apr. 1974.

[28] G. Grimmett and D. Stirzaker, Probability and Random Processes.
Oxford: Oxford University Press, 2008.

[29] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1391-1403, Nov. 2012.

[30] T. Kerekes, R. Teodorescu, P. Rodriquez et al., “A new high-efficiency

single-phase transformerless PV inverter topology,” IEEE Transac‐
tions on Industrial Electronics, vol. 58, no. 1, pp. 184-191, Jan. 2011.

[31] S. Pfenninger and I. Staffell, “Long-term patterns of european pv out‐
put using 30 years of validated hourly reanalysis and satellite data,”
Energy, vol. 114, pp. 1251-1265, Nov. 2016.

[32] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea et al., “Daily load pro‐
files for residential, commercial and industrial low voltage consum‐
ers,” IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 375-
380, Jan. 2000.

Dejan P. Jovanović received the B.Sc. (Dipl. Ing.) degree in electrical and
microelectronic engineering and the M. Sc. degree in system control engi‐
neering from the University of Belgrade, Belgrade, Serbia, in 1996 and
2002, respectively, and the Ph.D. degree in statistics from the University of
Queensland, Brisbane, Australia, in 2014. His research interests include con‐
trol systems, power electronics, and application of machine learning in fault
diagnosis and fault-tolerant control.

Gerard F. Ledwich received the Ph. D. degree in electrical engineering
from the University of Newcastle, Newcastle, Australia, in 1976. He is cur‐
rently a Research Professor of electric power with the School of Electrical
Engineering and Robotics, Queensland University of Technology, Brisbane,
Australia. He has 215 journal publications and 323 refereed conference pub‐
lications. He has a Scopus H-index of 44 and a citation count of 8633. He
has been involved in securing grants of more than AU$16 million with the
majority of them were in explicit partnership with industry. His research in‐
terests include power systems, power electronics, and wide area control of
smart grid.

Geoffrey R. Walker received the B.E. and Ph.D. degrees from The Univer‐
sity of Queensland (UQ), Brisbane, Australia, in 1990 and 1999, respective‐
ly. From 1998 to 2007, he was the Power Electronics Lecturer with UQ.
From 2008 to 2013, he was a Senior Electrical Engineering Consultant with
Aurecon’s Transmission and Distribution Group, Brisbane, Australia, across
various areas, including rail traction, grounding studies, electricity transmis‐
sion planning, and renewable energy project design and review. In 2013, he
joined the Electrical Power Engineering Group, Queensland University of
Technology, Brisbane, Australia, as an Associate Professor. His current re‐
search interests include applying power electronics to applications in renew‐
able energy (especially photovoltaic), power systems, and electric vehicles.

148


