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Abstract——With the development of advanced metering infra‐
structure (AMI), large amounts of electricity consumption data 
can be collected for electricity theft detection. However, the im‐
balance of electricity consumption data is violent, which makes 
the training of detection model challenging. In this case, this pa‐
per proposes an electricity theft detection method based on en‐
semble learning and prototype learning, which has great perfor‐
mance on imbalanced dataset and abnormal data with different 
abnormal level. In this paper, convolutional neural network 
(CNN) and long short-term memory (LSTM) are employed to 
obtain abstract feature from electricity consumption data. After 
calculating the means of the abstract feature, the prototype per 
class is obtained, which is used to predict the labels of un‐
known samples. In the meanwhile, through training the net‐
work by different balanced subsets of training set, the proto‐
type is representative. Compared with some mainstream meth‐
ods including CNN, random forest (RF) and so on, the pro‐
posed method has been proved to effectively deal with the elec‐
tricity theft detection when abnormal data only account for 
2.5% and 1.25% of normal data. The results show that the pro‐
posed method outperforms other state-of-the-art methods.

Index Terms——Electricity theft detection, ensemble learning, 
prototype learning, imbalanced dataset, deep learning, abnor‐
mal level.

I. INTRODUCTION

ELECTRICITY has become essential in our daily life. 
However, electricity loss occurs in every process with 

electricity such as electricity generation, transmission, and 
distribution [1]. In general, these losses can be divided into 
two classes: nontechnical losses (NTLs) [2]-[4] and technical 
losses (TLs). Abnormal NTLs are usually caused by electrici‐
ty theft, including tampering the circuit of the electricity me‐

ter and bypassing the electricity meter. Enormous NTLs will 
bring the power enterprises huge economic damage. It is re‐
ported that NTLs have accounted for 25% loss in India and 
this rate is 16%, 6%, 6%, and 5% in Brazil, China, Ameri‐
can, and Australia, respectively [5].

To restraint these economic losses, power enterprises often 
assign their workers to check the meter of suspicious custom‐
ers or update the protective device of meter. However, inevi‐
tably, these traditional methods have obvious disadvantages. 
For example, artificial detection relies too much on expert 
experience, which makes this method difficult to be applied 
in small enterprise. Besides, improving protective device 
means the iteration of smart meter, which costs much. Mean‐
while, with the development of computer science, the meth‐
ods of electricity theft are updating quickly such as cyber-at‐
tack for two-way communication network in smart grid with‐
out any tampering circuit [6]. However, any electricity theft 
will make some variables abnormal because smart grid is a 
physical system which satisfies many equations of state. In 
this case, we can take full advantages of advanced metering 
infrastructure (AMI), collect key state about smart grid, and 
conduct some data analysis for electricity theft. Through the 
sensors of AMI, different kinds of data can be attained such 
as NTLs, customer’s consumption data, and the fluctuation 
of voltage and electricity.

There are three mainstream directions among current data-
driven algorithms of electricity theft detection, including 
anomaly detection, state estimation, and supervised learning. 
Anomaly detection aims at seeking the similarity of normal 
samples or designating an index to judge the class of sam‐
ples such as clustering, correlation analysis, principal compo‐
nent analysis (PCA), and local outlier algorithm. Compared 
with supervised learning, anomaly detection is capable of 
learning consumption pattern and information from unla‐
beled samples. Reference [7] proposed an algorithm comb‐
ing density-based clustering and the maximum information 
coefficient to find out the correlation between NTLs and cer‐
tain electricity theft. Reference [8] defined user’s short-lived 
consumption pattern and detected ongoing electricity con‐
sumption theft. Reference [9] incorporated wavelet-based fea‐
ture extraction and fuzzy c-means clustering. State estima‐
tion aims at looking for the anomaly measures among all 
measures of whole region. Compared with the smart meter 
in client, the observe meter is more difficult to be tampered 
and its reading is more credible. Therefore, some inconsis‐
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tent data between observe meter and user’s meter can be de‐
tected when electricity thefts happen in this region. Howev‐
er, this algorithm requires high-frequency measurement, en‐
tire topological structure, and a large number of sensors in‐
stalled at important places, which are difficult to be imple‐
mented in many villages and towns. Supervised learning 
aims at training a classifier to designate a boundary which 
divides abnormal data and normal data into two areas and 
calculate the probability of each class. In early studies, tradi‐
tional machine learnings such as support vector machine 
(SVM) [10]-[13], random forest (RF) [13], gradient boosting 
model (GBM), and extreme gradient boosting (XGBoost) 
[14] are conducted in this area. Reference [12] primarily pro‐
posed two-step detection which analyses the anomaly NTLs 
of certain area and locates abnormal customers by SVM. 
Reference [15] preprocessed real data by decision tree (DT) 
to extract features and classified samples by SVM. With the 
increase of dataset size, people begin to pay attention to 
deep learning-based method which is more effective than ma‐
chine learnings. Convolutional neural network (CNN) [16] -
[19] and recurrent neural network (RNN) [20]-[24] are classi‐
cal deep learning networks which all have been applied on 
time series. Reference [25] originally decomposed consump‐
tion data into multiple components, which are individually 
analyzed by deep neural networks. Reference [1] proposed a 
novel frame which extracts feature from 1-dimensional (1-D) 
and 2-dimensional (2-D) data. However, the imbalance of 
training set, which refers to the anomaly samples far less 
than normal samples, will restrict the performance of the 
model. For ameliorating this restriction, data augmentation, 
sampling, and neural networks are utilized in this area [19], 
[26] - [30]. Reference [19] utilized synthetic minority overs‐
ampling technique (SMOTE) to enlarge the number of abnor‐
mal samples. This method generates abnormal samples from 
raw abnormal samples and their neighbor points to increase 
the diversity of dataset. Reference [26] studied different sam‐
pling techniques such as random undersampling (RUS), ran‐
dom oversampling (ROS), and SMOTE, and obtained great 
improvement of the evaluation index. Reference [29] found 
out that the distribution of data could be improved by in‐
creasing the data located in boundary built by SVM. There‐
fore, they combined borderline-SMOTE-SVM and Tomek 
link to balance dataset and make boundary between different 
classes clear. However, there is no suitable index to prove 
whether generated samples are usual abnormal samples. 
Therefore, in this paper, it is the main direction to effective‐
ly excavate the feature of abnormal data instead of generat‐
ing abnormal samples.

In this paper, a novel electricity theft detection model is 
proposed, which deals with imbalanced dataset well. Firstly, 
one-class support vector machine (OCSVM) is conducted on 
every user’s consumption data to ascertain their constant 
electricity usage. Then, CNN, long short-term memory 
(LSTM), and prototype learning are employed to construct 
the prototype of each class. Through calculating the Euclide‐
an distance between the sample and each prototype, the label 
of the sample is determined by the nearest prototype. In this 
process, the neural network minimizes the distance of the 

same class and maximizes the distance of different class to 
make critical features learned by the model. For the unbal‐
anced dataset, the network is trained by different subsets of 
the training set. Compared with some supervised learning al‐
gorithms, the proposed method has better performance on 
imbalanced dataset.

The main contributions of this paper are summarized as 
follows.

1) Prototype learning and ensemble learning are firstly im‐
plemented in the area of electricity theft detection. In realis‐
tic world, the imbalance between abnormal users and normal 
users causes large imbalance in electricity consumption data‐
set. In this case, traditional theft detection based on artificial 
intelligence (AI) cannot play a role due to the risk of overfit‐
ting and the lack of feature extraction. However, the pro‐
posed method can still distinguish normal and abnormal data 
when other methods are unable to achieve according to the 
experiments.

2) Apart from the imbalance of abnormal data size, the in‐
fluence of abnormal data with different abnormal levels is al‐
so considered. Slight electricity theft causes few reductions 
on consumption data, which reduces the charge of power 
and the risk of being detected. There is high similarity be‐
tween abnormal and normal consumption data. Compared 
with traditional deep learning, the proposed method has 
greater performance in dealing with these samples which are 
difficult to be detected. The design of prototype learning sig‐
nificantly improves the performance of the network for this 
kind of samples.

3) OCSVM is utilized to further prove the constant con‐
sumption pattern of signal customers. In this case, the fea‐
ture from consumption data and electricity theft dataset are 
reliably enough for model training. This process can be con‐
sidered as the reliable proof for model learning process.

The rest of the paper is organized as follows. In Section 
II, the characteristics of electricity consumption and electrici‐
ty theft are analyzed. In Section III, a novel electricity theft 
detection method is proposed. Some experiments which veri‐
fy the performance of the proposed method in imbalanced 
dataset will be narrated in Section IV. Finally, Section V con‐
cludes this paper.

II. PROBLEM ANALYSIS 

Electricity theft is a behavior to avoid or reduce electricity 
cost. All electricity theft can be summarized into three class‐
es, including tampering, bypassing electric energy meters, 
and false data injection. These behaviors will leave some 
clues on the consumption data such as abnormal maximum 
value and abnormal mean value. If customers’  behaviors are 
normal, his/her electricity usage would remain constant due 
to his/her fixed lifestyle. Therefore, finding out the feature 
of abnormal usage and normal usage is the key of detecting 
electricity theft. In this section, the characteristics of custom‐
ers’  consumption data is analyzed by OCSVM, which is uti‐
lized to prove the constant usage of most customers.

In this experiment, the public dataset containing 536 
days’  electricity consumption data of 4225 residential cus‐
tomers, released by Electric Ireland and Sustainable Energy 
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Authority of Ireland in January 2012 is going to be utilized 
[31]. Because all participators are voluntary to hand in their 
consumption data, all data can be assumed to be honest data. 
Figure 1 represents the trends of daily and weekly consump‐
tion data. Figure 1(a) shows the daily consumption data of 
one customer in four different days. It is easy to find that 
some values are different, although they have high degree of 
similarity. We can stretch our detection windows from one 
day to one week. Figure 1(b) shows four weekly consump‐
tion data of one customer in four different weeks. Compared 
with Fig. 1(a), there is less fluctuation and difference be‐
tween these curves. We preliminarily draw a conclusion that 
there is periodicity in weekly electricity usage and some ran‐
domness in daily electricity usage.

The above conclusions are the results of our observation 
for these curves without precise calculation. For verifying 
the constant consumption pattern of most customers, OCS‐
VM is conducted on electricity consumption data. As a clas‐
sical machine learning for novelty detection, OCSVM estab‐
lishes a boundary with normal samples and distinguishes the 
label of samples through their position in feature space [32], 
[33]. For each certain customer, his/her consumption data 
are divided into two groups, i.e., test set and training set. If 
his/her electricity usage is constant, most samples from the 
test set should locate in the boundary. Considering the ran‐
domness of daily electricity consumption, consumption data 
sampled in 12 hours are set as the input of OCSVM. In data‐
set, all customers have 76 weekly electricity consumption da‐
ta which are randomly divided into 60 samples for training 
and 16 samples for testing. Besides, the rate of special data 
in training set should be told to model. Although the trend 

of weekly consumption data is more stable than daily con‐
sumption data, there are still some special samples which are 
different with most samples. Therefore, a rough rate of spe‐
cial sample is given to model and this rate is 10%. Figure 2 
shows the non-outlier rate of OCSVM for all customers in 
raw dataset. According to Fig. 2, the highest bar is located 
at 0.75, which accounts for over 50% of total dataset. The 
second-highest and third-highest bars are located at 0.65 and 
0.85, respectively. This result indicates that these consump‐
tion data are classified into the same class for over 70% cus‐
tomers of the dataset. Considering the randomness of weekly 
electricity consumption, most customers have fixed electrici‐
ty usage.

Due to the lack of abnormal data in origin datasets, the ab‐
normal data will be constructed based on the characteristics 
of real electricity theft. Tampering the circuit will permanent‐
ly change the measure of smart meter such as lowering all 
measurements in the same proportion and setting measure‐
ments to be zero during some time. Bypassing the circuit 
means using electricity directly. In this case, the power me‐
ter will read the measurements of zeros all the time. Com‐
pared with the above two types of electricity theft, false data 
injection will bring various change on the measurements. Be‐
cause of different electricity price at different time, peak-
load shifting and replacing all measurements with mean val‐
ue can help theft reduce the cost of used power. There is no 
reduction on total electricity consumption but large reduction 
on cost. Meanwhile, some thieves choose to add noises to 
these data for various fluctuations. On account of these anal‐
yses above and referring to the past abnormal function [12], 
five functions are utilized to construct abnormal data.

Table I lists five specific abnormal functions, where x is a 
vector including 48 measurements of daily electricity con‐
sumption data; and xt is the tth measurement of x. h1 (·) multi‐
ples x with the same random value which is less than 0.8. α 
can be regarded as the severe degree of electricity theft. 
With the decrease of α, electricity theft has severer damage. 
h2 (·) sets a range where measure is set to be zero and other 
measurements remain constant. The function of β is similar 
to α and larger β means severe electricity theft. h3 (·) replaces 
all measurements with the average value of corresponding 
daily consumption. h4 (·) multiplies each measure from h3 (·) 
by a random value which is less than 0.8. h5 (·) reverses the or‐
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Fig. 1.　Trends of daily and weekly consumption data. (a) Daily consump‐
tion data sampled in one hour. (b) Weekly consumption data sampled in 
twelve hours.
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Fig. 2.　Non-outlier rate of OCSVM for all customers in raw dataset.
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der of daily meter reading. By disposing original data in 
these functions, we can obtain five datasets including differ‐
ent types of electricity theft consumption data. The example 
of the daily consumption data in normal usage and abnormal 
usage is shown in Fig. 3.

III. PROPOSED METHOD

In realistic world, the obvious characteristic of electricity 
consumption dataset is a small ratio of electricity theft data 
to normal electricity data. However, traditional supervised 
learnings have difficulty in dealing with this characteristic. 
In this case, many methods are proposed and have finite ef‐
fect. Compared with those data augment, ensemble learning 
makes full use of existing dataset by training some weak 
classifiers and synthesizing their predictions. However, con‐
structing weak classifications based on the neural network 
will cost amounts of time and memory. Therefore, this paper 
focuses on improving the accuracy of theft detection while 
the abnormal samples are few.

A. Batch Ensemble Learning

Weak classifier refers to the classifier whose accuracy is 
more excellent than random prediction. The training sets of 
different weak classifiers are different subsets of total train‐
ing set. In this case, some trained classifiers will learn differ‐
ent features of training set and give contrary prediction for 

the same sample. Meanwhile, most classifiers will give the 
right prediction, which corrects the mistakes of few classifi‐
ers. Considering these weak classifiers and their predictions 
synthetically, a strong classifier is produced.

However, it takes long time for neural network to train its 
parameters. Meanwhile, the combination of multiple deep 
neural networks has high requirement for memory. There‐
fore, a deep neural network is set to replace all weak classifi‐
ers in this paper. To ensure the smooth training process of 
the model, the balanced subset of the total training set is ex‐
tracted, which contains all abnormal samples and the same 
number of normal samples. In this case, the balance of train‐
ing set forces the network not to prefer a certain class. At 
the same time, different training sets of different epochs 
avoid the parameters of neural network falling into local op‐
tima. After many epochs of training, all samples can be uti‐
lized fully and trained by network. Because this training 
method is similar to the design of batch training, it is called 
batch ensemble learning.

B. Data Preprocess

Before the training process, the raw data need to be pre‐
processed because different value ranges may influence the 
convergence speed and generalization performance of the 
model. There are two common standardization methods.
1)　Zero-score Standardization

The function of zero-score standardization is to let raw da‐
ta follow Gaussian distribution. The following equation is 
the expression of zero-score standardization:

f (x)=
xi -mean(x)

std(x)
    xiÎ x (1)

where std(x) represents the standard deviations of x. This 
standardization will worsen the performance of the model if 
the raw data do not satisfy Gaussian distribution.
2)　Min-max Scaling

The function of min-max scaling is to let raw data equal 
to [0, 1] in equal proportion. The following equation is the 
expression of min-max scaling:

f (x)=
xi -min(x)

max(x)-min(x)
    xiÎ x (2)

where max(x) and min(x) represent the maximum and mini‐
mum values of x, respectively. Compared with zero-score 
standardization, this method is more widespread and does 
not have preconditions for raw data. After the test of these 
two methods, we choose the second to normalize our dataset.

C. Prototype Learning

Prototype learning [34] is firstly applied in few-shot learn‐
ing. Its design of the construction of prototype and predic‐
tion based on Euclidean distance has great performance. Ref‐
erence [35] proved that the utilization of prototype will 
bring model greater robustness than the combination of soft‐
max layer and cross-entropy loss function. Therefore, proto‐
type learning is applied to extract the feature of samples in 
our proposed method.

Figure 4 shows the basic construction of prototype net‐
work, where L1-L3 mean the prototypes of different classes. 
The prototype learning consists of three main parts: set parti‐

TABLE Ⅰ
FUNCTIONS OF DIFFERENT ABNORMAL DATA

Class

Class 1

Class 2

Class 3

Class 4

Class 5

Abnormal function

h1 (x)= ax a = random(α - 0.1α + 0.1), α ={0.1 0.3 0.5 0.7}, 
where random is the uniform sample operation

h2 (xt )= βt xt

If start + duration < 48:

βt = {0   start £ t £ start + duration
1   else                                                  

else

βt =
ì
í
î

ïï

ïïïï

0   0 £ t £ start + duration - 48
0   start £ t £ 48                               
1    else                                                   

start = random(0 48)
β = duration ={8 16 24}
where start means the start time of electricity theft and dura‐

tion means the lasting time of electricity theft

h3 (x)=mean(x), where mean is the average of value in x

h4 (x)= γt ×mean(x), γt = random(0.10.8)

h5 (xt )= x48 - t
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Fig. 3.　Daily consumption data in normal usage and abnormal usage.
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tion, feature embedding, and calculation of prototype. In set 
partition, the input is divided into two sets including support 
set (S), which is used to construct prototype, and query set 
(Q), which is used to optimize parameters of the network. 
After that, all samples in S and Q are put into feature embed‐
ding. Through feature embedding, all samples obtain their 
representations in feature space. Meanwhile, the prototype of 
corresponding class can be constructed by the representa‐
tions of samples in S. The following equation is the specific 
calculation method:

ck =
1
N ∑jÎ[1N]

f (xkj ) (3)

where k is the class of consumption data; f (xkj ) is the em‐
bedded feature of the jth support vector x belonging to class 
k; and ck is the prototype of class k.

Then, the representations of samples in Q are utilized to 
predict their class by calculating the Euclidean distance of 
them with all prototypes and finding the nearest prototype. 
According to these distances, the probability of all class can 
be calculated by softmax layer. With the help of cross-entro‐
py function and back propagation, the parameter can be opti‐
mized in right direction. The following equation is the con‐
crete loss function:

Loss =- ∑
iÎ[1batch]

[yi ln ŷi + (1 - yi )ln (1 - ŷi )] (4)

where yi is the one-hot coding; and ŷi is the corresponding 
probability vector. According to the optimization of loss 
function, the distance of representations from the same class 
decreases while that from different classes increases.

In traditional CNN with softmax layer and cross-entropy 
function, the samples are often mapped to certain area in fea‐
ture space. In this case, the distance between the features 
from the same class may be further than that from different 
classes. In this paper, the samples from the same class are 
mapped into certain point in feature space. This design 
makes the prototype representative and improves the robust‐
ness of the network.

D. CNN and LSTM

It is easy to know that the quality of prototype depends 
on the distribution of dataset and the ability of network. Ac‐
cording to current deep learning framework, CNN and 
LSTM are utilized to extract the features of samples. In this 
subsection, CNN focuseses on extracting the characteristic 
about the periodicity of raw samples. LSTM focuses on ex‐
tracting the characteristic about the global feature of raw 

samples. The detailed structures of two subnetworks are nar‐
rated as follows.
1)　LSTM

According to the analysis of consumption data in different 
days, some characteristics of consumption pattern such as 
the maximum value, the minimum value, their corresponding 
time indices, and the fluctuations can be revealed. As the 
variant of RNN, LSTM [22]-[24], [36] is usually utilized to 
extract features from time series. LSTM shortens the train‐
ing time and solves the problem of gradient disappearance 
when the length of input is too long, which is suitable for 
extracting the global feature of electricity data.

The construction of LSTM cell is shown in Fig. 5. And 
LSTM is combined with a certain number of identical 
LSTM cells depending on the length of data. There are three 
important operations in LSTM cell including forgetting infor‐
mation, recording information, and updating information.

The red route can be regarded as forgetting information. 
And forgetting signal is constructed by following formula‐
tion.

ft = σ(W if xt - 1 +Whfht - 1 + b f ) (5)

where ft is the forgetting signal; and σ(·) is the sigmoid func‐
tion which lets the number in ft map between 0 and 1; W if 
and Whf are all trainable coefficient matrices; and b f is a 
trainable bias matrix. Therefore, the element-wise product of 
ct - 1 and ft will drop some information in ct - 1.

The green route can be regarded as recording information. 
The recording signal is combined by the following formula‐
tions.

mt = σ(W im xt - 1 +Whmht - 1 + bm ) (6)

c͂t = tanh(W ic xt - 1 +Whcht - 1 + bc ) (7)

where mt is the recording signal which is similar to ft; c͂t is 
the abstract feature of the current input; W im, Whm, W ic, and 
Whc are all trainable coefficient matrices; and bm and bc are 
trainable bias matrices. Through the element-wise product of 
mt and c͂t, the information of background decays less and ir‐
relevant information are removed.

After that, ct remains the feature about the relationship be‐
tween the past and current inputs. However, the finite met‐
rics only retain finite information and the information from a 
long time ago will be covered. Therefore, through the func‐
tion of blue route which filters the information of ct, the in‐
formation has been kept in ht a long time before. In the ex‐
periment, the last ht is utilized to represent the global feature 
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Fig. 5.　Construction of LSTM cell.
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of the sample.
2)　CNN

Through the novelty detection for weekly consumption da‐
ta by OCSVM and observation of the consumption data in 
different weeks, the periodicity of electricity consumption 
for most customers can be proved. For example, the con‐
sumption data of weekends are usually higher than the con‐
sumption data of weekdays. In LSTM, the consumption data 
are handled in order, which will let the relation of value at 
interval ignored. Therefore, for extracting the periodicity of 
electricity usage, CNN is utilized. In this subsection, the dai‐
ly electricity consumption data are folded into 2-D shape. 
Through sliding convolution window, we can extract features 
about the relation of consumption data in convolution win‐
dow. The concrete CNN consists of five similar blocks, 
which are listed in Table II.

Table II lists all parameters of blocks in CNN where the 
C in parameter is the number of the channels. In this table, 
numbers mean the blocks where this layer exists. Two-di‐
mensional convolutional layer (Conv2d) exists in all blocks 
for extracting feature. In general, convolution kernel of (33) 
and (5,5) is conducive for the performance of network. Com‐

bined with the reality, the size of all convolutional kernel is 
(5,3) in the last Conv2d. Rectified linear unit (ReLU) follow‐
ing Conv2d increases the nonlinearity of network and pre‐
vents CNN from degenerating into MLP. Besides these parts, 
two-dimensional average pool layer (AvgPool2d) is utilized 
to adjust the shape of input and remains most information of 
input, which is beneficial to reduce the depth of network. 
Meanwhile, two-dimensional batch normalization layer 
(BatchNorm2d) is utilized to speed up the convergence rate.
3)　Fully Connected Layer

After the disposal of LSTM network and CNN network, 
we concatenate two 1-D vectors and generate prototypes by 
calculating the mean of features of each class. However, the 
length of prototype will be too long, which will increase the 
cost of time. In this case, the fully connected layer will be 
used to adjust the length of the prototype and the proportion 
of two features.

E. Framework of Proposed Algorithm

The framework of the proposed algorithm is shown in 
Fig. 6. Firstly, sampled from raw data, training dataset con‐
sists of all abnormal samples and the same number of nor‐
mal samples. After normalization, training data are divided 
into support set and query set. The samples in support set 
are utilized to construct the prototype of each class. The sam‐
ples in query set are utilized to test the performance of mod‐
el. After predicting the labels of samples in query set, all pre‐
dicted labels are used to guide the parameters of model up‐
date. In the test process, all test samples belong to query set 
and training samples belong to support set. Through finding 
out the nearest prototype in feature space, the labels of test 
samples are determined.

IV. RESULTS 

In this section, training process and parameter optimiza‐
tion will be narrated in detail. To demonstrate the perfor‐
mance of the proposed method, some experiments are set in‐
cluding parameter optimization, comparing experiment, sensi‐
tivity analysis of abnormal level, and ablation experiment. 
Besides these, three metrics including true positive rate 

(TPR), false positive rate (FPR), and area under curve 
(AUC) are chosen to evaluate the performance of the pro‐
posed method.

A. Electricity Consumption Data

According to the abnormal functions in Table I, we have a 
benign dataset and five abnormal datasets whose shapes are 
all 4225×536×48, where 4225, 536, and 48 represent the 

TABLE Ⅱ
PARAMETERS OF CONCRETE CNN

Layer

Conv2d

ReLU

AvgPool2d

BatchNorm2d

Parameter

(C, 3, 3) or (C, 5, 3)

0

0

0

Number

1, 2, 3, 4, 5

1, 2, 3, 4, 5

1

1, 3

Conv

block

Conv

block

with BN

Conv

block

Conv

block

Conv

block

with BN

Raw data

Max-min scaling

Support set Query set

LSTM LSTM LSTM

x1 x21x2

h21

Linear

Linear

Prototype

construction

Prediction

Convert distance

into probability
Loss calculation

Data preprocess

Back propagation

Parameter optimization

Feature embedding

Partial normal

samples

All abnormal

samples

Random sampling

…

Fig. 6.　Framework of proposed algorithm.
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number of customers, days and sampling number of one day, 
respectively. The training set, test set, and validation set will 
be sampled from benign dataset and five abnormal datasets. 
Firstly, 2760 customers’  indices are randomly chosen, in‐
cluding 1800 customers in training set, 480 customers in test 
set, and 480 customers in validation set. In the following 
step, the similar methods are conducted on three datasets. 
Taking the training set as an example, 1800 customers are 
randomly divided into six parts, where normal class ac‐
counts for half and each abnormal class accounts for 10% of 
all. Customers’  electricity consumption belonging to the cor‐
responding class is collected to assemble the training set. Ac‐
cording to this method, normal data and the corresponding 
abnormal data cannot be obtained from the network at the 
same time, which is more practical. Meanwhile, as the gener‐
alization of model needs to be proved, different customers’  
future electricity consumptions are tested and validated in 
this paper. In the following experiments, the ability of the 
proposed model for imbalanced datasets is seriously con‐
cerned. Therefore, only few parts of abnormal data in the 
training set will be utilized. Meanwhile, untrained balanced 
dataset will be used to test the proposed model.

B. Performance Metrics

In the experiment, three performance metrics, i. e., TPR, 
FPR, and AUC, are considered [37]. These metrics all de‐
pend on confusion metrics. These metrics will be introduced 
in detail as follows.

Table III presents confusion metric, which stores the total 
prediction.

According to this confusion, the following three metrics 
can be calculated, which is helpful for the calculation of 
AUC.

TPR =
TP

TP +FN
(8)

FPR =
FP

TN +FP
(9)

Diff = TPR -FPR (10)

where TPR indicates the ratio of true positive sample to all 
positive samples; and FPR indicates the ratio of false posi‐
tive samples to all predicted positive samples. In electricity 
theft detection, our purpose is to find out all abnormal data 
and avoid predicting normal sample as abnormal. If TPR is 
high and FPR is low, the classifier has good performance on 
the dataset. However, it is difficult to let these two indices 
come to ideal indirection at the same time. When an algo‐
rithm gives many positive predictions, the ratio of wrong 
prediction will inevitably rise. In this case, Diff is also con‐
sidered to evaluate the performance of our method.

However, even if two different methods obtain the same 
TPR and FPR, there are still differences between these two 
methods. For example, when model A gives a positive sam‐
ple with the positive probability of 0.9 and model B gives 
the same sample with the positive probability of 0.6, all 
models will give the sample with positive prediction. If a 
random sample which is never trained needs to be predicted, 
model B has less confidence to give a definite prediction, 
which also can be regarded as the alility of the model. There‐
fore, AUC is conducted to check the confidence of the pro‐
posed method. Compared with TPR and FPR, this index ac‐
counts for the score of a randomly chosen sample. In gener‐
al, an excellent method will give different scores for differ‐
ent classes, like the score closed to 0 for negative samples 
and the score closed to 1 for positive samples. Therefore, 
AUC can help us realize whether the method distinguishes 
the class of sample well. AUC is calculated by the mean of 
TPR for different thresholds from 0 to 1. Before AUC is cal‐
culated, a series of boundary i need to be set. When proba‐
bility of the sample is less than i, the model will give a posi‐
tive prediction to the sample. The following formulation is 
the expression of AUC:

AUC =
1
2 ∑

kÎ[1N]kÎ Z

é
ë
êêêêTPR (i = k

N ) + TPR (i = k - 1
N )ùûúúúú ×

é
ë
êêêêFPR (i = k

N ) -FPR (i = k - 1
N )ùûúúúú (11)

where TPR(i = k/N) and FPR(i = k/N) denote the values of 
TPR and FPR when the boundary is k/N, respectively; and N 
is the number of boundaries.

C. Parameter Optimization

Before the performance of the proposed method is com‐
pared with other methods, four comparing experiments are 
set to choose the best parameters. Due to the way of predic‐
tion which is based on the distance of feature space, we 
think that the number of prototype’s dimensions is more im‐
portant than other parameters such as batch size and learning 
rate. Therefore, four lengths of prototype’s dimension are 
tested, including 16, 32, 64, and 128. Because the proportion 
of each class is equal, accuracy is simply chosen as the met‐
ric to compare the performance of the network. Figure 7 
shows the performance of the network with different lengths 
of prototype.

According to Fig. 7, the TPR of test set fluctuates with 

TABLE Ⅲ
CONFUSION METRIC

Label

Positive

Negative

Prediction

Positive

TP

FP

Negative

FN

TN

16 32 64 128

Dimension of prototype

97.5

97.7

97.9

98.1

98.3

98.5

T
P
R

TPR

FPR

2.6

2.8

3.0

3.2

3.4

3.6

F
P
R

Fig. 7.　Performance of network with different lengths of prototype.
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the increasing dimension and reaches 98.22% when the pro‐
totype’s dimension is 128. Similar to TPR, FPR reaches the 
lowest value 2.67% when the number of prototype’s dimen‐
sion is 128. If the prototype’s dimension continues to in‐
crease, it will be similar to the length of raw data, which 
will waste time and lower the ability of feature embedding. 
Therefore, 128 is determined as the length of prototype’s di‐
mension.

D. Comparing Experiment

To verify the superiority of the proposed algorithm, other 
five classification methods which have been used for electric‐
ity theft detection are conducted on the given training set. 
These five methods and corresponding concrete parameters 
will be introduced in the following section.

1) SVM [12], [15], [38]: it is a typical supervised ma‐
chine learning which has been widely used in early research 
of electricity theft detection. Because the key of this method 
is to find out support vector which is constructed by a few 
samples closed to support vector, this method is not influ‐
enced by the amount of data.

2) RF [15]: this machine learning method is based on bag‐
ging, a type of ensemble learning. In this method, all weak 
classifiers are built in parallel. Through voting mechanism, 
the predictions of all weak classifiers are synthesized to de‐
termine the final prediction. Compared with single DT, RF 
trains many DTs with different subsets of training set, which 
ensures the discrepancy between DT models. Meanwhile, RF 
can set different weights to different classes to deal with the 
imbalance of dataset.

3) Adaboost [39]: Adaboost is a machine learning based 
on boosting, which is a type of ensemble learning. The dif‐
ference of Adaboost and RF is the generation method of the 
weak classifiers. In Adaboost, weak classifiers are built in se‐
quence. The weight of every classified sample is continuous‐
ly revised and put into the next weak classifiers for training. 
In the end, different weights are assigned to all weak classifi‐
ers depending on their accuracy.

4) CNN [1], [18], [19], [25]: a five-layer CNN block is 
designed as the compared model which is similar to the 
CNN component of the proposed method. Meanwhile, differ‐
ent weights according to the ratio of abnormal data to nor‐
mal data are given to samples.

5) Deep belief network (DBN): DBN is a probability gen‐
eration model which consists of multiple restricted 
Boltzmann machine (RBM) and fully connected layers. Due 
to the unsuitably initial parameters which will make model 
get stuck at locally optimal value, pre-training is conducted 
on the RBM to obtain great mapping function and lose little 
information in the process of mapping. This pre-training can 
be regarded as the fine adjustment of initial parameters. Af‐
ter the process of pre-training, the DBN is trained by back‐
ground propagation.

Table IV shows the concrete hyper-parameters of the com‐
pared methods. The hyper-parameters of SVM, RF, Ada‐
boost, and DBN refer to the existing research. The hyper-pa‐
rameter of CNN is the same as the CNN section of the pro‐

posed method. In general, the existing research deals with 
the imbalance of dataset by two methods, i.e., enlarging ab‐
normal datasets and giving different weights to different 
classes. In our experiments, the second method is utilized on 
CNN and RF. Abnormal data are given larger weights than 
normal data according to the ratio of abnormal data to nor‐
mal data.

As stated above, there are 900 normal customers in our 
training set. Meanwhile, different numbers of abnormal cus‐
tomers in training set are utilized to form the imbalanced 
set, which are 10%, 5%, 2.5%, and 1.25% the size of nor‐
mal data, respectively. For test section, the same balanced da‐
tasets are utilized to test all of the methods. The classifying 
result of all of the methods for different imbalanced datasets 
is shown in Table V.

Table V shows the TPR, FPR, Diff, and AUC of different 
methods when the imbalance of dataset is different. In this 
table, the previous four methods belong to statistics-based 
method while the last three methods are based on neural net‐
works. Comparing Diff of all of the methods, it can be 
found out that only the proposed method and CNN (weight) 
succeed in distinguishing the labels of most of samples cor‐
rectly when the ratio is 10%. The low TPR and FPR which 
are close to 0 indicate that many abnormal samples are mis‐
takenly judged as normal samples for the previous five meth‐
ods. However, when the probability that each sample be‐
longs to a certain class is calculated, there is a clear bound‐
ary between the abnormal samples and normal samples be‐
cause of high AUC. It may be due to that SVM, RF, and Ad‐
aboost are non-parameter methods, which seriously depend 
on the distribution of training samples. If the difference of 
abnormal samples and normal samples in training set is not 
obvious for machine learning, these methods fail to com‐
pletely distinguish samples in test set but to judge them as 
normal samples with lower probability than real normal sam‐
ples. As for DBN, although it has RBM and sigmoid activa‐
tion layer to obtain the features, its small capacity makes ex‐
tracting available feature and distinguishing samples diffi‐
cult. Therefore, it can be observed that the performance of 
the previous five methods becomes worse when the ratio re‐
duces. As a result, deep learning such as CNN (weight) and 

TABLE Ⅳ
CONCRETE HYPER-PARAMETERS OF COMPARED METHODS

Compared method

SVM [12], [15], 
[38]

RF [15]

RF (weight) [15]

Adaboost [39]

CNN (weight) [1], 
[18], [19], [25]

DBN

Hyper-parameter

Kernel is “RBF”, Gamma is “auto”, C = 1.0, and 
weight is the rate of abnormal data and normal data

The number of estimators is 40, criterion is “entro‐
py”, and random_state = 0

Weight is the same with SVM, and other hyper-
parameters are the same with RF

n_estimator = 100, learning_rate = 0.06, classifier
 is “DT”

Weight is the same with SVM, and Epoch is 100

The number of RBM is 3, and the number of
 neurons in each RBM is [33613832]
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the proposed method can deal with imbalanced dataset. The 
proposed method achieves better performance than CNN 
(weight). Due to the batch ensemble learning, only balanced 
subsets of training set are feed into the network at each ep‐
och of training. In this case, balanced abstract feature is uti‐
lized by the proposed method to optimize its parameters. On 

the contrary, large amounts of features from normal features 
and little features from abnormal features are obtained by 
CNN (weight), which result in the overfitting of the prefer‐
ence for normal data. This also can be reflected from Table 
V, where Diff between CNN (weight) and the proposed meth‐
od becomes larger when the ratio is reduced.

E. Sensitivity Analysis of Abnormal Level

In this experiment, the ability of dealing with the samples 
which are difficult to be detected is tested. Compared with 
class 3, class 4, and class 5, the abnormal levels of class 1 
and class 2 are mutable for the different values of coeffi‐
cients α and β. As shown in Fig. 3, while α is close to 0, 
there is less similarity between normal data and abnormal da‐
ta of class 1. While β is close to 24, more data are set to be 
0, which makes samples lose more important features like 
max electricity consumption. In general, these data are easier 
to be recognized as abnormal data by the network. Mean‐
while, if α is close to 0.7 and β is close to 8, it is difficult to 
extract key feature and recognize abnormal pattern. There‐
fore, different groups of α and β are utilized to construct ab‐
normal data. The concrete values of α and β are listed in Ta‐
ble VI.

Because α and β are set as research objects, the classes of 
abnormal data in our training set are only class 1 and class 2 
which account for 50%, respectively. Meanwhile, the classes 
of abnormal data in the validation set and test set are the 
same with the training set. Besides, the ratio of abnormal da‐
ta to normal data is 10% in the training set. According to 
twelve groups’  experiment, the result is shown in Fig. 8. 
Figure 8 shows AUC and Diff for different groups of α and 
β. These bars represent AUC of the proposed method. With 
α increasing from 0.1 to 0.7, the difference of the proposed 
method all drops no matter how much β is. It may be due to 
the slight differences between abnormal samples and normal 
samples when raw electricity consumption is low. However, 
no matter what value β is, Diff and AUC do not change 
greatly when α is constant. Compared with the influence of 
β on electricity theft detection, α is a more challenging fac‐
tor. It is obvious that Diff will reduce when α increases. Ac‐
cording to the contrast of these two factors, we can conclude 

that the proposed method has great robustness for different β.
To verify the good performance of the proposed method, 

CNN (weight) is chosen to conduct partial experiment. (α=
0.1, β = 24), (α= 0.5, β = 16), and (α= 0.7, β = 8) represent 
three abnormal levels. For abnormal data at these three lev‐
els, the performance of CNN (weight) and the proposed 
method is shown in Table VII.

TABLE Ⅴ
CLASSIFYING RESULT OF ALL METHODS FOR DIFFERENT IMBALANCED DATASETS

Method

SVM

RF

RF 
(weight)

Adaboost

DBN

CNN 
(weight)

Proposed

Ratio of abnormal data to 
normal data is 10%

TPR 
(%)

36.82

66.41

61.09

7.67

51.85

91.91

96.32

FPR 
(%)

0.58

0.35

0.26

0.13

1.13

4.94

2.52

Diff 
(%)

36.24

66.06

60.83

7.54

50.72

86.97

93.80

AUC

0.8491

0.9788

0.9792

0.9202

0.8453

0.9803

0.9837

Ratio of abnormal data to 
normal data is 5%

TPR 
(%)

28.17

51.78

40.78

3.76

46.60

84.76

92.80

FPR 
(%)

0.27

0.07

0.06

0

0.76

4.10

2.34

Diff 
(%)

27.90

51.71

40.72

3.76

45.84

80.66

90.47

AUC

0.8598

0.9671

0.9681

0.8999

0.8135

0.9665

0.9709

Ratio of abnormal data to 
normal data is 2.50%

TPR 
(%)

13.33

36.94

26.01

0.31

0

83.55

94.97

FPR 
(%)

0.08

0.12

0.05

0.01

0

5.50

5.20

Diff 
(%)

13.25

36.82

25.96

0.30

0

78.05

89.76

AUC

0.8491

0.9336

0.9338

0.9254

0.5457

0.9672

0.9654

Ratio of abnormal data to 
normal data is 1.25%

TPR 
(%)

9.97

16.00

9.16

0

0

79.89

95.50

FPR 
(%)

0.15

0.10

0.09

0

0

10.64

10.34

Diff 
(%)

9.82

15.90

9.07

0

0

69.25

85.16

AUC

0.8367

0.8879

0.9056

0.8729

0.5342

0.9253

0.9405

TABLE Ⅵ
VALUES OF α AND β

Parameter

α

β

Value

{0.10.30.50.7}

{81624}

0.1 0.3 0.5 0.7
α

0.80

0.85

0.90

0.95

1.00

A
U
C

AUC, β=8; AUC, β=16; AUC, β=24

Diff, β=8; Diff, β=16; Diff, β=24

50

60

70

80

90

100

D
if
f

Fig. 8.　AUC and Diff for different groups of α and β.

TABLE Ⅶ
PERFORMANCE OF CNN (WEHGHT) AND PROPOSED METHOD FOR 

ABNORMAL DATA AT THREE LEVELS

Method

CNN (weight)

Proposed

(α = 0.1, β= 24)

Diff (%)

96.80

98.17

AUC

0.9988

0.9938

(α = 0.5, β= 16)

Diff (%)

68.92

73.12

AUC

0.9220

0.9286

(α = 0.7, β= 8)

Diff (%)

41.10

54.73

AUC

0.7806

0.8394
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When the abnormal level is reduced from (α= 0.1, β = 24) 
to (α= 0.5, β = 16), Diff of CNN (weight) decreases by 
27.78%, which is about 1.1 times the reduction of the pro‐
posed method. When the abnormal level is reduced from (α=
0.5, β = 16) to (α= 0.7, β = 8), Diff of the proposed method is 
1.51 times that of CNN (weight). Meanwhile, AUC of CNN 
(weight) also drops violently. While AUC of the proposed 
method fluctuates only 0.15, AUC of CNN (weight) drops 
by 0.21. When the similarity between abnormal samples 
and normal samples increases, the performance of CNN 
(weight) deteriorates faster than the proposed method. 
Therefore, it is concluded that the proposed method has 
greater robustness in dealing with abnormal data at low ab‐
normal level.

F. Ablation Study

In this experiment, the function of prototype learning and 
batch ensemble learning in improving the performance of 
electricity theft detection will be tested when the imbalance 
of dataset is violent. There are three models in this experi‐
ment including CNN + LSTM, CNN + LSTM + Ensemble, 
and the proposed model. To avoid the influence of irrelevant 
variables, the used datasets including training dataset, valida‐
tion dataset and test dataset are the same. While the ratio of 
abnormal data to normal data becomes less, the performance 
of every model becomes worse. Therefore, to highlight the 
function of models, only 2.5% abnormal data of normal data 
are utilized to train the model.

Table VIII shows Diff and AUC of different models when 
the ratio of abnormal data to normal data is 2.5%. The 
CNN + LSTM is set as basic model which obtains the lowest 
Diff and AUC. With the addition of batch ensemble learning, 
there are 24.55% growth on Diff and 0.062 growth on AUC. 
Due to the balanced subsets trained in the training process 
of basic model, the overfitting of model can be ameliorated. 
However, with the training process going on, overfitting fi‐
nally happens because all normal samples have been fed into 
the network. With the addition of prototype learning, Diff in‐
creases to 89.76% while AUC decreases to 0.9654. It is at‐
tributed to the method of utilizing feature. Basic model pre‐
fers to extract the relevant feature to determine the labels of 
samples. On the contrary, prototype learning utilizes the 
thought of cluster to make samples belonging to the same 
class locate in the same position of feature space. In this pro‐
cess, some weak relevant features will be utilized by basic 
model to predict more samples correctly, which weakens the 
generation of the model. Prototype learning pays more atten‐
tion on the similarity of feature instead of partial informa‐
tion.

V. CONCLUSION

In this paper, an electricity theft detection method based 
on ensemble learning and prototype learning is proposed, 
which has great performance on imbalanced dataset. Accord‐
ing to feature embedding, the abstract feature of every sam‐
ple is obtained to construct the prototype of each class. After 
that, the label of each sample is determined by searching the 
nearest prototype in feature space. In the training process, 
through extracting the balanced dataset from the total train‐
ing set, the preference of the model is restrained and the gen‐
eration of the model improves. To verify the performance of 
the proposed method on imbalanced dataset, some experi‐
ments including parameter optimization, comparing experi‐
ment, sensitivity analysis of abnormal level, and ablation 
study are conducted. Compared with mainstream ensemble 
learning and deep learning, the proposed method reflects the 
strongest ability of classification. When the abnormal level 
of abnormal data decreases, there is less impact on the pro‐
posed method while another model loses the ability of classi‐
fication. Although the proposed method has great perfor‐
mance, there are also disadvantages such as the instability of 
training process compared with CNN. In our analysis, if we 
can obtain consumption data which come from customers 
with the same occupations, the proposed method can get bet‐
ter result using fewer abnormal data. In our opinion, the elec‐
tricity theft detection should point to imbalanced dataset and 
how to combine the data from different sources such as oc‐
cupation and permanent resident population to improve the 
detection model.
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