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Abstract——In this study, a machine learning based method is 
proposed for creating synthetic eventful phasor measurement 
unit (PMU) data under time-varying load conditions. The pro‐
posed method leverages generative adversarial networks to cre‐
ate quasi-steady states for the power system under slowly-vary‐
ing load conditions and incorporates a framework of neural or‐
dinary differential equations (ODEs) to capture the transient be‐
haviors of the system during voltage oscillation events. A numer‐
ical example of a large power grid suggests that this method 
can create realistic synthetic eventful PMU voltage measure‐
ments based on the associated real PMU data without any 
knowledge of the underlying nonlinear dynamic equations. The 
results demonstrate that the synthetic voltage measurements 
have the key characteristics of real system behavior on distinct 
time scales.

Index Terms——Synthetic phasor measurement unit data, gener‐
ative adversarial networks, neural ordinary differential equa‐
tions, data-driven method.

I. INTRODUCTION 

OVER the past decade, thousands of phasor measure‐
ment units (PMUs) have been deployed in backbone 

transmission systems in North America and abroad. This en‐
ables improved monitoring and control of the power system 
dynamics at considerably higher resolutions than previously 
possible. Transient dynamic data recorded by PMUs are of 
particular value to the research community for distinct re‐
search interests such as real-time monitoring, control, and 
protection. Although machine learning (ML) based methods 
have been proposed for a wide range of tasks such as those 

in [1] - [4], the practical development of ML-based methods 
for real cases using real eventful PMU data is obstructed by 
limited data availability, which is mainly attributed to two 
reasons: ① the real operational data of power grids are typi‐
cally confidential and mostly prevented from being publicly 
available because of strict policies regarding critical energy/
electric infrastructure information; and ② given the reliabili‐
ty and stability of power grids, high-impact events such as 
system-wide voltage oscillation are rarely observed in real 
PMU data, and even if such events are observed, they are 
not often labeled.

Therefore, it is critical for public researchers to create a 
massive amount of realistic eventful PMU data to train, test, 
and calibrate data-driven methods that can be applied to real 
cases. Although researchers have recently contributed to the 
creation of datasets based on large-scale realistic synthetic 
grid models [5] for analysis, such as macroscopic energy 
portfolio transitions [6], [7] and major event reproduction 
[8], the value of real eventful PMU data cannot be exploited 
by existing methods that generate data by simulation. Other 
recent studies have contributed to the development of ML-
based methods for generating power system data, such as 
load profile generation [9], [10], renewable scenario genera‐
tion [11], and eventful PMU generation [12], [13], and have 
proposed potential uses for synthetic PMU data, such as dis‐
turbance classification with improved accuracy [13], load 
forecasting, and optimal power flow [10]. However, several 
gaps remain in existing work regarding the creation of a 
massive amount of realistic large-scale eventful PMU data at 
multiple time scales and with arbitrary lengths. First, the pri‐
or success of PMU data generation methods in small-scale 
standard systems of Institute of Electrical and Electronics En‐
gineers (IEEE) may not meet the demand for synthetic data 
based on real PMU datasets. Second, the short horizon of 
synthetic data limits the generalization of their applications. 
Finally, the lack of incorporation of time-varying load condi‐
tions may undermine the fidelity of long-length synthetic 
PMU data. Moreover, researchers [14] recently demonstrated 
that the general state-of-the-art methods for generating time 
series [15]-[18] developed in the ML community are not ca‐
pable of creating synthetic PMU time series with good diver‐
sity and fidelity. This is because of the high dimensionality 
of the data and the need to model physical-based constraints.
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To address these challenges, we propose a method for gen‐
erating eventful PMU data based on limited real data that le‐
verages generative adversarial networks (GANs) to create 
quasi-steady states for the power system under time-varying 
load conditions and utilizes neural ordinary differential equa‐
tions (ODEs) to capture the transient behaviors of the power 
system during voltage oscillation events. This method is po‐
tentially generalizable to other real power systems. We sepa‐
rately validate the fidelity of the synthetic load and voltage 
oscillation data from various perspectives.

The contributions of this paper are summarized as follows.
1) Generation of data-driven eventful PMU measurements. 

The proposed method for generating eventful PMU voltage 
measurements can create realistic-looking PMU streams that 
capture the patterns of load changes and system oscillations 
over distinct time scales, of which the fidelity and scalability 
are demonstrated for a large-scale real dataset.

2) Efficient data generation algorithm. The proposed meth‐
od achieves an efficient learning process by decoupling dis‐
tinct time scales separately and leveraging the low-rank prop‐
erty of high-dimensional datasets.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the problem formulation for the task of cre‐
ating synthetic PMU data using ML. Section III briefly re‐
views the basic concepts of the GAN and neural ODE mod‐
els adopted in this study. Section IV proposes a method for 
creating eventful PMU data under time-varying load condi‐
tions. Section V presents a case study using a real dataset. Fi‐
nally, Section VI draws conclusions and plans for future work.

II. PROBLEM FORMULATION 

In this section, we present mathematical formulations for 
the task of generating eventful PMU data. Here, we only 
have access to the power flow model of a large-scale real 
system and have no knowledge of the dynamic model. We 
assume that the created multi-time-scale PMU measurements 
are a linear combination of the steady-state voltage and volt‐
age oscillation, which are determined by the pattern of 
changes in the load and the nature of the system dynamics, 
respectively. Therefore, the task is separated into two sub‐
tasks: ① the generation of steady-state voltage measure‐
ments; and ② the generation of voltage oscillation measure‐
ments. We further discuss the challenges and propose the 
corresponding instructions for the method design.

A. Generation of Steady-state Voltage Measurements

Consider a set of historical PMU measurements including 
voltage and current measurements. We denote the voltage 
measurement matrix V SS as:
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where V SS
ij  is the voltage at PMU j at time iDT, and DT is 

the sampling period; N is the number of PMUs; and M is 
the number of time steps.

We assume that the voltage measurements are collected 

when the system is in a quasi-steady state. The task for gen‐
erating steady-state voltage measurements aims to develop a 
data creation algorithm using the real samples V SS such that 
the synthetic multichannel time-series data V̂ SS

M ′´N, containing 
N measurement channels over M ′ arbitrary time steps, exhib‐
it similar properties as those of the historical data, such as 
the slowly-varying pattern attributed to changes in the load.

B. Generation of Voltage Oscillation Measurements

We denote the voltage oscillation measurement matrix as 
V OS with the same definition, which is collected under event‐
ful system conditions. We assume that V OS can be expressed 

by a linear combination of the equilibrium voltage 
-
V

OS
 and 

voltage oscillation V͂ OS.

V OS = V͂ OS + -
V

OS (2)

The task for generating voltage oscillation measurements 
aims to learn the pattern of the voltage oscillation V͂ OS using 
real samples V OS such that the created synthetic time-series 
data V̂ OS

M ′´N, containing N measurement channels over M ′ ar‐
bitrary time steps, exhibit realistic properties such as the de‐
caying periodic oscillation determined by the dynamic char‐
acteristics of the system and the low rank due to the high co‐
herency throughout the system.

C. Challenges

Although we separate the task for generating PMU mea‐
surement data into two subtasks, two key challenges still 
need to be resolved for ML-based synthetic PMU data gener‐
ation approaches: ① enabling an ML-based data generation 
method to efficiently learn from a high-dimensional dataset; 
and ② guaranteeing that the created PMU data are meaning‐
ful in terms of complying with physical laws. The remainder 
of this subsection discusses our method for addressing these 
challenges and describes the resulting algorithm design.
1)　Efficient Creation of High-dimensional Data

The dimensions of the time-series data M and N are non‐
trivial in the context of PMU data generation. A high dimen‐
sionality may render the training process intractable and de‐
grade the performance of the generative algorithms. There‐
fore, the proposed method should address these challenges 
from both temporal and spatial perspectives. First, the pro‐
posed method can decompose a long time series into multi‐
ple time resolutions and separately learn the temporal corre‐
lations of distinct time scales. Second, the proposed method 
can reduce the order of high-dimensional measurements by 
utilizing existing low-rank characteristics, which are attribut‐
ed to a strong spatial correlation.
2)　Data Fidelity

As real PMU measurements comply with physical laws, 
data fidelity, one of the main criteria for synthetic data quali‐
ty, is another challenge. It requires Kirchhoff’s laws to be 
satisfied by the synthetic data at each snapshot and that the 
evolving synthetic time series follow the characteristics of 
the dynamics of the power system. For the first requirement, 
the proposed method can create synthetic load profiles and 
calculate synthetic voltage measurements via power flow 
simulation to automatically guarantee Kirchhoff’s laws. For 
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the second requirement, the method can learn fast oscillation 
patterns using an ML model that embeds the ODE format.

III. BASIC CONCEPTS OF GAN AND NEURAL ODE MODELS 

A. Review of GAN Model

The GAN model, first proposed in [19], has now arguably 
become one of the most popular and successful deep genera‐
tive models in multiple fields and disciplines [20]-[22].

The two key models of a GAN model, the generative 
model (generator) G and discriminate model (discriminator) 
D, are implemented by neural networks, which are iterative‐
ly updated by optimizing the objective function J as:

min
G

max
D
J = E

x
(ln(D(x)))+ E

z
(ln(1 -D(G(z)))) (3)

where x and z are the real data samples and random noise 
sampled from a predefined distribution, respectively; and E(×) 
is an expectation function.

Additionally, another variant of a GAN model [23] imple‐
ments conditional data generation by modifying the objec‐
tive function to

min
G

max
D
J = E

xy
(ln(D(xy)))+ E

zy
(ln(1 -D(G(zy)))) (4)

where y is a label representing the category of interests.

B. Review of Neural ODE Model

The neural ODE model [24] is widely used for time-series 
modeling and regression for irregular time series. It compris‐
es two key components: a neural network and an ODE solv‐
er. Instead of specifying a discrete sequence of hidden lay‐
ers, this model parameterizes the derivative of a state using 
a neural network fθf

. It can be trained by supervised learning 

to minimize a scalar-valued loss function L(s) as follows:

min
θf

L(s)=
1

t1 - t0
∑
t = t0

t1 




 




∫

t0

t

fθf
(s(x))dx + s(t0 )- s(t)

2

(5)

where ∫
t0

t

fθf
(s(x))dx + s(t0 ) is the estimated state at time t; s(t) 

is the result of measurements at time t; and fθf
 is the function 

representing a neural network parameterized by θf, which in‐
dicates how the measurements evolve along the timeline.

IV. PROPOSED METHOD FOR CREATING EVENTFUL PMU 
DATA UNDER TIME-VARYING LOAD CONDITIONS 

We assume that the multi-time-scale eventful PMU mea‐
surements are a linear combination of steady-state voltage 
measurements and voltage oscillation measurements, which 
are determined by the pattern of changes in the slowly-vary‐
ing load and the nature of the fast-varying system dynamics, 
respectively. With this assumption, we separate the eventful 
PMU data generation task into two subtasks. The first aims 
to create realistic time-varying load profiles and then esti‐
mate the steady-state voltage measurements via a power 
flow simulation based on the obtained system model. The 
second subtask aims to synthesize realistic voltage oscilla‐
tion profiles that follow the periodic patterns of the real tran‐
sient dynamics of the system. With such an instructive prin‐

ciple, a novel algorithm incorporating GAN [19] and neural 
ODE models that generates two-stage PMU data [24] is pro‐
posed, as shown in Fig. 1.

In Fig. 1(a), the synthetic steady-state voltage measure‐
ments are simulated using synthetic load data generated by 
the trained multiresolution GAN model. In Fig. 1(b), the syn‐
thetic voltage oscillation measurements are generated by the 
neural ODE model that learns the system dynamics in the 
ODE format. In Fig. 1(c), the trained models G and f can be 
assembled to generate synthetic eventful PMU data. In the 
training process, the GAN model is trained to create synthet‐
ic time-varying load profiles to estimate the simulation-
based steady-state voltage measurements, whereas the neural 
ODE model is trained to generate a voltage oscillation with 
the limited real eventful voltage measurements as the train‐
ing data. In the data creation process, we combine the well-
trained models G and f to generate eventful PMU data with 
an arbitrary length under the given synthetic time-varying 
load conditions. The proposed method is feasible as long as 
the number of synthetic variables is less than the number of 
independent variables in the algebraic equations that are 
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Fig. 1.　Proposed method incorporating GAN and neural ODE models. (a) 
Training process of GAN model for synthetic load data. (b) Training pro‐
cess of neural ODE model for synthetic voltage oscillation measurements. 
(c) Generation of entire synthetic voltage measurements by trained GAN 
and neural ODE models.
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mainly derived from Kirchhoff’s laws. In other words, this 
generation framework is compatible with the synthesis of 
voltage or current measurements. In this paper, we only 
show the case of voltage measurement generation to avoid 
verbosity.

The remainder of this section introduces the detailed algo‐
rithms for ① the generation of steady-state voltage measure‐
ments that consists of GAN-based load profile generation 
and simulation-based estimation of the steady-state voltage 
measurements; and ② the generation of voltage oscillation 
measurements that leverages neural-ODE-based time-series 
learning.

A. Generation of Steady-state Voltage Measurements

The task for generating steady-state voltage measurements 
consists of two steps: ① the generation of a GAN-based 
multiresolution load profile [9]; and ② simulation-based esti‐
mation of the steady-state voltage under synthetic time-vary‐
ing load conditions.
1)　GAN-based Load Profile Generation

We use the algorithm for generating a multiresolution bus-
level load profile proposed in [9]. This algorithm aims to de‐
velop a scheme to generate realistic time-series load data 
varying in length from a few minutes to a year and at vary‐
ing resolutions from one sample per week to one sample per 
minute. We train independent generative models to capture 
the characteristics of these load profiles via a data down-
sampling and aggregation process at different levels, which 
is summarized in the following steps.

1) Compute the power consumption of different load bus‐
es using PMU voltage and current measurements.

2) Down-sample the load data into multiple time scales 
and resolutions, including hour-long profiles at two samples 
per minute, week-long profiles at one sample per hour, and 
year-long profiles at one sample per week.

3) Train a generative model for the load profiles at each 
time scale and resolution, which is implemented by the con‐
ditional GAN in Algorithm 1, where ÑθD

 and ÑθG
 calculate 

the gradients with respect to parameters θD and θG, respec‐
tively, and RMSProp represents a root mean squared propa‐
gation function.

2)　Simulation-based Estimation of Steady-state Voltage Mea‐
surements

Using the power flow simulation model accompanied by 
the dataset, we estimate the steady-state voltage measure‐
ments under certain load conditions by performing a power 
flow simulation at every time step. Given one synthetic load 
profile, the power flow simulation is repeatedly performed at 
each time step such that all system loads and the generation 
are scaled by the per-unit value of the load profile at the 
snapshot. Here, we admit that generation dispatch under dif‐
ferent load conditions is simple without incorporating factors 
such as power markets and planned outages, which require 
further investigation but are outside the scope of this paper.

In summary, we generate steady-state voltage measure‐
ments in two steps. By leveraging a model that generates 
well-trained load profiles, we first generate a massive num‐
ber of realistic load profiles during a certain time period that 
have a similar pattern but exhibit diversity. By assigning syn‐
thetic load profiles to the load buses in the simulation model 
and proportionally scaling the generation dispatch, we obtain 
a massive number of steady-state voltage measurements at 
different time scales and resolutions via power flow simula‐
tion.

B. Generation of Voltage Oscillation Measurements

Inspired by the data-driven system identification method 
SINDy [25], the method for learning the nonlinear dynamics 
consists of modular steps including decomposition, feature 
extraction, and time-series learning and leverages neural net‐
works to learn the oscillation pattern of the extracted low-di‐
mensional feature time series, as shown in Fig. 2, where 
PCA stands for principle component analysis.

The details are summarized in the following steps and for‐
mally presented in Algorithm 2, where Ñθf

 calculates the gra‐

dient with respect to parameters θf, fMA is a moving average 
function that returns the average value and residual of time 
series in a moving window, and FOS returns the intergal of a 
function using an ODE solver.
1)　Decomposition

To decompose the original voltage measurements into the 
equilibrium voltage 

-
V and voltage oscillation V͂, the moving 

average method is first used to process the original voltage 
measurements, where the average voltage calculated in the 
moving window is defined as the equilibrium voltage and 
the residual is defined as the voltage oscillation.

Algorithm 1: algorithm for generating GAN-based bus-level load profile

Require: historical load data at a certain time scale X, associated labels Y, 
random noise data Z, learning rate α, batch size m, initial parameter θD 
for the model D, and initial parameter θG for the model G

while θD and θG not converged

Sample batch {(xiyi )}
m
i = 1 from X and Y

Sample batch {(ziyi )}
m
i = 1 from Z and Y

#Update the model D using gradient descent

gθD
¬ÑθD

1
m ( -∑i = 1

m

D(xiyi )+∑
i = 1

m

D(G(ziyi )) )
θD¬ θD - α ×RMSProp(θDgθD

)

#Update the model G using gradient descent

gθG
¬ÑθG

-
1
m∑i = 1

m

D(G(ziyi ))

θG¬ θG - α ×RMSProp(θGgθG
)

end while
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Fig. 2.　Diagram of training neural ODE model for generating voltage oscil‐
lation measurements.
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2)　Feature Extraction
To implement feature extraction, PCA method is used to 

process the voltage oscillation V͂ and equilibrium voltage 
-
V 

to obtain the reduced-order features Z͂ and 
-
Z. Here, the un‐

derlying assumption is that the characteristics of Z͂ and 
-
Z 

have a one-to-one correspondence with the original measure‐
ments V͂ and 

-
V. The PCA method uses the parameter r to de‐

termine the number of principal components to be retained, 
which also indicates the reduced rank of the approximated 
data after reconstruction. We select the r principal compo‐
nents with the highest variances as the feature time series 
such that these components can explain at least 95% of the 
variability in the original measurements.
3)　Oscillation Time Series Modeling

We assume that the equilibrium voltage is uniquely deter‐
mined by the load conditions. The task of generating voltage 
oscillations under time-varying load conditions is thus equiv‐
alent to generating voltage oscillations when the equilibrium 
voltage varies. Therefore, we train a neural ODE model f to 
learn the oscillation pattern of the low-dimensional features 
Z͂ at the corresponding equilibrium 

-
Z.

In summary, given the voltage oscillation measurements 
calculated by the moving average method, we first perform 
order reduction to improve the computational efficiency and 
reduce the model complexity and then leverage the neural 
ODE model to learn the underlying dynamic behavior of the 
extracted feature time series. As the synthetic steady-state 
voltage measurements are within the varying equilibrium, 
we can create a massive number of voltage oscillations us‐
ing the well-trained model f, of which the data creation pro‐
cess also requires the PCA mapping matrix for transforma‐
tion.

V. CASE STUDY 

In this section, we demonstrate the proposed method us‐
ing a large-scale real PMU dataset. We first show that the 
generated load profiles and steady-state voltage measure‐

ments are visually indistinguishable from the real samples 
and exhibit the same statistical properties. We also show the 
fidelity of the generated voltage oscillation measurements us‐
ing a modal analysis.

A. Data Description and System Model

In this study, we use a large-scale real PMU dataset ob‐
tained from a major United States electricity utility compa‐
ny. This dataset was collected at a rate of 30 samples per 
second for three consecutive years from approximately 400 
PMUs throughout the utility’s territory and mainly contains 
voltage and current measurements. Furthermore, we have ac‐
cess to a large-scale power simulation model of the relevant 
network that contains more than 30000 buses and covers the 
utility’s territory. The dataset provides the unique identifiers 
of the PMU buses that are consistent with the simulation 
model, thereby enabling the localization of the PMUs in the 
simulation model.

On the basis of the system topology and placement of the 
PMUs, we identify 12 fully monitored load buses, of which 
the load demand can be directly calculated by the positive-
sequence complex current and voltage measurements. The 
load profiles reflect the periodic patterns of load changes at 
different time scales. The dataset also contains seven system-
wide voltage oscillation events in the records, where only 
one weakly damped event lasted for approximately 2 hours 
and the others quickly vanished. The weakly damped event 
shows the shifting dominant modes of the system oscillation.

In the remainder of this section, we demonstrate the pro‐
posed method by generating voltage equilibrium profiles 
based on real load profiles and creating voltage oscillation 
profiles based on quickly and weakly damped events.

B. Data Processing and Model Training

The details of the data processing and model training for 
the two subtasks are introduced below. The configuration of 
the neural network model and the computational environ‐
ment are presented in Appendix A.
1)　Generation of Steady-state Voltage Measurements

Following Algorithm 1, we train the GAN model using 
the real load profiles of the 12 identified load buses, for 
which we set the batch size m to be 32, the learning rate α 
to be 10-4, and the maximum number of training epochs to 
be 50000.The configurations of models G and D are shown 
in Appendix A Table AI. In sequence, we create 1000 1-hour-
long minute-level (per-unit) load profiles that represent vari‐
ous load changes over different time periods such as day‐
time or nighttime, weekday or weekend, and seasons. Given 
one per-unit load profile created as an input, we first scale 
all loads and generation in the simulation model to guaran‐
tee balanced supply and demand and then solve for the pow‐
er flow every time step to obtain the voltage measurements. 
This process is implemented using Python codes that use the 
ESA package [26] to interact with the PowerWorld simulator 
using its SimuAuto function.
2)　Generation of Voltage Oscillation Measurements

To separate the equilibrium voltage and voltage oscillation 
profiles, the moving average method is used to process the 
voltage measurements of each voltage oscillation event in 

Algorithm 2: algorithm for generating voltage oscillation measurements

Require: eventful voltage measurements V, reduced PCA approximation 
rank r, batch size m, learning rate α, loss function L, and initial parame‐
ter θf for model f

#Decomposition

(V͂,
-
V)¬ fMA (V )

#Dimension reduction

Z͂¬PCA(V͂r)
-
Z ¬PCA(

-
V r)

#Train time-series learning model

while θf not converged

Sample batch {(Z͂i
-
Z i )}

m
i = 1 that are segments from Z͂ and 

-
Z

Generate synthetic data

Z͂ *
i ¬FOS ( fθf

Z͂i
-
Z i ), i = 12...m

gθf
¬Ñθf

1
m∑i = 1

m

L(Z͂iZ͂
*
i )

θf¬ θf - α ×RMSProp(θfgθf
)

end while
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the dataset, where the size of the moving window is set to 
be 10 s. The order of the processed high-dimensional volt‐
age measurements is reduced to 4 by PCA, as these 4 domi‐
nant components can explain more than 95% of the variabili‐
ty. We train model f on low-rank features, as instructed in Al‐
gorithm 2 (configuration of model f is shown in Appendix A 
Table AI), where we set the batch size m to be 32, the learn‐
ing rate α to be 10-3, and the maximum number of training 
epochs to be 50000.

C. Synthetic Steady-state Voltage Measurements

The GAN model for generating synthetic load profiles is 
trained with the power measurements at the fully monitored 
load buses in the real dataset as the training data, with the 
aim of having a realistic and diverse pattern. The fidelity is 
validated by comparing its statistical characteristics with 
those of real profiles.

The generative models for the time-series load data are 
validated with statistical comparisons. The following two 
metrics are used to verify that the synthetic data capture the 
characteristics of the real data.

1) Wasserstein distance. The goal of model G is to learn a 
function that maps the known noise distribution to the distri‐
bution of real data. Training is successful when the distribu‐
tion of the generated data matches that of real data. The 
Wasserstein distance is a measure of the distance between 
two distributions, and it can be used to quantitatively assess 
the closeness of the distributions of the generated and real 
data.

2) Power spectral density (PSD). An important characteris‐
tic of time-series load data is periodicity. Because loads are 
tied to the routines and behaviors of people, they have differ‐
ent recurring patterns. One approach to identify these period‐
icities is to examine the PSD of time-series data. Figure 3 
shows the comparison of the PSDs of real and synthetic load 
profiles, where three peaks of PSD correspond to three typi‐
cal periods of loads, namely, 12, 24, and 168 hours. As ob‐
served, the two profiles match very closely, confirming that 
the generated data capture the periodic behavior of real data.

In sequence, we create 1000 1-hour-long minute-level (per-
unit) load profiles that represent diverse load changes over 
different time periods such as daytime or nighttime, week‐

day or weekend, and seasons. Given one per-unit load pro‐
file as an input, we scale all loads and generation in the sim‐
ulation model and solve for the power flow at every time 
step. Finally, we obtain the steady-state voltage measure‐
ments of 1000 different load conditions by repeating the sim‐
ulation. To validate the synthetic voltage measurements, we 
compare the distributions of the real and synthetic 1-hour-
long steady-state voltage angle measurements under different 
load conditions for a PMU, as shown in Fig. 4. This demon‐
strates that the synthetic voltage measurements are in good 
agreement with the real measurements, which is attributed to 
the fidelity and diversity of the synthetic load profiles. Note 
that the differences between the real and synthetic distribu‐
tions might be caused by different settings for the voltage 
magnitude and the overly simple generation dispatch, which 
we will address in future work.

D. Synthetic Voltage Oscillation Measurements

The neural ODE model f for the voltage oscillation mea‐
surements is trained according to the details introduced in 
Section V-B. To demonstrate the learning capacity, the re‐
sults for synthetic voltage oscillation data for two events of 
distinct duration are presented: a 10-second quickly damped 
oscillation event and a 2-hour weakly damped oscillation 
event.

We first train the neural ODE model with the voltage mea‐
surements in a 10-second-long event as the training dataset. 
The visual comparison in Fig. 5 demonstrates the fidelity 
and the flexibility of the length of the synthetic time series. 
More specifically, the first 10 s data of the synthetic time se‐
ries (blue solid line) validate the fidelity, whereas the follow‐
ing 5 s data show the flexibility of the length of the time se‐
ries generated by the model. Realistic extrapolation profiles 
(blue dotted line) demonstrate the generalizability of the pro‐
posed neural-ODE-based model, which could otherwise rap‐
idly diverge because of overfitting.

We further train and test the proposed method with a 2-
hour voltage oscillation event with the same settings as in 
Section V-B. In contrast to the quickly damped event, this 
weakly damped event shows more complex system dynam‐
ics, in which the voltage measurements have several chang‐
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ing dominant modes over time. Therefore, modal analysis is 
promising to validate the fidelity of the synthetic voltage os‐
cillation measurements. To this end, the Prony method [27] 
is used to process both the real and synthetic voltage oscilla‐
tion measurements in a moving window to analyze the domi‐

nant modes of the weakly damped oscillation over time. 
Here, the dominant modes refer to those that have relatively 
high energies, as specified in (6).

EM = a∑
i = 1

mw

abs (e(1/τ + jω)ti ) 2
(6)

where EM is the energy of mode; a is the amplitude; mw is 
the window size; ω is the mode frequency; ti is the sampling 
time of sample i; and τ is the time constant of the mode.

Considering that the total number of modes is large, we 
select the dominant modes such that the sum of their ener‐
gies account for 95% of the total energy. A synthetic time se‐
ries for a certain PMU is realistic if and only if its synthetic 
dominant mode {τ sωs } is close to a real one {τ rωr }.

We repeatedly perform random generation N times, as 
shown in Fig. 1. The fidelity rate ri of PMU i is calculated 
as:

ri =
1
N∑j = 1

N

Ij (7)

where Ij is an indicator that shows whether the j th sample is 
realistic according to the criteria in (8).
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The statistics of the modal analysis of the synthetic volt‐
age oscillation measurements for a weakly damped event 
that lasts for 2 hours are shown in Fig. 6, which shows the 
cumulative density function (CDF) value of the fidelity rate 
of all PMUs. The fidelity rate represents the probability that 
the randomly created synthetic data at one certain PMU 
have realistic modes. Figure 6 demonstrates that the synthet‐
ic voltage oscillation data for most PMUs are realistic from 
the perspective of a modal analysis. We notice that the syn‐
thetic data for a small proportion of PMUs fail the modal 
analysis with a higher probability. This is because the corre‐

sponding PMUs are almost unaffected by the oscillation 
event; thus, the dominant modes correspond to random noise.

In summary, we demonstrate that the synthetic load pro‐
files and steady-state PMU voltage measurements have real‐
istic statistical properties and confirm that the generated volt‐
age oscillation data have realistic oscillation modes. By com‐
bining Algorithms 1 and 2, we can synthetically create a 
massive amount of realistic eventful PMU data under gener‐
ated time-varying load conditions, potentially fostering the 
development of data-driven methods applied to real cases.

VI. CONCLUSION 

In this study, we propose an ML-based method to create 
synthetic eventful PMU data under time-varying load condi‐
tions. Our method uses a GAN to generate load data and in‐
corporates neural ODEs to capture the transient behavior of 
oscillation events that occur in a system. We utilize this 
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method to synthetically create a massive amount of eventful 
PMU data under the generated time-varying load conditions 
and confirm that the synthetic data exhibit realistic character‐
istics across multiple time scales from statistical and modal 
analysis perspectives. The generated realistic synthetic data 
have the potential to alleviate the lack of real eventful PMU 
data and can be potentially used for the training, testing, and 
calibration of subsequent data-driven methods.

In general, the proposed method is feasible as long as the 
number of synthetic variables is less than the number of in‐
dependent variables in the algebraic equations that are main‐
ly derived from Kirchhoff’s laws. Future research will ex‐
tend this study to synthesize arbitrary numbers of variables 
with conserved algebraic relationships.

APPENDIX A 

Table AI presents the model structure of the neural net‐
works, where models G and D account for the generation of 
synthetic load profiles based on a GAN (the neural network 
models are implemented by TensorFlow-Keras), whereas 
model f is used to learn the voltage oscillation pattern (the 
neural network model is implemented by TensorFlow). MLP 
denotes a multiplayer perceptron followed by the number of 
neurons, and Conv denotes a convolutional layer followed 
by the number of filters. The computational environment 
consists of an Intel Core i7-9700 central processing unit 
(CPU), 32 GB of memory, and an NVIDIA RTX 2060 graph‐
ics processing unit (GPU).

REFERENCES

[1] L. Xie, Y. Chen, and P. Kumar, “Dimensionality reduction of synchro‐
phasor data for early event detection: linearized analysis,” IEEE Trans‐
actions on Power Systems, vol. 29, no. 6, pp. 2784-2794, Apr. 2014.

[2] R. E. Helou, D. Kalathil, and L. Xie. (2020, Aug.). Fully decentralized 
reinforcement learning-based control of photovoltaics in distribution 
grids for joint provision of real and reactive power. [Online]. Avail‐
able: http://arxiv.org/abs/2008.1231

[3] D. Wu, X. Zheng, D. Kalathil et al., “Nested reinforcement learning 
based control for protective relays in power distribution systems,” in 
Proceedings of 2019 IEEE 58th Conference on Decision and Control 
(CDC), Nice, France, Dec. 2019, pp. 1925-1930.

[4] T. Huang, N. M. Freris, P. Kumar et al., “A synchrophasor data-driven 
method for forced oscillation localization under resonance conditions,” 
IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3927-3939, 
Mar. 2020.

[5] A. B. Birchfield, T. Xu, K. M. Gegner et al., “Grid structural charac‐
teristics as validation criteria for synthetic networks,” IEEE Transac‐
tions on Power Systems, vol. 32, no. 4, pp. 3258-3265, Oct. 2016.

[6] Y. Xu, N. Myhrvold, D. Sivam et al., “US test system with high spa‐
tial and temporal resolution for renewable integration studies,” in Pro‐
ceedings of 2020 IEEE PES General Meeting, Montreal, Canada, Aug. 
2020, pp. 1-5.

[7] Breakthrough Energy Sciences. (2021, Aug.). A 2030 United States 
macro grid: unlocking geographical diversity to accomplish clean ener‐
gy goals. [Online]. Available:  https://science. breakthroughenergy. org/
publications/MacroGridReport.pdf

[8] D. Wu, X. Zheng, Y. Xu et al. (2021, Apr.). An open-source model for 
simulation and corrective measure assessment of the 2021 texas power 
outage. [Online]. Available: https://arxiv.org/abs/2104.04146v1

[9] A. Pinceti, L. Sankar, and O. Kosut. (2021, Jul.). Generation of syn‐
thetic multi-resolution time series load data. [Online]. Available: https:
//arxiv.org/abs/2107.03547v1

[10] A. Pinceti, L. Sankar, and O. Kosut. (2021, Jul.). Synthetic time-series 
load data via conditional generative adversarial networks. [Online]. 
Available: https://arxiv.org/abs/2107.03545

[11] Y. Chen, Y. Wang, D. Kirschen et al., “Model-free renewable scenario 
generation using generative adversarial networks,” IEEE Transactions 
on Power Systems, vol. 33, no. 3, pp. 3265-3275, Jan. 2018.

[12] X. Zheng, B. Wang, and L. Xie, “Synthetic dynamic PMU data gener‐
ation: a generative adversarial network approach,” in Proceedings of 
2019 International Conference on Smart Grid Synchronized Measure‐
ments and Analytics (SGSMA), College Station, USA, May 2019, pp. 
1-6.

[13] X. Zheng, B. Wang, D. Kalathil et al., “Generative adversarial net‐
works-based synthetic PMU data creation for improved event classifi‐
cation,” IEEE Open Access Journal of Power and Energy, vol. 8, pp. 
68-76, Feb. 2021.

[14] X. Zheng, N. Xu, L. Trinh et al. (2021, Oct.). PSML: a multi-scale 
time-series dataset for machine learning in decarbonized energy grids. 
[Online]. Available: https://arxiv.org/abs/2110.06324

[15] C. Esteban, S. L. Hyland, and G. Rätsch. (2017, Jun.). Real-valued 
(medical) time series generation with recurrent conditional GANs. [On‐
line]. Available: https://arxiv.org/abs/1706.02633

[16] T. Xu, L. K. Wenliang, M. Munn et al. (2020, Jun.). COT-GAN: gen‐
erating sequential data via causal optimal transport. [Online]. Avail‐
able: https://arxiv.org/abs/2006.08571

[17] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative ad‐
versarial networks,” in Proceedings of the 33rd International Confer‐
ence on Neural Information Processing Systems, Vancouver, Canada, 
Dec. 2019, pp. 5508-5518.

[18] Z. Lin, A. Jain, C. Wang et al., “Using GANs for sharing networked 
time series data: challenges, initial promise, and open questions,” in 
Proceedings of the ACM Internet Measurement Conference, Pittsburgh, 
USA, Oct. 2020, pp. 464-483.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative adver‐
sarial nets,” in Proceedings of the 28th International Conference on 
Advances in Neural Information Processing Systems, Montreal, Cana‐
da, Dec. 2014, pp. 2672-2680.

[20] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang. (2017, Mar.). MidiNet: a con‐
volutional generative adversarial network for symbolic-domain music 
generation. [Online]. Available: https://arxiv.org/abs/1703.10847

[21] L. Yu, W. Zhang, J. Wang et al., “SeqGAN: sequence generative ad‐
versarial nets with policy gradient,” in Proceedings of Thirty-first 
AAAI Conference on Artificial Intelligence, San Francisco, USA, Feb. 
2017, pp. 2852-2858.

[22] R. Fu, J. Chen, S. Zeng et al. (2019, Apr.). Time series simulation by 
conditional generative adversarial net. [Online]. Available: https://arxiv.
org/abs/1904.11419v1

[23] M. Mirza and S. Osindero. (2014, Nov.). Conditional generative adver‐
sarial nets. [Online]. Available: https://arxiv.org/abs/1411.1784

[24] R. Chen, Y. Rubanova, J. Bettencourt et al., “Neural ordinary differen‐
tial equations,” in Proceedings of the 32nd International Conference 
on Advances in Neural Information Processing Systems, Montreal, 
Canada, Dec. 2018, pp. 6571-6583.

[25] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing 
equations from data by sparse identification of nonlinear dynamical 
systems,” Proceedings of the National Academy of Sciences, vol. 113, 
no. 15, pp. 3932-3937, Apr. 2016.

[26] B. L. Thayer, Z. Mao, Y. Liu et al., “Easy SimAuto (ESA): a python 
package that simplifies interacting with PowerWorld simulator,” Jour‐
nal of Open Source Software, vol. 5, no. 50, p. 2289, Jun. 2020.

[27] P. J. Schmid, “Dynamic mode decomposition of numerical and experi‐
mental data,” Journal of Fluid Mechanics, vol. 656, pp. 5-28, Aug. 
2010.

Xiangtian Zheng received the B.E. degree in electrical engineering from Ts‐
inghua University, Beijing, China, in 2017. He is currently pursuing the Ph.D. 
degree in electrical engineering at Texas A&M Univerisity, College Station, 

TABLE AI
MODEL STRUCTURE OF NEURAL NETWORKS

Layer

Input

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Model G

25

MLP, 64

MLP, 256

MLP, 900

Conv, 4

Conv, 1

Model D

900

Conv

MLP, 128

MLP, 32

MLP, 1

Model f

8

MLP, 100

MLP, 100

MLP, 4

241



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 1, January 2023

USA. His industry experience includes an internship with PJM, Valley 
Forge, USA, in 2019, and an internship with Mitsubishi Electric Research 
Laboratory, Cambridge, USA, in 2021. His research interests include do‐
main knowledge-informed machine learning for power system security.

Andrea Pinceti received the B. E. degree in electrical engineering from 
Polytechnic University of Turin, Turin, Italy, in 2015, the M.S. degree from 
the School of Electrical, Computer, and Energy Engineering, Arizona State 
University, Tempe, USA, in 2019, and the Ph.D. degree from the School of 
Electrical, Computer, and Energy Engineering, Arizona State University, in 
2021. His research interests include cyber-security and data analytics related 
to power systems.

Lalitha Sankar received the B. Tech. degree from the Indian Institute of 
Technology, Bombay, India, the M.S. degree from the University of Mary‐
land, College Park, USA, and the Ph. D. degree from Rutgers University, 
New Brunswick, USA. She is currently an Associate Professor in the 

School of Electrical, Computer, and Energy Engineering, Arizona State Uni‐
versity, Tempe, USA. She currently leads an National Science Foundation 
Harnessing the Data Revolution (NSF HDR) Institute on data science for 
electric grid operations. Her research interests include applying information 
theory and data science to study reliable, responsible, and privacy-protected 
machine learning as well as cyber security and resilience in critical infra‐
structure networks.

Le Xie received the B. E. degree in electrical engineering from Tsinghua 
University, Beijing, China, in 2004, the M.S. degree in engineering sciences 
from Harvard University, Cambridge, USA, in 2005, and the Ph.D. degree 
from Carnegie Mellon University, Pittsburgh, USA, in 2009. He is currently 
a Professor with the Department of Electrical and Computer Engineering, 
Texas A&M University, College Station, USA. His research interests in‐
clude modeling and control of large-scale complex systems, smart grid appli‐
cation with renewable energy resources, and electricity markets.

242


