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Mobile Energy Storage Systems in Resilient

Distribution Networks
Xinyi Jiang, Jian Chen, Qiuwei Wu, Wen Zhang, Yicheng Zhang, and Jie Liu

Abstract——Energy storage systems (ESSs) are acknowledged
to be a promising option to cope with issues in high penetration
of renewable energy and guarantee a highly reliable power sup‐
ply. In this paper, a two-step optimal allocation model is pro‐
posed to obtain the optimal allocation (location and size) of sta‐
tionary ESSs (SESSs) and mobile ESSs (MESSs) in the resilient
distribution networks (DNs). In the first step, a mixed-integer
linear programming (MILP) problem is formulated to obtain
the preselected location of ESSs with consideration of different
scenarios under normal operation conditions. In the second
step, a two-stage robust optimization model is established to get
the optimal allocation results of ESSs under failure operation
conditions which are solved by column-and-constraint genera‐
tion (C&CG) algorithm. A hybrid ESS allocation strategy based
on the subjective and objective weight analysis is proposed to
give the final allocation scheme of SESSs and MESSs. Finally,
the proposed two-step optimal allocation model is demonstrated
on a modified IEEE 33-bus system to show its effectiveness and
merits.

Index Terms——Resilient distribution network, stationary ener‐
gy storage system, mobile energy storage system, optimal alloca‐
tion.
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B. Parameters

α
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πess

ηch, ηdis

δ i

ϵ i
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E, D1, D2,
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a, b1, b2

Csit

Dual variable sets

Day set

System operation set under disaster set of the
second-step allocation

Number of iterations

Planning decision set of the second-step alloca‐
tion

Node

Scenario set

Branch

Set of branchs of pth sub-district

Set of nodes in DN

Sub-district of DN

Time

Set of time

Uncertainty set of the fault state of distribution
lines in the second-step allocation

First-stage decision variable vector of the sec‐
ond-step allocation

Second-stage decision variable vectors of the
second-step allocation

Fault state scenario of distribution line

Given discount rate of energy storage systems
(ESSs)

Growth rate of ESSs

Capital recovery factor which converts the
present investment costs into a stream of equal
annual payments during planning period

Charging and discharging efficiencies

Unit loss cost of load at node i

The ith class in elbow method

Coefficient matrices of the second-step alloca‐
tion

Coefficient column vectors

Fixed cost for installing ESS
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Per-unit cost for energy capacity of installing
ESS

Per-unit cost for power capacity of installing
ESS

Unit capacity cost of operation and mainte‐
nance cost

Per-unit cost of DN loss

Constant column matrices

The minimum and maximum ESS energy ca‐
pacities

Time-of-use price

Sample in ϵ i in elbow method

Number of samples in ϵ i in elbow method

The maximum number of faults in the pth sub-
region line

Branch l which starts with node i

Branch l which ends with node i

Sample mean of ϵ i in elbow method

Big enough positive value

The minimum and maximum ESS numbers

Total investment planning period

The maximum ESS power capacity

The maximum charging power at node i

The maximum discharging power at node i

Forecasted output active power of photovoltaic
(PV) at node i at time t

The maximum output active power of substa‐
tion at time t

Active and reactive power demands of load at
node i in scenario κ of the first step at time t

Active and reactive power demands of load at
node i of the second step at time t

Forecasted output reactive power of PV at
node i at time t

The minimum reactive power of PV at node i
at time t

The maximum output reactive power of substa‐
tion

Resistance and reactance on branch l

The maximum apparent power of energy stor‐
age converter of MESS at node i

The maximum transmission capacity allowed
on branch l

The maximum state of charge (SOC) of ESS

The minimum SOC of ESS

Initial SOC of ESS

The maximum voltage magnitude

The minimum voltage magnitude

The maximum current magnitude of branch

Rated voltage value

C. Variables
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it, Qlr

it
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iκt, Qch

iκt
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Uit

U2iκt

xinv1
iκ

xinv2
i
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Auxiliary variable

Storage capacity of installed ESS at node i in
scenario κ of the first step at time t

Storage capacity of installed ESS at node i of
the second step at time t

Energy capacity of installed ESS at node i in
scenario κ of the first step

Energy capacity of installed ESS at node i of
the second step

New defined variable of current on branch l in
scenario κ at time t

Power capacity of installed ESS at node i of
scenario κ in the first step

Power capacity of installed ESS at node i of
the second step

Active and reactive power outputs of substa‐
tion in scenario κ of the first step at time t

Active and reactive power outputs of substa‐
tion of the second step at time t

Active and reactive power on branch l in sce‐
nario κ of the first step at time t

Active and reactive power on branch l of the
second step at time t

Active and reactive power of PV at node i in
scenario κ of the first step at time t

Active and reactive power of PV at node i of
the second step at time t

Discharging and charging active power of ESS
at node i in scenario κ of the first step at time t

Discharging and charging active power of ESS
at node i of the second step at time t

Active and reactive power injected by node i
in scenario κ of the first step at time t

The maximum recovery active and reactive
loads of node i at time t

Discharging and charging reactive power of
ESS at node i in scenario κ of the first step at
time t

Discharging and charging reactive power of
ESS at node i of the second step at time t

Voltage of node i at time t

New defined variable of voltage at node i in
scenario κ at time t

Flag bit of installed ESS at node i in scenario
κ of the first step

Flag bit of installed ESS at node i of the sec‐
ond step

Binary variable representing whether branch l
is disconnected due to a fault at time t, which
is equal to 1 when there is no fault on branch l
at time t and 0 otherwise
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D. Functions

fκ

f inv
κ

f pur
κ

f loss
κ

f inv

f pur

f load

Objective function of the first-step allocation
in scenario κ

Daily investment costs of the first-step alloca‐
tion in scenario κ

Electricity purchase cost of the first-step alloca‐
tion in scenario κ

Network loss cost of the first-step allocation in
scenario κ

Daily investment cost of the second-step alloca‐
tion

Electricity purchase cost of the second-step al‐
location

Daily comprehensive load loss cost of the sec‐
ond-step allocation

I. INTRODUCTION

ENERGY storage systems (ESSs) have been exploited
for providing load shifting, voltage regulation, energy

arbitrage, and other services to distribution networks (DNs).
In addition to the common stationary energy storage systems
(SESSs), mobile energy storage systems (MESSs) have also
caught attention due to the mobility, flexibility, and support‐
ing capability in power failure scenarios. The coexistence
and development of SESSs and MESSs are expected to play
an important role in future DNs, and the optimal allocation
of SESSs and MESSs will be an attractive and complex
problem which is vitally important to fully attest their advan‐
tages [1].

At present, most of the related literature mainly focuses
on the optimal allocation of SESSs for different purposes,
e. g., cost minimization [2] - [4], reliability enhancement [5],
[6], voltage regulation [7], [8], peak load shaving [9], [10],
etc. In [3], a hierarchical planning model with three interact‐
ing levels of battery ESSs is proposed to maximize the bene‐
fit of the distribution system operator. In [8], an ESS alloca‐
tion method based on voltage sensitivity analysis is proposed
to regulate voltage in a low-voltage DN. Reference [11] pro‐
poses a fitness-scaled chaotic artificial bee colony algorithm
for the optimal placement of ESSs to enhance the reliability
of the DN. Reference [12] proposes a hybrid ESS allocation
model coordinating the hybrid ESS output power and the
power reduction in the photovoltaic (PV) to smooth the ac‐
tive power variations of PVs. To solve the above problems,
heuristic algorithms [13] - [16], mathematical programming
[17], [18], and hybrid algorithms [19], [20] are generally ad‐
opted. Due to the seasonal variation of load and natural re‐
sources, typical scenarios are generally applied to obtain the
optimal allocation scheme of ESSs for accommodating to dif‐
ferent conditions. However, the final allocation is a kind of
compromised scheme that may result in low utilization of
some ESSs because of the requirement discrepancy of differ‐
ent scenarios. There might have potential limitations for allo‐
cating traditional SESSs and the emergence of MESSs pro‐
vides a new choice.

Compared with SESSs, MESSs have flexible interfaces to

support plug-and-play functionality, and the mobility of
MESSs enables a single storage unit to achieve the tasks of
multiple stationary units at different locations. The current re‐
search on MESSs focuses on optimal allocation and opera‐
tion topics. In [21], a sizing and allocation algorithm for
MESSs is proposed to maximize the distribution profit by
considering the mobility of MESSs in multi-services of grid-
support. In [22], a rolling integrated service restoration strate‐
gy is presented to minimize the total system cost by coordi‐
nating the scheduling of MESS fleets, resource dispatching
of microgrids, and network reconfiguration of distribution
systems. In [23], a two-stage optimization model is proposed
to optimize the investments of MESS units and re-route the
installed MESS units to form dynamic microgrids to en‐
chance the resilience of DNs. In [24], a day-ahead energy
management system for MESSs is proposed in which energy
shifting and localized reactive power support are involved.
Moreover, MESSs can serve as an emergency power supply
during accidental failures and emergency repair works. How‐
ever, the probability of DN failures is extremely low, and
the emergency power supply allocated in the DNs will have
the problems of resource redundancy and low utilization.

For the problem of low utilization in the allocation of
SESSs, MESSs can be allocated to change access locations
according to the variations of different operation scenarios.
For the problem of resource redundancy in emergency pow‐
er supply, MESSs can participate in the normal operation of
DNs as well as serve as an emergency power supply when
required. The hybrid allocation of MESSs and SESSs has
the following advantages.

1) The number and capacity of the hybrid allocation of
SESSs and MESSs will be decreased than that of single
SESSs due to the mobility of MESSs.

2) The operation economy of DNs may be improved by
changing access locations of MESSs to better meet the re‐
quirements of different scenarios.

3) The resilience of DNs can be enhanced through the
transfers of MESSs to provide emergency power supply un‐
der failure operation conditions.

Based on the above analysis, a two-step optimal allocation
model of SESSs and MESSs in the resilient DNs is pro‐
posed in this paper. First, K-means method is adopted to gen‐
erate typical PV and load scenarios. Second, the ESSs are al‐
located under the normal and failure operation conditions of
DNs, respectively. Finally, the optimal results of SESSs and
MESSs are obtained by a hybrid ESS allocation strategy.
The main contributions are summarized as follows.

1) A two-step optimal allocation model of SESSs and
MESSs is proposed with consideration of the mobility and
supporting capability of MESSs, which can improve the
economy and resilience of DNs.

2) A mixed-integer linear programming (MILP) problem
is formulated to obtain the preselected locations considering
typical scenarios under normal operation conditions, and a
two-stage robust optimization model is established to get the
results considering the worst failure operation condition.

3) The combination weighting method based on the crite‐
ria importance through intercriteria correlation (CRITIC)
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method and rank correlation analysis method is proposed,
which considers the subjective weight of ESS installation lo‐
cations as well as the objective weight with multiple impact
factors.

The rest of the paper is organized as follows. Section II
presents the optimization framework. Section III introduces
the optimization model and problem formulation. The compar‐
isons and analyses based on simulation results are presented in
Section IV. Finally, the conclusions are drawn in Section V.

II. OPTIMIZATION FRAMEWORK

A two-step optimal allocation model of SESSs and
MESSs in resilient DNs is proposed in this paper. The frame‐
work of the proposed model is shown in Fig. 1.

First, some typical scenarios for the normal operation of
DNs are generated based on the PV and load data of one
year, which makes it possible to fully consider the variations
of seasons, holidays, and weathers, etc.

Second, a two-step optimal allocation model is estab‐
lished. In the first step, an MILP problem under the normal
operation condition is formulated to obtain the allocation re‐
sults of all typical scenarios. In the second step, based on
the candidate locations obtained in the first step, a two-stage
robust optimization model is established to get the optimal
allocation results under the failure operation condition of
DNs, which is solved by the column-and-constraint genera‐
tion (C&CG) algorithm.

Finally, the hybrid ESS allocation strategy is proposed to
give the final scheme of SESSs and MESSs. The weight of
each final installation location is given by a combination
weighting method based on the CRITIC method and rank
correlation analysis method, which considers the subjective
and the objective weights with multiple impact factors. The
final allocation results of SESSs and MESSs are obtained in
accordance with the distance between locations in each dis‐
trict of DNs.

III. OPTIMIZATION MODEL AND PROBLEM FORMULATION

A. Assumptions

In this paper, we make a set of necessary assumptions dur‐
ing the modeling process.

1) The PV and load data in this paper are inelastic, and
the data deduced during the planning period according to the
formula for scenario prediction are also inelastic.

2) In the moving route of MESSs, the electrical network
is similar to the actual transportation network, and the adja‐
cent contacts are the nearest moving routes.

3) In the second step of ESS allocation, a linearized Dist‐
Flow power flow model that ignores network losses is used.
The network loss does not affect the final energy storage al‐
location result.

4) The lifetime of the network structure in the DN ex‐
ceeds the expected life of the ESS, so as to ensure the effec‐
tiveness of the energy storage allocation during the planning
period.

5) The electricity price will not be adjusted and fluctuated
significantly during the planning period.

B. Generation of Typical Scenarios

In this paper, the K-means clustering method [25] is adopt‐
ed to generate typical clustering scenarios, and the elbow
method [26] is applied to determine the number of clusters.
The elbow method uses the ratio of the average distance
within a class (nSE) to the average distance between classes
(wSE) as an index (SE) to describe the clustering error. As‐
suming the actual number of clusters is k, the elbow method
model can be expressed as:

SE =
nSE
wSE

(1)

nSE =
1
k∑i = 1

k ∑
ksÎ ϵi

|| ks -mi

2

kn

(2)

wSE =
2

k(k - 1)∑i = 1

k ∑
j = i + 1

k

||mi -mj

2

(3)

C. First-step ESS Allocation

The first-step ESS allocation refers to the optimal ESS al‐
location under the normal operation condition of DNs. The
main function of ESSs in DNs is to enhance the utilization
of PV and increase the operation economy through time-
varying electricity prices. This paper establishes the optimal
allocation model of the first step based on typical scenarios.
The first-step allocation problem in scenario κ is formulated as:

min
κÎK

fκ = f inv
κ + f pur

κ + f loss
κ (4)

f inv
κ =∑

iÎN

πess (Csit x
inv1
iκ +Cinv1 E inv1

iκ +Cinv2 P inv1
iκ )+Co&m P inv1

iκ (5)
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κ =∑

t = 1

T

P sub
κt f e

t (6)

f loss
κ =Closs∑

t = 1

T ∑
l(ij)ÎΩL

I2lκt Rl (7)

πess =
r(1+ r)Ny

(1+ r)Ny - 1
(8)

r =
1+ α

(1+ αess)- 1 (9)

MILP problem C&CG algorithm
Failure operation condition

First step Second step

Typical scenario generation
Scenario generation and clustering

K-means Elbow method

Normal operation condition

Hybrid ESS allocation strategy

Rank correlation
analysis method CRITIC method

Combination weighting method

Fig. 1. Framework of proposed model.
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Qpvmin
it £Qpv

iκt £Qpvmax
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The investment costs f inv
κ in (5) include the fixed ESS

costs, variable ESS costs of energy capacity and power ca‐
pacity, and operation and maintenance costs in scenario κ.
The constraints can be divided into investment constraints
(10) - (12) and operation constraints (13) - (29). Specifically,
constraints (10)-(12) bound the total number, energy capaci‐
ty, and power capacity of the ESS, respectively. The optimal
power flow model based on the second-order cone program‐
ming (SOCP) is adopted, which is shown in constraints (13)-
(16). Constraints (17) and (18) impose limits on the voltage
and current to ensure the secure operation of DNs. Con‐
straints (19)-(24) are the power and energy-relevant limits of
the ESS. It should be noted that binary variables are not
needed to avoid simultaneous charging and discharging of
ESSs when the roundtrip efficiency is smaller than 1 [27].
Constraint (25) sets the initial state of charge (SOC). Con‐
straints (26) and (27) impose the limits on the active and re‐
active power of DNs when purchasing electricity from the
power grid. Constraints (28) and (29) impose the active and
reactive power limits on PVs of DNs.

D. Second-step ESS Allocation

The second-step ESS allocation refers to the optimal ESS
allocation under the failure operation condition of DNs.
Based on the uncertainty set of the multi-area line failures,
this paper establishes a two-stage robust optimization model
under the failure operation condition of DNs to pursue the
optimal ESS allocation scheme which guarantees the uninter‐
rupted power supply of critical loads under the worst failure
condition. Therefore, the objective function of ESS alloca‐
tion in the second step is to minimize the investment cost
and the annual comprehensive load loss cost under the worst
failure condition.

In the two-stage robust optimization model, the first-stage
optimization is based on the outer-layer function min(×) to
formulate the ESS allocation scheme on the preselected loca‐
tions of the first-step allocation results. In the second-stage
optimization, the middle-layer function max(×) is used to find
the worst condition which maximizes the load loss cost in
the uncertain set of line failures. Then, the inner-layer func‐
tion min(×) minimizes the load loss cost of DNs under the
worst failure condition. In summary, the optimal ESS alloca‐
tion model can be modeled by the three-layer “min-max-
min” function. The outer layer is the planning decision set,
and the variables are ESS allocation variables. The middle
layer is the uncertainty set of line failures, and the variables
are failure state variables. The inner layer is the system oper‐
ation set, and the variables are system operation variables.
The problem is formulated as:

min ( f inv +max (min( f load + f pur))) (30)
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The constraints (37)-(40) represent the ESS operation mod‐
el as the emergency power. The linearized DistFlow model
is adopted in the second-step allocation and the Big-M meth‐
od is used to relax the voltage constraint due to line failures.
The power flow model of DNs can be expressed as con‐
straints (41)-(48). Constraints (50) and (51) impose limits on
an active or reactive load of DN restoration. A large DN can
be roughly divided into several sub-regions. Line failures in
different districts in DNs are limited by the maximum num‐
ber of line failures. The model of the line uncertainty set of
each sub-region in DNs can be expressed as (52).

The two-stage robust optimization model can be re-formu‐
lated into the following matrix form.

min
xÎH

aT x + max
zÎU

min
y1y2ÎF(xz)

(bT
1 y1 + bT

2 y2) (53)

s.t.

Ax £ d (54)

Bx +Cu+D1 y1 +D2 y2 ³ e (55)

Ex +F1 y1 +F2 y2 = g (56)

where y1 is the vector of non-negative variables such as P lr
it,

Qlr
it; and y2 is the vector of real variables such as Plt, Qlt.

Formula (53) represents the objective function (30); (54) rep‐
resents constraints (34)-(36) of the planning decision set H;
(55) represents (26)-(29), (37)-(38), (43)-(52) of the system
operation set under disaster F; and (56) represents (39)-(42)
of the system operation set under disaster F. The C&CG al‐
gorithm [28] is adopted to solve the two-stage robust optimi‐
zation model proposed in this paper.

First, the two-stage robust optimization model is decom‐
posed into a main problem and a sub-problem. The main
problem is to plan the ESS allocation scheme under a given
line failure condition u* in the DN, which is presented as:

ì

í

î

ï

ï
ïï

ï

ï
ïï

max(aT x + η)
s.t. Ax £ d

η³ bT
1 y1 + bT

2 y2

Bx +Cu* +D1 yh
1 +D2 yh

2 ³ e

Ex +F1 yh
1 +D2 yh

2 = g

(57)

The sub-problem is to find the worst failure condition of

distribution line when the decision variables in the planning
scheme x* of the main problem are known. The specific
form is as follows:

ì

í

î

ï
ï
ï
ï

max(min(bT
1 y1 + bT

2 y2))

s.t. Bx* +Cu+D1 yh
1 +D2 yh

2 ³ e (λ)

Ex* +F1 yh
1 +D2 yh

2 = g (ϖ)

uÎU

(58)

Note that the above sub-problem is a two-layer optimiza‐
tion problem, and the inner min(×) problem is a convex opti‐
mization problem with strong duality. According to the prin‐
ciple of duality, the inner min(×) problem is dualized to
max(×), and a bipolar problem is transformed into a unipolar
problem. The specific form of the dual problem is as follows:

ì

í

î

ï
ï
ïï

ï
ï
ïï

max((e-Bx* -Cu)T λ+ (g -Ex*)Tϖ)

s.t. DT
1 λ+F T

1 ϖ £ b1

DT
2 λ+F T

2 ϖ £ b2

λ³ 0
uÎU

(59)

The objective function in (59) contains non-linear vari‐
ables in the form of a product of variables. This paper uses
the Big-M method to linearize this function. For the product
of the binary variable Uk and the continuous variable Zk, the
linearized constraint can be obtained by introducing an auxil‐
iary variable Vk and then relaxed by the Big-M method [29].
The flowchart of the C&CG algorithm is shown in Fig. 2.

-MUk £Vk £MUk (60)

Zk -M (1-Uk)£Vk £Zk +M (1-Uk) (61)

As shown in Table I, the operation and allocation vari‐
ables of the first- and second-step ESS allocations in this pa‐
per are different. After the optimal allocation of the first
step, the results of the ESS allocation in six scenarios and
the spatial location of each candidate node are obtained. In

Generate the new
variables and the

constraints;
update h = h + 1

Start

Solve the dual sub-problem; derive the
worst scenarios uh+1

Solve the master problem; derive an optimal solution

End

Y

N

(xh, ηh+1)

UB � LB ≤ ε?

Set lower boundary LB = �∞, upper boundary
UB = +∞; set iteration number h = 0; set a feasible

solution u0; set the convergent tolerance ε

(xh, yh+1, yh+1, ηh+1); update LBh = bTxh+1 + ηh+1
1 2

Solve the sub-problem; derive an optimal solution
(Obj, yh+1, yh+1); update UB = min(UB, bTxh+1 + Obj)

21

Return the optimal solution (xh+1, yh+1, yh+1, uh+1, UB, LB)21

Fig. 2. Flowchart of C&CG algorithm.
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the second step of the ESS allocation, the ESS allocation re‐
sults in the case of failure are obtained from the ESS candi‐
date nodes obtained in the first step.

E. A Hybrid ESS Allocation Strategy

After the two-step ESS allocation, the results are screened
using the proposed hybrid ESS allocation strategy to obtain
the optimal hybrid ESS allocation scheme. First, the subjec‐
tive and objective combination weighting method is applied
to analyze the m preselected ESS allocation nodes to obtain
the weight order of m locations. The objective weight analy‐
sis is carried out and the CRITIC method [30] is used. The
rank correlation analysis method [31] is combined with the
geographic location of each node to perform subjective
weight analysis. Second, according to the weight results of
m locations, the first E ESS allocation nodes are selected.
The SESSs and MESSs are determined according to the dis‐
tance from the m-E remaining candidate nodes in each dis‐
trict to the E determined allocation nodes. The flowchart of
proposed hybrid ESS allocation strategy is shown in Fig. 3,
which follows several important principles.

1) In each district, it is necessary to allocate at least one
MESS in order to ensure that the ESS can be used as an
emergency power source.

2) The total number of ESSs installed in the district needs
to be proportional to the total number of nodes in this dis‐
trict.

3) The ESS installation locations that are close to the can‐
didate locations are given priority to install MESSs in order
to ensure that the optimal hybrid allocation results can meet
the requirements of different scenarios in DNs.

4) The nodes of the critical load are given priority to allo‐
cate SESSs.

5) Candidate locations that are not equipped with ESSs
need to be equipped with MESS installation interfaces.

6) The installed capacity of MESS and SESS is allocated
with the maximum installed capacity in various operation
scenarios.

IV. CASE STUDY

The proposed model is tested based on a modified IEEE
33-node DN, as shown in Fig. 4. The proposed MILP prob‐
lem is solved in Gurobi 8.1.1. We use MATLAB R2018a to
formulate the desired model which is then linked with Guro‐
bi solver. The simulation is carried out on a PC with Intel
Quad Core 2.70 GHz and 8 GB RAM.

A. Test System Information

The reference voltage of the test system is 12.66 kV, the
allowable range of node voltage is 0.9-1.1 p. u., and other
system parameters can be found in [32]. The capacities of
the three PV generators located at buses 7, 22, and 32 are
500 kW, 600 kW, and 500 kW, respectively. The DN area is
divided into three districts according to the locations shown
in Fig. 4, i.e., L1, L2, and L3.

The time-of-use (TOU) price of DNs is shown in Fig.
5(a), and the typical daily load of DNs is shown in Fig. 5(b)
[7]. The planning period is 10 years and the investments are
determined at the beginning of the planning horizon. The
per-unit capacity investment costs for ESSs are set to be
Cinv1 = 300 $/kWh and Cinv2 = 250 $/kW. The fixed cost for
installing an ESS is 10% of its energy capacity costs, i. e.,
Cinv1 = 0.1Cinv2 E inv

i . The fixed cost of MESSs is about 2%

Adopt Dijkstra algorithm to find the distance from m�E
remaining candidate nodes to the E determined allocation
nodes in the same district, and set the respective nearest
ESS installation node flags of all remaining candidate

nodes to be 1

Start

Input three indicator information, which are the first-step ESS
allocation results, the second-step ESS allocation results, and

the weight of the number of preselected nodes in a district

 Adopt rank correlation analysis method to obtain
subjective weight value; adopt CRITIC method

to obtain objective weight value

Calculate the comprehensive weight and output the
first E ESS allocation nodes 

Is the flag
bit of thereal ESS

allocation node i 1?

Allocate MESS to node i Allocate SESS to node i

End

Adjust the hybrid ESS allocation results according to
the principles of hybrid ESS allocation

Determine the final hybrid ESS allocation results

Y N

Fig. 3. Flowchart of proposed hybrid ESS allocation strategy.

TABLE I
OPERATION AND ALLOCATION VARIABLES OF EACH SUB-PROBLEM

Allocation

First-step ESS allocation

Second-step ESS
allocation

Operation variable

P sub
κt , Qsub

κt , U2iκt, I2lκt,
Plκt, Qlκt, P pv

iκt, Qpv
iκt,

P dis
iκt, Qdis

iκt, P ch
iκt, Qch

iκt

P lr
it, Qlr

it, P sub
t , Qsub

t , P pv
it ,

Qpv
it, P dis

it , Qdis
it , Plt, Qlt,

Uit, zlt

Allocation variable

xinv1
iκ , E inv1

iκ , P inv1
iκ

xinv2
i , E inv2

i , P inv2
i

Critical load

S
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19 20 21

24

22

23
26 27 28 29 30 31 32

25

1 18

33

L1 L2 L3PV

PV
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station

Fig. 4. Modified IEEE 33-node DN.
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higher than that of SESSs due to the flexible interfaces. The
annual operation and maintenance cost Co&m is 5% of the
power capacity investment cost Cinv2, i. e., Co&m = 0.05Cinv2.
As for other financial parameters, the discount rate α is as‐
sumed to be 5% and the growth rate of the investment cost
αess is assumed to be -1%, i.e., the cost will decrease over
the years. In the first step of normal operation, the given
maximum ESS configuration node is 6. The SOC change
range of the ESS is 0.10-0.95 and the initial SOC is 0.2.
The charging/discharging efficiency is 0.95. The maximum
allocation capacity of the ESS is 5 MWh and the maximum
allocation power is 1.5 MW. The initial SOC of the second-
step ESS allocation is 0.9, and the failure duration is 2
hours. The average moving cost of the MESS between sce‐
nario transitions is $600 per time. Kp = 2.

B. Result Analysis

Based on the K-means clustering method, the PV and load
data of scenario clustering are demonstrated in Fig. 6, where
the blue line represents the change curve of PV and load in
one year (365 days), and the white line represents the
change curve of PV and load in the six typical scenarios ob‐
tained by clustering. The clustering errors changing with the
number of clusters are shown in Fig. 7. Considering the real
scenarios, the data clustering of the DN for a year is general‐
ly divided into 4 categories according to the season. The se‐
lected number of clusters should be able to describe more
than 4 scenarios. In addition, the larger the number of clus‐
ters, the smaller the clustering error. Combined with the clus‐
tering error curve shown in Fig. 7, the optimal number of
clusters for PV and load data in one year is determined by
the elbow method, which turns out to be 6.

According to the obtained six typical PV and load scenari‐
os, the ESS allocation under the normal operation condition
in the first step is performed.

The first-step ESS allocation results for the six scenarios
are shown in Table II. The main role of the ESSs in the first
step is to accommodate more PVs and realize arbitrage by
the TOU price. The SOC curves of the ESS in scenario 1
are shown in Fig. 8.

The pre-selected allocation locations of ESSs obtained in
the first step have nine locations in total, which are nodes 2,
8, 10, 12, 14, 24, 25, 30, and 32. The total locations ob‐
tained in the first step are regarded as the pre-selection of
the ESS allocation locations for the second step. This paper
sets four failure scenarios and the second-step ESS alloca‐
tion results are shown in Table III. The all load recovery
rate (ALRR) and critical load recovery rate (CLRR) of the
four failure scenarios are shown in Table IV. Taking failure
scenario 4 as an example, the convergence process of the
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TABLE II
FIRST-STEP ESS ALLOCATION RESULTS FOR SIX SCENARIOS

Scenario

1

2

3

4

5

6

Allocation node

2, 8, 14, 25, 30,
32

2, 10, 14, 24,
25, 30

2, 8, 14, 24, 25,
30

2, 12, 14, 24,
25, 30

8, 14, 24, 25,
30, 32

2, 14, 24, 25,
30, 32

Power (kW)

500, 300, 500,
500, 600, 200

1400, 100, 100,
200, 130, 400

500, 300, 500,
300, 350, 800

1000, 100, 100,
140, 100, 400

200, 300, 200,
200, 700, 200

700, 500, 200,
200, 600, 200

Capacity (kWh)

1600, 1100, 1600,
1500, 1900, 600

4600, 300, 300, 600,
400, 1400

1600, 900, 1800, 900,
1700, 2600

3300, 300, 300, 500,
370, 1200

600, 1100, 800, 700,
2300, 600

2300, 1800, 700, 700,
2000, 600
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Fig. 8. SOC curves of ESS in scenario 1.
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C&CG algorithm is shown in Fig. 9.

The worst failure operation condition is the failures of
fault 1, 3, 5, 8, 12, and 15. The CLRR is 80% and the
ALRR is 20.59%. Under the worst failure operation condi‐
tion of DNs, the ESS can facilitate operation the load recov‐
ery which can ensure the reliability of the power supply for
important loads and improve the safety of the DN operation.

Taking the first-step ESS allocation results, the second-
step ESS allocation results, and the location of each node as
the index of each ESS allocation location, the combination
weighting method based on the CRITIC method and rank
correlation analysis method is adopted to obtain the compre‐
hensive weight, which is shown in Table V.

TABLE V
COMPREHENSIVE WEIGHT OF ESS ALLOCATION NODES

Node

2

8

10

12

14

Weight

0.2839

0.1812

0.1444

0.0995

0.0953

Node

24

25

30

32

Weight

0.0760

0.0620

0.0288

0.0288

According to the comprehensive weight of each candidate

location, the locations expected to install ESSs are selected
as nodes 2, 30, 24, 32, 14, and 25. With consideration of the
principles in the hybrid ESS allocation strategy, the final hy‐
brid ESS allocation results are shown in Fig. 10 and Table
VI. In L1 district, node 24 is installed with MESS and node
2 is installed with SESS. The candidate node 25 can utilize
the installed MESS of node 24 which is able to move ac‐
cording to requirements. In L2 district, node 8 is installed
with MESS and node 30 is installed with SESS. In different
operation scenarios, the MESS installed in node 8 can be
moved to node 10. In L3 district, node 14 is installed with
MESS and node 32 is installed with SESS. The candidate
node 12 can share the MESS installed in node 14 in differ‐
ent scenarios.

In order to verify the correctness and effectiveness of the
proposed hybrid ESS allocation strategy, three allocation
strategies are demonstrated for comparison and verification.
Strategy 1 is to allocate SESS for a single scenario under
normal and failure operation conditions; strategy 2 is to allo‐
cate SESS for multiple scenarios under normal and failure
operation conditions; and strategy 3 is to allocate SESS only
considering the normal operation condition of DNs. The allo‐
cation results of the strategies 1-3 are shown in Table VII.
Figure 11 shows the annual operation costs of the different
allocation strategies under normal operation conditions of
DNs. Taking failure scenario 4 in Table IV as an example,
the SOC of ESSs in the DN are shown in Fig. 12.

TABLE VII
ALLOCATION RESULTS OF ALLOCATION STRATEGIES 1-3

Strategy

1

2

3

Allocation node

2, 11, 14, 24, 25, 30

2, 8, 14, 24, 30, 32

2, 8, 14, 24, 25, 30

Power (kW)

900, 160, 400,
200, 180, 700

1400, 300, 500,
300, 700, 200

1400, 300, 500,
300, 500, 700

Capacity (kWh)

2800, 520, 1400,
650, 600, 2400

4600, 1100, 1800,
900, 2300, 600

4600, 1100, 1800,
900, 1500, 2300

MESS installation node

S
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Remaining candidate node; SESS installation node

Fig. 10. Hybrid ESS allocation results.

TABLE VI
HYBRID ESS ALLOCATION RESULTS

Type

SESS

MESS

Allocation node

2, 30, 32

8, 14, 24

Power (kW)

1400, 700, 200

300, 500, 300

Capacity (kWh)

4600, 2300, 600

1100, 1800, 900

TABLE III
SECOND-STEP ESS ALLOCATION RESULTS

Failure
scenario

1

2

3

4

Allocation
node

2, 8, 24, 32

2, 12, 24, 32

2, 10, 24, 30

2, 8, 24, 32

Power (kW)

50, 100, 240, 100

30, 50, 400, 80

300, 100, 400, 30

100, 100, 400, 250

Capacity (kWh)

150, 300, 700, 300

80, 130, 1030, 220

600, 300, 1000, 100

300, 300, 1000, 400

TABLE IV
DN RESTORATION RESULTS IN DIFFERENT FAILURE SCENARIOS

Failure scenario

1

2

3

4

Fault line

1, 2, 5, 9, 14, 15

1, 2, 5, 8, 12, 15

1, 2, 5, 13, 14, 30

1, 3, 5, 8, 12, 15

ALRR (%)

20.73

21.84

21.84

20.59

CLRR (%)

80.00

86.79

82.46

80.00
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Fig. 9. Convergence process of C&CG algorithm.
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In Fig. 11(a), the power purchase cost of strategy 1 is the
highest, and the single-scenario ESS allocation result cannot
guarantee the optimal operation in multiple scenarios, which
verifies the effectiveness of the multi-scenario method. In
Fig. 11(b), although the power purchase cost of strategies 2
and 3 in multiple scenarios is relatively low, the cost of ESS
allocation is higher, and the total cost is also higher, which
verifies the effectiveness of the proposed hybrid ESS alloca‐
tion strategy. In Fig. 11(c), strategy 3 only considers the nor‐

mal operation of DNs, and ESSs are effectively allocated
with less network loss, which verifies the correctness of the
allocation strategy for the normal operation of the first step.
In Fig. 11(d), The comparison of the total cost verifies the
effectiveness of the proposed hybrid ESS allocation strategy.
The results of Fig. 11 indicate that the ESSs in the proposed
hybrid ESS allocation strategy has the highest utilization
rate, and each ESS can achieve the maximum arbitrage with
the TOU price.

In the four failure scenarios of Table IV, the movement of
MESS between different load nodes can effectively ensure
the uninterrupted power of critical loads in the DN. Figure
13 shows the comparison of the CLRR of the mobility mo‐
bile strategy with and without MESS in the DN in the four
failure scenarios. It can be seen from Fig. 13 that although
there are SESSs, the disconnection of the line will also
cause the loss of power supply for critical loads. In the case
of MESS allocation, while ensuring the uninterrupted power
of critical loads in the region after the failure occurs, the
movement of MESS ensures that all critical loads in the DN
are uninterrupted, which can effectively improve the recov‐
ery rate of critical loads. MESS can guarantee a 100% recov‐
ery rate of critical loads within two hours of failure.

With the line failure shown in failure scenario 2 in Table
IV, the failure recovery of the hybrid ESS allocation strategy
is shown in Fig. 14 and the results of failure recovery are
shown in Fig. 15. The ALLR of different allocation strate‐
gies mainly depends on the ESS allocation capacity. The al‐
location capacity of strategy 3 is larger, so the ALRR is
higher. Due to the limitation of SESS capacity and the limi‐
tation of installed nodes, the CLLR of strategies 1-3 is rela‐
tively low.
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As shown in Fig. 14, nodes 16-18 lose power supply; the
MESS of node 8 in district 2 can be moved to node 10 to re‐
store power; and node 16 in district 3 can be powered by
moving MESS at node 14 to restore power supply. There‐
fore, the hybrid ESS allocation strategy guarantees the pow‐
er supply reliability for important loads, which verifies the
superiority of the proposed hybrid ESS allocation strategy.

V. CONCLUSION

To solve practical problems in ESS allocation, this paper
proposes a two-step optimal allocation model of SESSs and
MESSs. The allocations of the first step and the second step
are optimized for the operation economy and the lowest cost
of load loss considering the normal and failure operation
conditions of DNs, respectively. A hybrid ESS allocation
strategy based on subjective and objective weight analysis is
proposed to give the final allocation results of SESSs and
MESSs. The results of single SESS allocation and hybrid
ESS allocation are compared and analyzed under the normal
and failure operation conditions, which demonstrate that the
proposed hybrid ESS allocation strategy can achieve lower
annual operation cost in different scenarios as well as quick
restorations of load power supply after failures. In summary,
the proposed hybrid ESS allocation strategy would not only
ensure the economic operation of the DN, but also maintain
the power supply of the DN and improve the flexibility of
the DN.
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