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Decentralized Bilateral Risk-based Self-healing 
Strategy for Power Distribution Network with 

Potentials from Central Energy Stations
Chaoxian Lv, Rui Liang, and Yuanyuan Chai

Abstract——Owing to potential regulation capacities from flexi‐
ble resources in energy coupling, storage, and consumption 
links, central energy stations (CESs) can provide additional sup‐
port to power distribution network (PDN) in case of power dis‐
ruption. However, existing research has not explicitly revealed 
the emergency response of PDN with leveraging multiple CESs. 
This paper proposes a decentralized self-healing strategy of 
PDN to minimize the entire load loss, in which multi-area 
CESs’  potentials including thermal storage and building ther‐
mal inertia, as well as the flexible topology of PDN, are reason‐
ably exploited for service recovery. For sake of privacy preser‐
vation, the co-optimization of PDN and CESs is realized in a de‐
centralized manner using adaptive alternating direction method 
of multipliers (ADMM). Furtherly, bilateral risk management 
with conditional value-at-risk (CVaR) for PDN and risk con‐
straints for CESs is integrated to deal with uncertainties from 
outage duration. Case studies are conducted on a modified 
IEEE 33-bus PDN with multiple CESs. Numerical results illus‐
trate that the proposed strategy can fully utilize the potentials 
of multi-area CESs for coordinated load restoration. The effec‐
tiveness of the performance and behaviors’  adaptation against 
random risks is also validated.

Index Terms——Power distribution network (PDN), central en‐
ergy station (CES), bilateral risk management, self-healing, al‐
ternating direction method of multipliers (ADMM).
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B. Greek Symbols

α
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δ

Dt 
DT
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Unit penalty costs for electricity and cooling 
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Surface area of building

Objective value

Current magnitude and its square of branch

Equivalent heat dissipation coefficient

Number of scenarios

Active and reactive power

Active and reactive injections into power distri‐
bution network (PDN) of coupling points

Active and reactive outputs of gas turbines 
(GTs) in central energy stations (CESs)

Probability of scenario s

Comprehensive probability of period t

Resistance and reactance of branch

Inverter capacity

Indoor temperature of buildings

Outdoor temperature

Reference indoor temperature

The minimum value of inevitable outage dura‐
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Outage duration time

Voltage magnitude and its voltage square of bus

System reference voltage

Volume of building

Cooling energy stored

Consensus variables

Binary variable (1: branch is connected; 0: other‐
wise)

Binary variable (1: node j is the parent of bus i; 
0: otherwise)

Power factor of gas turbines
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Ramping limit

Heat loss rate and load recovery coefficient
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C. Superscripts
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D. Subscripts

br, b

i j

ij, jh

n, s

t

tie, v

Value at risk

Efficiency of gas-driven device

Vectors of Lagrangian multipliers for PDN

Vectors of Lagrangian multipliers for CESs n

Step size adjustment parameters

Non-negative values

Penalty parameter

Density of air

Heat-electricity ratio

Confidence level

Weight factor of risk

Set of specified elements

Heat pump, water-cooled chiller, cold water 
tank, gas turbine, and absorption chiller

Index of iteration number

Load and tie line

The maximum and minimum values

Cooling storage and releasing

Branch and bus

Indices of buses

Indices of branches

Indices of CESs and scenarios

Index of time periods

Tie switch and voltage support bus

I. INTRODUCTION

THE energy dilemma and environmental pollution issues 
have expedited the revolution of energy utilization [1], 

[2]. Electricity-gas energy system (EGES), in which energies 
are distributed by power distribution network (PDN) and nat‐
ural gas system and end-consumers are fed by central energy 
stations (CESs), has been widely spread to achieve high-effi‐
ciency and low-carbon operation [3]. Due to the existence of 
flexible resources in energy coupling, storage and consump‐
tion links, CESs have become the key points for multi-ener‐
gy coordination and systematic facilitation [4]. And the regu‐
lation potential from CESs can provide additional support 
for the operation of PDNs in normal and extreme cases [5].

Recently, frequent occurrences of emergencies such as nat‐
ural disasters and hostile attacks bring out tremendous opera‐
tion loss to energy system, and these events have the charac‐
teristics of low probability and large destruction [6], [7]. Es‐
pecially, the PDN is more likely to suffer extreme power out‐
ages due to the ubiquity of vulnerable electricity infrastruc‐
tures [8]. Thus, adequate adaption and self-healing response 
capacity in case of outages are essential for the secure and 

reliable operation of PDN [9].
Significant efforts have been conducted on the self-heal‐

ing scheduling of PDN under extreme events. The utilization 
of various controllable resources such as distributed genera‐
tions (DGs), network reconfiguration, and demand-side ap‐
proaches can contribute to the service recovery effect [10]. 
With the support of DGs and flexible topology of distribu‐
tion networks, a service restoration strategy is employed in 
[11] to restore out-of-service loads as much as possible. Ref‐
erence [12] proposes a supply restoration strategy for active 
distribution network with soft open points (SOPs), in which 
the sequential operations of SOP control mode and switching 
motion are coordinated. Considering the time-series of DGs, 
energy storage systems (ESSs), and loads, [13] constructs a 
SOP-based island partition model for load recovery. Refer‐
ence [14] applies a multi-fault rush repairing strategy to dis‐
tribution network for minimizing the outage loss and rush re‐
pairing time. A synchronous fault location, fault isolation, 
and service restoration method is proposed in [15], with the 
post-event recovery ability improved. Considering the threat 
of ice disaster, a resilience strategy is proposed in [16] by 
proactive network reconfiguration, with the survivability un‐
der disasters improved. Multiple sources including DGs and 
microgrids are coordinated in [17] for the restoration of criti‐
cal loads after blackouts, and the restoration problem is 
solved by two-stage determination of post-event topology 
and source-load states. By the inclusion of demand response 
(DR) for varying the load profiles, the service restoration 
level is significantly leveraging in [18].

As energy systems are undergoing a transition from sepa‐
rated power supply pattern to multi-energy and multi-link 
collaboration, the coordination potentials of heterogeneous 
resources for electricity service recovery will be exploitable 
[19]. Especially, the coupling between electricity and natural 
gas is progressively increasing due to the widespread applica‐
tion of gas turbines (GTs) and electricity-gas CESs [20], 
[21]. Along with the flexibility promotion for fault restora‐
tion, challenges are arising parallelly on account of interde‐
pendence and constraint aggravation [22]. With the interac‐
tive support of electricity and natural gas infrastructures, the 
damages caused by attackers are effectively weakened with 
three-stage defender-attacker-defender strategy [23], [24]. 
Reference [25] constructs a multi-energy coordinated load 
restoration strategy for urban integrated energy system, in 
which the minimum spanning tree method is used to decom‐
pose the distribution network into a multi-island mode for 
the prioritized recovery of critical loads. To increase the 
emergency response capacities of power grid, [26] conducts 
an electricity-gas synergy planning with replacing certain 
power lines with natural gas transportation system. By ex‐
ploiting the emergency support of gas/electricity, thermal 
storages, and building demand response, a multi-stage resil‐
ience scheduling with multi-level reserve is investigated in 
[27]; the critical loads in PDN can be strictly guaranteed. 
Reference [28] proposes a dynamic recovery strategy for in‐
tegrated distribution networks, in which available resources 
including GTs and mobile storages are managed collabora‐
tively to improve the amount of restored electricity loads. 
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With the optimal operation of combined heat and power 
(CHPs), a microgrid formation model of electricity-gas sys‐
tem is presented in [29] for resilience improvement.

The above researches mainly focus on the centralized 
scheduling manner that ignores the obstacles of information 
exchange. Different utilities may have autocephalous energy 
management systems (EMSs) and they are usually operated 
independently with privacy-preserving [30]. Thus, the decen‐
tralized scheduling approach, which can decompose original 
problem into some sub-problems with limited information 
sharing, has become an applicable choice to realize collabor‐
ative optimization [31]. To convert original centralized opera‐
tion problem into a decentralized mode, several methods in‐
cluding augmented Lagrangian relaxation (ALR), alternating 
direction method of multipliers (ADMM), and analytical tar‐
get cascading (ATC) have been developed [32], [33]. Due to 
preferable convergence performance and extendable decom‐
posing structure, ADMM is widely adopted for solving multi-
system co-operation problems [34]. In [35], a decentralized 
demand response management for industrial park energy sys‐
tem is conducted using the ADMM algorithm. The co-optimi‐
zation of multi-area integrated electricity-gas systems is real‐
ized through ADMM algorithm in [36], and the convergence 
and accuracy are validated. The optimization process of each 
subsystem, i. e., electric distribution system, natural gas sys‐
tem, and energy hub systems, is conducted separately by uti‐
lizing consensus-based ADMM algorithm in [37]. For the 
load restoration problem of integrated power distribution and 
gas systems, [38] uses a consensus-based ADMM algorithm 
to fulfill scheduling in a distributed manner, with excessive 
information exchange avoided and utility privacy preserved.

Moreover, extra risks will be evoked regarding various un‐
certainties, which may derive from renewable energy sources 
(RESs), multiple demands, and some others. To decrease the 
negative influence, handling methods such as robust optimi‐
zation [39], stochastic optimization [40], and chance-con‐
strained programming [41] can be employed for better adapt‐
ability to uncertain factors. Conditional value-at-risk (CVaR) 
is a concept derived from economic field to measure the loss 
risk of investments, and it has significant application value 
for risk management on the planning and operation of PDN, 
microgrid, and integrated energy systems [42]. For the trade-
off between risk and cost under source-load variations, [43] 
carries out CVaR-based investment-operation planning for 
multi-energy microgrid, which can provide investment rec‐
ommendations for decision-makers. A CVaR-averse penalty 
of voltage violation is integrated into the chance-constrained 
optimal power flow in [44], with better voltage security guar‐
anteed. To solve the risk caused by fluctuations from RESs 
and loads, CVaR is introduced into the reserve decision of is‐
landed micrgorid for the coordination of operation security 
and economy in [45]. Facing various uncertainties including 
solar, load, and day-ahead price, [46] proposes a risk man‐
agement model for power, heat, and hydrogen system based 
on CVaR, and operator’s behaviors against random risks are 
contrastively discussed. As an effective means for risk man‐
agement, the CVaR indices have not been well utilized in 
the self-healing scheduling of PDN under uncertainties. It 

should be noted that conventional self-healing scheduling is 
usually developed based on the deterministic estimated dura‐
tion time after fault isolation; in reality, the fault duration is 
affected by various factors such as disaster situation and 
rush repair time, resulting in uncertainty of outage duration 
and operation risk of multiple coupling periods in PDN.

To the best of our knowledge, the uncertainties from out‐
age duration have not attracted much attention in the service 
recovery of PDN. Facing indeed existing duration distur‐
bance in PDN, it still lacks efficient self-healing strategy due 
to the time-series relevance of system status for uncertain 
scenarios. Especially, with deep coupling between PDN and 
CESs, the auxiliary service potentials of CESs for emergen‐
cy response need to be well exploited; meanwhile, the inte‐
gration of CESs raises the difficulty of reasonable risk-based 
restoration due to the requirements of multi-energy coordina‐
tion and spatio-temporal resource utilization. Furthermore, 
the operations of PDN and CESs are often independent 
along with private information preserving; the optimal self-
healing strategy considering endogenous uncertainty from 
outage duration is more challenging.

To deal with the above issues, this paper proposes a decen‐
tralized risk-based self-healing strategy for PDN considering 
the support of multiple CESs. The main contributions are 
summarized as follows.

1) A self-healing recovery strategy for PDN is proposed 
considering topology reconfiguration and multiple regulation 
potentials of multi-area CESs. For dispersive CESs, emergen‐
cy response from GTs and thermal storage, as well as build‐
ing thermal inertia are well coordinated for load restoration. 
Furthermore, the model is tackled as a mixed-integer second-
order cone programming (MISOCP) problem.

2) Bilateral risk management with CVaR assessment for 
PDN and margin constraints for CESs is employed to cope 
with operation risks caused by uncertain outage duration. 
CVaR criteria are introduced to measure the load shedding 
risk of PDN while guaranteeing the supply of CESs within 
permissible margin for risk controllability. Better risk man‐
agement effects are realized.

3) The self-healing strategy is conducted in a decentral‐
ized manner, in which consensus-based ADMM algorithm is 
adopted for reducing information exchange and preserving 
privacy between PDN and CESs. Meanwhile, the iteration 
process is expedited by adaptive ADMM algorithm, showing 
better convergence performance.

The remainder of this paper is organized as follows. Sec‐
tion II builds the mathematical model of system operation, 
as well as the conic relaxation method. Section III describes 
the bilateral risk-based self-healing scheduling strategy. The 
solution methodology of decentralized risk-based self-heal‐
ing scheduling is presented in Section IV. Case studies are 
conducted in Section V to verify the performance of the pro‐
posed strategy. Finally, conclusions are drawn in Section VI.

II. MATHEMATICAL MODEL OF SYSTEM OPERATION 

A. Constraints of PDN

1)　Power Flow Constraints
The DistFlow branch model with considering flexible to‐
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pology is adopted to describe the PDN. Equations (1) and 
(2) denote the active and reactive power balances of node j 
at time t. And the branch current magnitude can be obtained 
by (3). Besides, the active and reactive power injections of 
node j at time t are described in (4) and (5). Considering net‐
work reconfiguration characteristic, the Ohm’s law of 
branch ij at time t is denoted in (6) and (7); and (8)-(10) are 
supplemented for guaranteeing accuracy, where M is a suffi‐
ciently large constant.∑

ijÎΩbr

(Ptij - rij I
2
tij ) +Ptj = ∑

jhÎΩbr

Ptjh (1)

∑
ijÎΩbr

(Qtij - xij I
2
tij ) +Qtj = ∑

jhÎΩbr

Qtjh (2)

V 2
ti I

2
tij =P 2

tij +Q2
tij (3)

Ptj =-P TL
tn - λtj P

L
tj    nÎΩ

CES
bj (4)

Qtj =QGT
tn - λtjQ

L
tj    nÎΩ

CES
bj (5)

V 2
ti -V 2

tj - 2(rij Ptij + xijQtij )+ (r 2
ij + x2

ij )I
2
tij +M (1 - αij )³ 0 (6)

V 2
ti -V 2

tj - 2(rij Ptij + xijQtij )+ (r 2
ij + x2

ij )I
2
tij -M (1 - αij )£ 0 (7)

-Mαij £Ptij £Mαij (8)

-Mαij £Qtij £Mαij (9)

0 £ itij £Mαij (10)

2)　Topology Constraints
The radical topology should be maintained in the formed 

islands, which is described as:

αij = βij + βji    ijÎΩbr (11)

∑
ijÎΩbr

βij = 1    "iÎΩb /Ωv (12)

∑
ijÎΩbr

βij = 0    "iÎΩv (13)

Vti -V0 ³-M ∑
ijÎΩbr

βij (14)

where V0 is the system reference voltage. Equation (11) rep‐
resents the relationship between branch connect state and 
flow direction; (12) and (13) denote that there is no parent 
bus for root node and merely one node is permitted to serve 
as the parent of other nodes; and (14) is to constrain the volt‐
age of root bus.
3)　Security Constraints

The security constraints are to restrict the magnitudes of 
bus voltage and line current.

(V min )2 £V 2
ti £(V max )2 (15)

I 2
tij £(I max

ij )2 (16)

B. Constraints of CES

This research mainly focuses on the self-healing schedul‐
ing for space cooling and electricity during the cooling peri‐
od. And the cooling devices can be divided into electricity-
driven and gas-driven categories.
1)　Electricity-driven Devices

Popular electricity-driven devices include ground source 
heat pump (HP), conventional water-cooled chiller (WC), 

and cold water tank (CWT).
The mathematical model of HP is depicted in (17) and 

(18), where COP denotes coefficient of performance.

C HPmin
n £C HP

tn £C HPmax
n (17)

P HP
tn =C HP

tn /COP HP
n (18)

The operation constraints of WC are given in (19) 
and (20).

C WCmin
n £C WC

tn £C WCmax
n (19)

P WC
tn =C WC

tn /COP WC
n (20)

CWTs can store the cooling energy from HPs and WCs, 
and the energy storage constraints, cooling-storage con‐
straints, and capacity constraints are formulated as follows:

W CWT
tn = (1 - εCWT

n )W CWT
t - 1n +C CWTS

tn Dt -C CWTR
tn Dt (21)

C HP
tn +C WC

tn ³C CWTS
tn (22)

0 £W CWT
tn £W CWTmax

n (23)

2)　Gas-driven Devices
Gas-driven devices can be GT and absorption chiller 

(AC). GTs burn natural gas with electricity and heating gen‐
eration, and electricity and heating have a certain ratio rela‐
tionship, as shown in (24) and (25). And (26) presents the 
constraints of output power.

P GT
tn = η

GT
n F GT

tn (24)

H GT
tn = τ GT

n P GT
tn (25)

0 £P GT
tn £P GTmax

n (26)

In case of disruption at the root node of PDN, complete 
energy loss will occur. Facing this, both active and reactive 
power supports should be carried out for effective fault resto‐
ration. As the coupling point of PDN and natural gas sys‐
tem, converter-based GTs in CESs can serve as controllable 
distributed generators to provide active and reactive support 
when electricity emergency takes place [47]. And the power 
factor of GT should be larger than the minimum allowed val‐
ue, which can be represented in the form of (27). Furtherly, 
the converter capacity of GT is constrained in (28).

-
P GT

tn 1 - (δmin
n )2

δmin
n

£QGT
tn £

P GT
tn 1 - (δmin

n )2

δmin
n

(27)

(P GT
tn )2 + (QGT

tn )2 £ S GT
n (28)

The output power constraints, absorbed power, as well the 
maximum output constraints of AC are shown as follows:

C AC
tn =COP AC

n ×H AC
tn (29)

H AC
tn £H GT

tn (30)

0 £C AC
tn £C ACmax

n (31)

3)　Thermal Inertia Model of Buildings
The thermal inertia characteristic of buildings will provide 

more flexibilities for system operation, and buildings can be 
regarded as virtual storages. The mathematical thermal iner‐
tia model of buildings in the cooling season can be stated 
as [48]:
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Ttn - Tt - 1n

Dt
=

(Ttout - Tt - 1n )Kn Fn -C in
tn

Cair ρairVn

(32)

4)　Power Balance Constraints
The energy supply-demand balances should be ensured ev‐

ery time, and electricity and cooling balances in CESs are 
expressed as:

P TL
tn +P GT

tn =P HP
tn +P WC

tn (33)

C HP
tn +C WC

tn +C AC
tn -C CWTS

tn +C CWTR
tn =C in

tn (34)

C. Convex Conversion of System Operation

Lots of nonconvex terms exist in the operation model. To 
expedite the solution, the nonconvex model is converted into 
an MISOCP formulation.
1)　PDN

Auxiliary variables ltij and vti are introduced to replace 
I 2

tij and V 2
ti. Thus, (1), (2), (6), (7), (15), and (16) can be lin‐

earized: ∑
ijÎΩbr

(Ptij - rijltij ) +Ptj = ∑
jhÎΩbr

Ptjh (35)

∑
ijÎΩbr

(Qtij - xijltij ) +Qtj = ∑
jhÎΩbr

Qtjh (36)

vti - vtj - 2(rij Ptij + xijQtij )+ (r 2
ij + x2

ij )ltij +M (1 - αij )³ 0 (37)

vti - vtj - 2(rij Ptij + xijQtij )+ (r 2
ij + x2

ij )ltij -M (1 - αij )£ 0 (38)

(V min )2 £ vti £(V max )2 (39)

ltij £(I max
ij )2 (40)

For (3), it can be further relaxed as a standard second-or‐
der cone constraint, which can be expressed as:

 [2Ptij    2Qtij    ltij - vti ]
T

2
£ ltij + vti (41)

2)　CES
For GT operation in case of electricity emergency, (28) 

can be converted as a rotating cone constraint:

(P GT
tn )2 + (QGT

tn )2 £ 2
S GT

n

2

S GT
n

2
(42)

After convex relaxation and linearization, the original op‐
eration model is reformulated as an MISOCP model, which 
can be effectively solved by mature commercial solver.

III. BILATERAL RISK-BASED SELF-HEALING SCHEDULING

In the section, the bilateral risk-based self-healing model 
is introduced to realize service recovery and risk measures.

A. Objective Function

The objective function F is to minimize the load losses of 
PDN and CESs, which is:

min F =∑
t = 1

tout

pt (E
E LENS

t +EC LCNS
t )Dt (43)

LENS
t = ∑

iÎΩb

(1 - λti ) P L
ti (44)

LCNS
t = ∑

nÎΩCES

||Ttn - Tref Cair ρairVn /Dt (45)

pt can be calculated as:

pt =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

1                   t < tin

At

∑
t = tin +Dt

tout

At

    others (46)

where At equals ∑
t'= t

tout

Bt'.

B. Bilateral Risk-based Scheduling

1)　CVaR-based Risk Management for PDN
The general expression of CVaR model can be described 

as follows [49]:

min ( )ζ +
1

1 - φ∑
s = 1

Ns

psπs (47)

fs - ζ £ πs (48)

πs ³ 0 (49)

where πs is greater than fs - ζ in scenario s.
Based on the above CVaR theory and system optimization 

model, the risk-management model of self-healing strategy 
can be reformulated as (50).

min
ì
í
î

ïï
ïï

ü
ý
þ

ïïïï

ïï
(1 -ω)F +ω ( )ζ +

1
1 - φ ∑

t = tin +Dt

tout

pt πt (50)

Except for the original constraints for system operation, 
the following constraints are supplemented to risk manage‐
ment model.

LENS
t - ζ £ πt    "t > tin (51)

πt ³ 0 (52)

In general, we describe the strategy with ω> 0.5 as risk-
averse preference, the strategy with ω < 0.5 as risk-seeking 
preference, and the strategy with ω= 0.5 as risk-neutral pref‐
erence. To accommodate diverse risk preferences, different 
values of risk weight factors can be considered. As the 
weight factor increases from 0 to 1, the scheduling prefer‐
ence turns from risk seeking to risk aversion.
2)　Constraint-based Risk Management for CESs

For the essential requirement of CESs, the indoor tempera‐
ture and the ramping rates of buildings should be maintained 
within the comfort range, which are expressed as:

T min £ Ttn £ T max (53)

-DT £ Ttn - Tt - 1n £DT (54)

Due to the unpredictability of outage duration time, the 
fault recovery schedule will keep consistent for each possi‐
ble duration. Therefore, the schedules including charging-dis‐
charging power of thermal storage, building temperature in 
dispersive CESs, and reconfiguration topology for PDN, as 
well as the load restoration state, will be issued to the local 
control system for execution.

IV. SOLUTION METHODOLOGY OF DECENTRALIZED 
RISK-BASED SELF-HEALING SCHEDULING 

Since PDN and CES usually belong to different entities, 
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only restricted operation information can be exchanged with 
each other, resulting in the absurdity of centralized schedul‐
ing.

In this section, a decentralized method is introduced to 
achieve private information preserving and independent oper‐
ation of each subsystem through adaptive ADMM algorithm.

A. Consensus-based ADMM Model for Load Restoration

The energy system is divided into PDN and CES subsys‐
tems. The fault restoration of each subsystem is carried out 
independently, and each operator has complete information 
of itself, and the shared information with others is only the 
active and reactive injections for PDN.

In this case, consensus variables Zp and Zq are introduced 
to describe the boundary parameters between them, as depict‐
ed in (55).

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Pe =Zp

Zp =Pces

Qe =Zq

Zq =Qces

(55)

1)　Subproblem of PDN Operation
The augmented Lagrangian function is constructed for the 

load restoration of PDN subproblem, as expressed in (56) 
and (57):

min
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2 (56)

s.t.

(4) (5) (8)‐(14) (35)‐(41) (57)

2)　Subproblem of CES Operation
The augmented Lagrangian function for CES n is ex‐

pressed as:

min
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2 (58)

s.t.

(17)‐(27) (29)‐(34) (42) (59)

The combination of λcespn /λcesqn for multiple CESs will 
form vectors λcesp /λcesq.

With the consensus-based ADMM algorithm, the unified 
self-healing model can be decomposed into several subprob‐
lems, which can be solved separately by consensus interac‐
tion.

The consensus-based ADMM for decentralized recovery is 
illustrated in Algorithm 1.

B. Self-adaptive Step Size Model for ADMM

The convergence efficiency of ADMM is significantly af‐
fected by the value of step size. Conventional ADMM is 
conducted with fixed value, leading to the deterioration of al‐
gorithm performance in the last stage of iteration. One effec‐
tive method to facilitate convergence speed is to adjust pa‐
rameters for each iteration. As for the issue, a self-adaptive 
step size method for ADMM (adaptive ADMM) is utilized 
to improve the algorithm performance, in which the penalty 
parameter ρ is dynamically modified with less dependence 
on the initial value, shown as follows [50]:

ρk + 1 =

ì

í

î

ïïïï

ïïïï

ρk (1 + μ)       PRk ³ σ ×DRk

ρk (1 + μ)-1    DRk ³ σ ×PRk

ρk                    others

(60)

where σ > 1 and μ > 1.
Based on the energy structure and forecasting data of the 

whole system, the EMSs for CESs and the distribution net‐

Algorithm 1: consensus-based ADMM for decentralized recovery

1. Input parameters for each subsystem, including system topology, load,    
     environment information, and equipment parameters

2. Initialize algorithm parameters, including λ0
ep, λ

0
eq, λ

0
cesp, λ

0
cesq, Z

0
p , Z 0

q , ρ, 
     convergence thresholds εpri, εdual, and the maximum iteration kmax

3. for k = 1 2kmax

4. Perform decentralized self-healing optimization for each subsystem

  PDN optimization

   Objective function: (56)

   Constraints: (4), (5), (8)-(14), (35)-(41)

  CES optimization

   Objective function: (58)

   Constraints: (17)-(27), (29)-(34), (42)

5. Exchange coupling variables and update consensus variables:

Z k
p = (P k

e +P k
ces )/2, Z k

q = (Qk
e +Qk

ces )/2

6. Calculate the primal residual PRk and dual residual DRk:

PRk
p =  P k

e -P k
ces

2

2

PRk
q =  Qk

e -Qk
ces

2

2

DRk
p =  P k

e -P k - 1
e

2

2
,

DRk
q =  Qk

e -Qk - 1
e

2

2

PRk =max {PRk
p PRk

q }

DRk =max {DRk
p DRk

q }

7. Check the stopping criteria

  if  PRk £ εpri & DRk £ εdual

   Output the self-healing scheduling results and break

  else

   Update the Lagrangian multipliers for each subsystem

λk + 1
ep = λk

ep + ρ(P
k
e -Z k

p )

λk + 1
eq = λk

eq + ρ(Q
k
e -Z k

q )

λk + 1
cesp = λ

k
cesp + ρ(P

k
ces -Z k

p )

λk + 1
cesq = λ

k
cesq + ρ(Q

k
ces -Z k

q )

8. k = k + 1

9. end
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work operator (DSO) for PDN generate self-governed sched‐
ules separately after evaluating the outage duration probabili‐
ty in case of power disruption. The optimal risk-based self-
healing strategy for PDN and CESs can be obtained in a de‐
centralized way by limited information exchange and itera‐
tive optimization. Then, the corresponding schedules will be 
issued to each device for execution. The proposed self-heal‐
ing framework provides a novel decentralized risk-based 
load recovery for PDN by uncertainty evaluation and CVaR-
based management, and the flexibilities of CESs are fully 
utilized with the self-healing capacity significantly facilitated.

V. CASE STUDIES

In this section, the rationality and effectiveness of the de‐
centralized self-healing strategy with risk management are 
verified on the distribution network, which is composed of a 
modified IEEE 33-bus PDN integrated with multiple CESs. 
Case studies are carried out on Intel CPU i9-10900K and 
32 GB RAM-based PC with MATLAB 2020b platform. The 
self-healing strategy is solved in YALMIP toolbox and opti‐
mized by linking CPLEX 12.1 solver [51].

The structure of the modified IEEE 33-bus PDN with mul‐
tiple CESs is shown in Fig. 1, and the configuration and en‐
ergy flows of CESs are shown in Fig. 2. The rated voltage 
of IEEE 33-bus PDN is 12.66 kV and the allowed voltage 
fluctuation range during outage period is [0.95, 1.05]p. u.. 
The network consists of 32 lines and 5 tie switches. The to‐
tal active and reactive loads are 3715.0 kW and 2300 kvar, 
respectively. Detailed parameters can be found in [52]. Two 
CESs are installed at nodes 14 and 21 to serve as integrated 
energy aggregators for providing thermal demands for close-
by consumers. Consistent configurations are assumed for all 
CESs and they are comprised of HPs, WCs, CWTs, GTs and 
ACs. The device parameters of CESs are listed in Appendix 
A Table AI. And the converter capacity for each CES is set 
to be 1500 kVA. The building parameters of each CES are 
shown in Appendix A Table AII.

The scheduling interval is 0.5 hour and a typical day in 
cooling season is selected for case analysis. The electricity 
load profile of PDN and the outdoor temperature for the typi‐
cal cooling day are presented in Fig. 3. To guarantee com‐
fort energy supply for building thermal demand, the indoor 
temperatures of buildings can vary between 19 ℃ and 
25 ℃ , of which the standard temperature is 22 ℃ . The 
ramping value of indoor temperature between adjacent inter‐
vals cannot exceed 3 ℃. Air specific heat capacity and den‐
sity are 1.007 kJ/(kg ×℃) and 1.2 kg/m3, respectively.
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Fig. 3.　Electricity load profile of PDN and outdoor temperature for typical 
cooling day.

The duration of electricity disruption can be 2, 2.5, 3, 
3.5, and 4 hours, and the probability of the corresponding 
scenarios are 0.15, 0.2, 0.3, 0.2, and 0.15, respectively. 
Thus, the comprehensive probabilities of each period during 
02: 00-04: 00 are 0.333, 0.283, 0.217, 0.117, and 0.050, re‐
spectively. Unit penalty costs of curtailed electricity loads in 
PDN and cooling loads in CESs are 100 CNY/kWh and 5 
CNY/kWh, respectively. For risk management parameters, 
the confidence level α is set to be 0.8. As for the weight fac‐
tor ω, it can be changed from 0 to 1; and lower value de‐
notes risk-seeking schedule, while higher value represents 
risk-averse schedule. Especially, 0.7 is assigned to ω for con‐
crete analysis.

In the ADMM optimization procedure, the initial penalty 
parameter is set to be 1.0. Step size adjustment parameter μ 
is set to be 2, where the coefficient ν is 6. The maximum it‐
eration is supposed to be 200 and convergence thresholds of 
both primary and dual residuals are set to be 0.5. For 
CPLEX solver, it is implemented with default settings and 
the optimality gap is 1 ´ 10-4.

It is assumed that line 1-2 has a permanent three-phase 
fault at 09:30, and loads of bus 2 to bus 33 are completely 
out of service. After fault isolation, the risk-based decentral‐
ized self-healing operation is conducted for fault restoration.

A. Decentralized Self-healing Scheduling with Consensus-
based ADMM

1)　Analysis of Self-healing Scheduling Results
The reconfiguration strategy of PDN during 09: 30-13: 00 

is presented in Fig. 4, and the active and reactive power con‐
trol strategy of GTs in multi-zone CESs is shown in Fig. 5. 
On behalf of the buses that are fully and partly restored, 
they are marked with black and green solid circles, respec‐
tively, while others are indicated by the hollow ones. Similar‐
ly, the green solid rectangle indicates that the CES is chosen 
as the voltage reference point in the formed island; and the 
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Fig. 1.　Structure of modified IEEE 33-bus PDN with multiple CESs.
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control strategy of the GT in the corresponding CES turns into 
V/f mode. It can be observed that only one island is formed, 
and CES2 is picked out to support the network voltage.

The variation of indoor temperature of buildings in multi‐
ple CESs is depicted in Fig. 6. It can be observed that in‐
door temperature fluctuates within the comfort range and the 
values are generally near the maximum value. Thus, less 
cooling energy is needed on the premise of risk controllabili‐
ty, which will contribute to the supply recovery for distribu‐
tion network.

Figure 7 illustrates the stored energy variation of thermal 
storages in CESs. The positive value of cooling-storage pow‐
er means that it is in cooling-storage mode; otherwise, it is 
in cooling-releasing mode. As observed from Fig. 7, the en‐
ergy storage and release behaviors are conducted timely for 
responding to the emergency according to the comprehen‐
sive risk-based tradeoff of demand profiles between PDN 
and CESs, as well as the serviceability and coordination of 
energy supply and storage devices. And the stored energy is 
released absolutely with no energy redundancy at the end of 
the maximum outage duration for better restoration effect in 
multiple possible scenarios.

Benefiting from flexibilities of multi-area CESs, including 
the active/reactive support, thermal storage, and building de‐
mand response, as well as the flexible topology in PDN, 
more regulation capacities are exploited and the out-of-ser‐
vice demands can be recovered as much as possible with 
considering risk preferences. Self-healing oriented fault resto‐
ration results of PDN for different outage durations are list‐
ed in Table I. The expected unsupplied load is 3985.8 kWh, 
which is far below the original out-of-service expectation 
8555.7 kWh; and the expected restoration rate is 53.4%. In‐
corporating restoration results of various durations, we can 
draw that the self-healing strategy can achieve better service 
recovery effect with the support of regulation potential from 
CESs.

2)　Comparison of Different Potential Combinations in CESs
Different resource utilization can affect the fault restora‐

tion effects significantly. The comparison of different poten‐
tial combination scenarios for CESs is depicted in Table II.

Compared with scenario 1, the thermal storage devices, 
i.e., CWTs, are considered in scenario 3. With timely energy 
charging-discharging behaviors of CWTs, additional flexibili‐
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Fig. 4.　Reconfiguration strategy of PDN during 09:30-13:00.

0

200

400

600

800

1000

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00

Time
Active power of CES1; Active power of CES2

Reactive power of CES1; Reactive power of CES2

A
ct

iv
e 

p
o
w

er
 (

k
W

),
 

re
ac

ti
v
e 

p
o
w

er
 (

k
v
ar

)

Fig. 5.　Active and reactive power control strategy of GTs in multi-zone 
CESs.

-200

0

200

400

600

800

1000

1200

-1500

-1000

-500

0

500

1000

1500

E
n

er
g

y
 i

n
 C

W
T

 (
k

W
h

)

Time 

Cooling-storage power (CES1); Cooling-storage power (CES2)

Stored energy in CWT (CES1); Stored energy in CWT (CES2)

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00

C
o

o
li

n
g

-s
to

ra
g

e 
p

o
w

er
 (

k
W

)
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TABLE I
SELF-HEALING ORIENTED FAULT RESTORATION RESULTS FOR DIFFERENT 

OUTAGE DURATIONS

Outage duration (hour)

2.0

2.5

3.0

3.5

4.0

Total load (kWh)

6334.1

7355.7

8470.2

9677.6

11052.1

Unrecovered load (kWh)

3026.0

3499.2

3972.0

4444.9

5009.8

TABLE II
COMPARISON OF DIFFERENT POTENTIAL COMBINATION SCENARIOS FOR 

CESS

Scenario

1

2

3

Thermal storage

×

√
√

Building thermal 
inertia

√
×

√

Expected loss of 
PDN (kWh)

4155.0

4764.9

3985.8

Note: √ means with considerarion and × means without considerarion.
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Fig. 6.　Indoor temperature of buildings in multiple CESs.
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ties are provided for spatio-temporal emergency response in 
case of power disruption. Thus, more out-of-service loads 
are recovered with the risk-based self-healing strategy.

In scenario 2, the thermal inertia of building in CESs is ig‐
nored in contrast with scenario 3. By considering building 
thermal inertia, the indoor temperature can be regulated with‐
in reasonable range along with more adjustable margin for 
energy coordination and multi-area complementation. And 
the load recovery effect can be effectively improved.

By comparing the results of different potential combina‐
tions, it can be noted that the self-healing strategy can fully 
exploit the regulation potentials from CESs for facilitating 
self-healing capacity, achieving better fault restoration effect.
3)　Performance Analysis of Adaptive ADMM

To indicate the effectiveness of the proposed decentralized 
strategy, the convergence processes of primary and dual re‐
siduals for adaptive and standard ADMM are illustrated in 
Fig. 8. It is observed that the consensus-based ADMM with 
self-adaptive step size converges by 74 iterations, whereas 
the primary and dual residuals of standard ADMM cannot 
converge to the set thresholds in 200 iterations. The step 
size of adaptive ADMM is dynamically updated during each 
iteration after the evaluation of primary and dual residuals, 
realizing a significant acceleration of convergence perfor‐
mance.

To further demonstrate the accuracy of the decentralized  
strategy, the restoration results of conventional centralized 
and adaptive ADMM are shown in Table III. The gap of ex‐
pected total load loss (in goal function) of PDN and CESs 
for centralized and decentralized strategies is very small; 
thus, the validity of the decentralized strategy is verified. Al‐
though more computational time is needed for iteration opti‐
mization, the privacy protection and nearby optimal solution 
are realized with moderate solution time. Therefore, it is 
more applicable to actual energy systems with various enti‐
ties.

B. Risk-based Management Analysis for Service Recovery

1)　Impact Analysis of Weight Factor
The variation profiles of load loss value and CVaR with 

different weight factors are presented in Fig. 9.

As can be observed, with the increase of weight factor, 
the CVaR decreases while the expected load loss value in‐
crease simultaneously; and system operation varies from risk-
seeking to risk-averse preferences. In other words, the lower 
operation risk can be obtained along with poorer fault-resto‐
ration effect, and vice versa. In actual operation, the operator 
needs to select the appropriate weight factor to pursue the ut‐
most service restoration on the premise of satisfying their 
specific risk preference.

Without loss of generality, the operation results with dif‐
ferent weight factors of 0.2, 0.6, and 1.0 are listed in Table 
IV, and the corresponding schedules of CES1 with different 
weight factors are shown in Fig. 10.

It is obvious that the risk-seeking strategy (Fig. 10(a)) 
tries its best to recover load and the initial stored energy in 
CWTs is released directly for supporting the power demand 
in PDN. As for risk-averse strategy (Fig. 10(b) and Fig. 
10(c)), the energy storage and release behaviors exist simulta‐
neously for the trade-off between load loss and risk values. 
The stronger willing for risk aversion, the more energy will 
be reserved for vigorous risk management under uncertain 
outage duration. With time-series energy transfer by storages 
and complementation coordination of coupling devices in 
CESs, as well as the flexible regulation in PDN, different 

TABLE IV
OPERATION RESULTS WITH DIFFERENT WEIGHT FACTORS

Value of weight factor

0.2

0.6

1.0

Load loss value (CNY)

305723.7

314580.8

512733.0

CVaR (CNY)

58736.0

49620.4

47237.3
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Fig. 9.　Load loss value and CVaR with different weight factors.
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TABLE III
RESTORATION RESULTS OF CONVENTIONAL CENTRALIZED AND ADAPTIVE 

ADMM

ADMM

Centralized

Adaptive

Expected loss 
of PDN (kWh)

3029.7

3030.9

Expected loss 
of CESs (kWh)

2416.8

2416.8

Optimal 
goal (CNY)

129248.2

129262.6

Solution 
time (s)

60.4

1771.0
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risk management schedules can be generated by reasonably 
setting the weight factors based on the operator’s preference 
on the original target and risk values.

2)　Analysis of Different Self-healing Schemes
To further demonstrate the effectiveness of risk manage‐

ment strategy, three schemes are constructed for performance 
comparison.

1) Scheme 1: the proposed strategy, i.e., CVaR-based self-
healing scheduling, is adopted for service restoration.

2) Scheme 2: the stochastic optimization is conducted for 
service restoration, i. e., multiple scenarios with risk weight 
factor ω = 0.

3) Scheme 3: the deterministic operation for the worst-
case scenario is conducted for service restoration, i. e., the 
outage duration time is 4 hours.

The variations of stored energy in CWTs for different 
schemes are shown in Fig. 11, and Fig. 12 illustrates the un‐
recovered load of PDN for each scheduling period. Com‐
pared with Scheme 3, the thermal energies are released more 
rapidly for Scheme 2 due to large probability weight of the 
initial few periods. As for Scheme 1, energy-releasing behav‐
iors occur at both head and tail intervals for recovery purpos‐

es; and energy-storage behaviors appear during middle peri‐
ods to support emergency energy demand with risk manage‐
ment, especially for the last two intervals.

Incorporating Fig. 12, it can be observed the out-of-ser‐
vice amount in the last few intervals of Scheme 1 is much 
less than Schemes 2 and 3, achieving better risk manage‐
ment while balancing the total load loss.

The comparisons of operation results for different 
schemes are listed in Table V. As can be observed, the load 
restoration of Scheme 3 is over-conservative, and the load 
loss value is the most severe in all schemes. The stochastic 
optimization in Scheme 2 has the lowest loss value and the 
highest CVaR, resulting in significant load-shedding risks in 
actual operation. As for Scheme 1, the best risk management 
performance is obtained with a moderate load loss value. 
Thus, it can be concluded that the risk-based self-healing 
strategy can conduct an effective load recovery with strong 
risk adaptability for uncertain outage duration.

VI. CONCLUSION

This paper presents a decentralized risk-based self-healing 
strategy for PDN. The regulation potentials of multiple 
CESs, including active and reactive power support of GTs, 
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Fig. 11.　Variation of stored energy in CWTs for different schemes.
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TABLE V
OPERATION RESULTS FOR DIFFERENT SCHEMES

Scheme

1

2

3

CVaR (CNY)

49617.1

74994.0

62955.0

Load loss value (CNY)

314582.5

305358.4

316728.4
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as well as emergency response of thermal storage and build‐
ing thermal inertia, are fully utilized for load restoration in 
case of power disruption. In terms of inherent outage dura‐
tion uncertainty, bilateral risk management with CVaR for 
PDN and essential constraints for CESs is implemented for 
operation analysis considering risk preference. Furthermore, 
an adaptive ADMM is introduced to achieve decentralized 
optimization.

Case studies are conducted using the modified IEEE 33-
bus PDN with multi-point CESs. It is indicated that the strat‐
egy can give full play to the flexible support capacities of 
multiple resources in CESs to restore out-of-service loads as 
much as possible. By applying bilateral risk measures with 
CVaR, the PDN load shedding of each period can be reason‐
ably coordinated for effective operational risk control, guar‐
anteeing the indispensable supply of CESs. Besides, the con‐
sensus-based ADMM solution is carried out to conduct de‐
centralized optimal scheme of PND and CESs. The results 
are in accordance with that of the centralized strategy, and 
limited information interaction and privacy protection can be 
achieved. With the application of adaptive ADMM, conver‐
gence performances can be effectively improved.

In conclusion, the proposed risk-based decentralized self-
healing strategy can realize better emergency service recov‐
ery, with tough risk management ability under unpredictable 
outage duration. And the decentralized strategy is more appli‐
cable for privacy-safety scheduling under the independent op‐
eration of subsystems.
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