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Distributed Robust Optimal Dispatch of Regional 
Integrated Energy Systems Based on ADMM 

Algorithm with Adaptive Step Size
Zhoujun Ma, Yizhou Zhou, Yuping Zheng, Li Yang, and Zhinong Wei

Abstract——This paper proposes a distributed robust optimal 
dispatch model to enhance information security and interaction 
among the operators in the regional integrated energy system 
(RIES). Our model regards the distribution network and each 
energy hub (EH) as independent operators and employs robust 
optimization to improve operational security caused by wind 
and photovoltaic (PV) power output uncertainties, with only de‐
terministic information exchanged across boundaries. This pa‐
per also adopts the alternating direction method of multipliers 
(ADMM) algorithm to facilitate secure information interaction 
among multiple RIES operators, maximizing the benefit for 
each subject. Furthermore, the traditional ADMM algorithm 
with fixed step size is modified to be adaptive, addressing issues 
of redundant interactions caused by suboptimal initial step size 
settings. A case study validates the effectiveness of the proposed 
model, demonstrating the superiority of the ADMM algorithm 
with adaptive step size and the economic benefits of the distrib‐
uted robust optimal dispatch model over the distributed stochas‐
tic optimal dispatch model.

Index Terms——Regional integrated energy system (RIES), dis‐
tributed optimization, robust optimization, operation security, 
energy hub (EH).

I. INTRODUCTION 

WITH escalating energy demands and pressing environ‐
mental challenges, research on integrated energy sys‐

tems (IESs) has gained prominence [1]. IES can potentially 
overcome the limitations of independent operation among di‐
verse energy systems, significantly enhancing energy effi‐
ciency and facilitating the integration of renewable energy 
sources (RESs) into the grid [2], [3]. Regional integrated en‐
ergy systems (RIESs) are rapidly advancing in countries 

such as the United States [4], [5], Europe [6], and China [7], 
with several ongoing projects. Unlike IESs for the transmis‐
sion network, RIES features the energy hub (EH) as the cou‐
pler for energy production, storage, conversion, and distribu‐
tion.

With the large-scale integration of RESs and distributed 
energy sources such as distributed energy storage into the 
grid, the architecture and operation of RIESs are growing in‐
creasingly complex. Consequently, centralized dispatch sys‐
tems introduce vulnerabilities in safeguarding operators’  in‐
formation privacy due to their high communication de‐
mands. Therefore, the security and stability of RIES’  opera‐
tion are not guaranteed. Moreover, the centralized dispatch 
amplifies operational uncertainties stemming from variations 
in wind and photovoltaic (PV) power outputs across the en‐
tire system, transforming local risks into global ones and un‐
dermining the original objective of achieving efficient and 
stable RIES operation.

Determining a suitable distributed algorithm that addresses 
information security concerns among operators and mitigates 
uncertainty caused by fluctuations in the wind and PV pow‐
er outputs is crucial, which represents the primary focus of 
our research.

Uncertainties within RIES primarily arise from distributed 
clean energy outputs [8]-[10], electricity/gas/heat load fluctu‐
ations [11]-[13], and energy prices [14]. These uncertainties 
are tackled using robust optimization [15], [16], stochastic 
optimization [17], [18], and chance-constrained optimization 
[19]. Reference [20] developed an optimization model for 
RIES, encompassing power supply, heating, and cooling con‐
sidering energy price responsiveness, and reducing optimiz‐
ing cost while minimizing environmental impact. In addition 
to demand response, [21] considered the influence of carbon 
abatement costs on RIES operation, while [22] proposed a 
mixed-integer linear optimization model to simulate an inte‐
grated power and heating system with renewable energy inte‐
gration. Their findings highlighted the effectiveness of elec‐
tric boilers (EBs) in mitigating wind power curtailment. For 
the RIES featuring an EH as the coupler, [23] proposed a re‐
gional integrated energy system security region (RIESSR) 
model based on the N-1 security guideline. Reference [24] 
developed an economic dispatch model for RIES, incorporat‐
ing the ladder carbon trading mechanism and the fruit fly op‐
timization algorithm (FOA) to obtain optimized EH opera‐
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tion strategies. Reference [25] designed a distributed robust 
optimization model for the resilient operation of the integrat‐
ed electricity and heat energy distribution systems under ex‐
treme weather conditions. Reference [26] implemented the 
column-and-constraint generation (CCG) method to solve the 
two-stage robust model to advance the accommodation of re‐
newable energy.

IES transcends the limitations of single energy sources 
and features the coupling of various energy systems using 
the coupler. While most existing research on IES operational 
models focuses on centralized dispatch [27], practical IES 
deployments involve multiple stakeholders or operators [28]. 
Reference [29] introduced a distributed optimization ap‐
proach based on neurodynamics to facilitate the incorpora‐
tion of intermittent renewable sources. Reference [30] devel‐
oped a Stackelberg model with the IES operator as the lead‐
er and prosumers as the followers, respectively, guiding the 
merging of the energy sharing economy and IES. Reference 
[31] explored the integrated electricity and hydrogen energy 
sharing mechanism and utilized distributed optimization tech‐
niques to solve the model. Among the various distributed op‐
timization algorithms, the alternating direction method of 
multipliers (ADMM) algorithm finds frequent applications 
[32]-[35]. Reference [32] utilized the ADMM algorithm with 
the RIES operator as an intermediary to facilitate energy 
sharing between the multi-energy complementary microgrids 
(MECMs) and the main grid. In addition, their study demon‐
strated the effectiveness of the ADMM in the distributed op‐
timization of energy sharing while preserving the interests 
and privacy of the MECM operators within the electricity 
market. Reference [33] investigated the decentralized de‐
mand management, casting users as central players in the in‐
dustrial park, and compared it with a centralized approach. 
Reference [34] examined a two-stage robust model for multi-
regional integrated electricity-gas systems. After convexifica‐
tion with linearization, this model efficiently addressed the 
locational marginal price (LMP) based market clearing issue. 
Reference [35] introduced a two-stage distributionally robust 
optimization model, with high solution efficiency and low 
decision-making conservatism. Reference [36] presented a 
tri-level data-driven hybrid approach, amalgamating the 
strengths of stochastic and robust optimization.

Although optimization operations of RIESs have substan‐
tially progressed, several significant shortcomings in this do‐
main exist. First, the predominant research focus of RIES op‐
eration is on centralized dispatch, with distributed dispatch 
occasionally considered, albeit primarily from a disparate re‐
gional or user-centric perspective. However, the distributed 
operation of RIESs and EHs remains underexplored. Second, 
most studies consider the operational uncertainties of the 
wind and PV power outputs of RIESs from the overall per‐
spective overlooking local level uncertainties. Finally, the 
ADMM algorithm is often applied in distributed optimiza‐
tion research [37]; however, challenges such as suboptimal 
initial iteration step size settings continue to impede compu‐
tational efficiency.

Therefore, we propose an optimal dispatch model for the 
RIES, where energy sources encompassing electricity, gas, 

and heating are integrated, while the distribution network 
and EHs operate independently for distributed operations. 
The main contributions of this paper are as follows:

1) A distributed robust optimal dispatch model for RIESs 
is proposed, where the distribution network and EHs operate 
autonomously, optimizing dispatch and decision-making 
without compromising the system’s overall integrity while 
preserving operator privacy.

2) The ADMM algorithm is optimized by substituting the 
fixed step size with an adaptive one, reducing iteration 
counts and the computation time. This approach mitigates 
the impact of arbitrary step size settings on computational ef‐
ficiency.

The remainder of this paper is organized as follows. Sec‐
tion II presents the stochastic optimal dispatch model of 
RIESs. Section III proposes the distributed robust optimal 
dispatch model of RIESs. Section IV illustrates and discuss‐
es numerical simulation results from a case study. Section V 
outlines the findings of this paper.

II. STOCHASTIC OPTIMAL DISPATCH MODEL OF RIESS 

This section presents a stochastic optimal dispatch model 
of RIESs that considers the uncertainty of renewable energy 
output.

A. Objective

We construct a centralized optimization model for the EH 
and electricity-gas-heat IES to minimize the day-ahead dis‐
patch cost of the system. The cost encompasses expenses re‐
lated to electricity and gas procurement, penalties associated 
with wind and PV power curtailment, and costs of pollutant 
emissions. The objective function is expressed as:

min∑
s

ρs

ì
í
î
∑

t
(Cbuyt P

s
buyt +Cgast F

st
Sm + )CpvtDP s

pvt +CwtDP s
wt +

  ∑
t
∑

k
∑

b
[ P st

ebkQ
st
ebb( )Vebb + Yebb +

}ùûúúúúHgas F st
htgkQ

st
chpb( )Vchpb + Ychpb (1)

where s denotes the scenario number; t represents the time 
period number; k is the EH number; ρs is the probability of 
each scenario; Cbuyt and Cgast are the unit electricity and gas 
purchase costs, respectively; P s

buyt is the active power pur‐
chased from the grid; F st

Sm is the gas supply at the gas 
source; Cpvt and Cwt are the penalty costs of PV and wind 
power curtailments, respectively; DP s

pvt and DP s
wt are the PV 

and wind power curtailments, respectively; Hgas is the calorif‐
ic value of natural gas; F st

htgk is the natural gas flow con‐
sumed by combined heat and power (CHP) unit; P st

ebk is the 
electric power consumed by EBs; Qst

chpb and Qst
ebb are the 

emissions of the bth pollutant of the CHP unit and EB, re‐
spectively; Vchpb and Ychpb are the environmental value and 
penalty of the bth pollutant of the CHP unit, respectively; 
and Vebb and Yebb are the environmental value and penalty 
of the bth pollutant of the EB, respectively.

B. Power Distribution Network (PDN) Operation Constraints

We establish the PDN with a radial topology, employing 
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the linear Dist-Flow model [38] as:

P s
ijt =∑

rÎ j

P s
jrt -P st

jL +P t
ethi +P s

buyt (2)

Qs
ijt =∑

rÎ j

Qs
jrt +Qst

jMT -Qst
jL +Qs

buyt (3)

U s
it -U s

jt = ( )P s
ijtrij +Qs

ijt xij U s
0t (4)

P min
buy £P s

buyt £P max
buy (5)

U min £U s
it £U max (6)

P min
ij £P s

ijt £P max
ij (7)

Qmin
ij £Qs

ijt £Qmax
ij (8)

where P s
ijt and Qs

ijt are the active and reactive transmission 
power from node i to j, respectively; P st

jL and P t
ethi are the 

load power and EH interaction power, respectively, where 
the information on EH interaction power is deterministic and 
does not incorporate the scenario dimension in this paper; 
Qst

jMT is the reactive power of micro-turbines; Qst
jL and Qs

buyt 
are the load power at node j and the reactive power pur‐
chased from the upper grid, respectively; U s

it and U s
0t are the 

voltage and reference voltage, respectively; rij and xij are the 
resistance and reactance of transmission line (i, j), respetcive‐
ly; P max

buy  and P min
buy  are the upper and lower limits of the elec‐

tric power, respectively; U max and U min are the upper and 
lower limits of the nodal voltage amplitude, respectively; 
P max

ij  and P min
ij  are the upper and lower limits of the active 

transmission power of transmission line (i, j), respectively; 
and Qmax

ij  and Qmin
ij  are the upper and lower limits of the reac‐

tive transmission power of transmission line (i, j), respective‐
ly.

Constraints (2) and (3) represent the nodal active and reac‐
tive power balances, respectively. Constraint (4) denotes the 
nodal voltage drop equation. Constraint (5) sets the upper 
and lower limit of the power purchased from the upper grid, 
while constraint (6) represents that of the nodal voltage am‐
plitude. Finally, constraints (7) and (8) signify the transmis‐
sion power of transmission line.

C. Gas Distribution Network (GDN) Operation Constraints

Similar to the PDN, the GDN adheres to the topological 
principles, characterized by its radial, branching, or mesh 
structure during design and construction. The GDN model 
can be expressed as [39]:

F st
Sm -F t

gthm =∑
nÎm

F s
mnt (9)

(F s
mnt ) 2

=C 2
mn(Π s

mt -Π
s
nt ) (10)

Π min
m £Π s

mt £Π
max
m (11)

F min
S £F st

Sm £F max
S (12)

F min
ramp £F st

Sm -F st - 1
Sm £F max

ramp (13)

where F t
gthm is the deterministic natural gas consumption of 

the CHP unit; F s
mnt is the pipe flow of pipeline mn; Cmn is 

the Wey-mouth constant of pipeline mn; Π s
mt is the square of 

the nodal air pressure; Π max
m  and Π min

m  are the upper and low‐

er limits for the square of nodal air pressure, respectively; 
F max

S  and F min
S  are the upper and lower limits of the gas sup‐

ply at the gas source, respectively; and F max
ramp and F min

ramp are 
the upper and lower limits of the ramp rate at the gas 
source, respectively.

Constraint (9) represents the nodal flow balance. Con‐
straint (10) depicts the relationship between pipe flow and 
nodal air pressure at both ends. Constraint (11) represents 
the upper and lower limits of the square of the nodal air 
pressure, while constraint (12) represents that of the gas sup‐
ply at the gas source. Constraint (13) governs the ramp rate 
at the gas source.

The non-convex relationship between pipe flow and nodal 
air pressure (constraint (10)) can be convexified using sec‐
ond-order cone (SOC) relaxation, resulting in constraint 
(14), whose standard representation is illustrated in con‐
straint (15). The relaxation of the non-convex constraint into 
a convex one facilitates determining the global optimal solu‐
tion and enhances solution efficiency.
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£C 2
mn(Π s

mt -Π
s
nt ) Þ (2F s

mnt Cmn ) 2

+

(Π s
mt -Π

s
nt - 1) 2

£ (Π s
mt -Π

s
nt + 1) 2

(14)









 







2F s

mnt Cmn

Π s
mt -Π

s
nt - 1

£Π s
mt -Π

s
nt + 1 (15)

D. Thermal Distribution Network (TDN) Operation Con‐
straint

The TDN model is non-linear and non-convex, which is 
difficult to solve. Consequently, we adopt the widely used 
quality regulation model to characterize the TDN [40]. This 
model comprises the pipeline loss constraint (16), the nodal 
flow balance constraint (17), the nodal power balance con‐
straint (18), the nodal temperature constraint (19), the user 
power constraint (20), and the heat source power con‐
straint (21).

T st
edv = (T st

stu - T s
at )e

-
Luv

Rcρfuv + T s
at

(16)

∑
uÎ v

f s
uv =∑

wÎ v

f s
vw (17)

∑
uÎ v

T st
edv f s

uv = T st
stv∑

wÎ v

f s
vw (18)

T st
stv = T s

vt (19)

H s
lt = cρηf s

l (T s
LSt - T s

LRt ) (20)

H s
St = cρηf s

S (T s
HSt - T s

HRt ) (21)

where u, v, and w denote the TDN node numbers; T st
stu and 

T st
edv are the temperatures of the pipeline uv at its start and 

end, respectively; T s
at and T s

vt are the ambient and node tem‐
peratures, respectively; f s

uv, f s
l , and f s

S  are the pipe flows of 
the pipeline, load, and heat source, respectively; R is the spe‐
cific thermal resistance of the pipeline; c is the specific heat 
capacity of water; ρ is the density of water; Luv is the pipe 
length; η is the efficiency of the heat exchanger; H s

lt and H s
St 

are the power of the load and heat source, respectively; T s
LSt 
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and T s
LRt are the supply and return water temperatures of the 

load, respectively; and T s
HSt and T s

HRt are the supply and re‐
turn water temperatures of the heat source, respectively.

The TDN model must adhere to the constraints of node 
temperature (22), supply and return water temperatures of 
the load (23) and (25), and supply and return water tempera‐
tures of the heat source (24) and (26) during the operation.

T min
vt £ T s

vt £ T max
vt (22)

T min
LSt £ T s

LSt £ T max
LSt (23)

T min
HSt £ T s

HSt £ T max
HSt (24)

T min
LRt £ T s

LRt £ T max
LRt (25)

T min
HRt £ T s

HRt £ T max
HRt (26)

where T max
vt  and T min

vt  are the upper and lower limits of the 
node temperature, respectively; T max

LSt  and T min
LSt are the upper 

and lower limits of the supply water temperature of the load, 
respectively; T max

HSt and T min
HSt are the upper and lower limits of 

the return water temperature of the heat source, respectively; 
T max

LRt  and T min
LRt are the upper and lower limits of the return 

water temperature of the load, respectively; and T max
HRt and 

T min
HRt are the upper and lower limits of the return water tem‐

perature of the heat source, respectively.

E. EH Operation Constraints

The integration of PDN, GDN, and TDN should be con‐
sidered in the electricity-gas-heat IES, therefore, we use the 
EH as the node for modeling. The EH is a coupled compo‐
nent with various energy inputs and outputs, encompassing 
electricity, heating, gas, and other energy sources through en‐
ergy conversion and storage processes. The operation of the 
EH-based IES shown in Fig. 1 showcases diverse energy 
conversion pathways within the EH. In addition, with the 
given load, the operation of the EH can be optimized by ad‐
justing the internal dispatch variables and energy inputs. 
Therefore, leveraging the EH model for energy coupling pro‐
vides enhanced optimization opportunities and greater flexi‐
bility in multi-energy operations.

The electricity-gas-heat IES establishes connections be‐
tween the PDN, GDN, and TDN through EH. The structure 
of the EH is shown in Fig. 2, which consists of RES, CHP 
unit, EB, electric energy storage (EES), and thermal energy 
storage (TES). The electric and gas power is on the input 
side, while the electric and heat power is on the output 

side.

CHP unit generates electric energy by utilizing natural 
gas, which is transformed into heat energy limited by gas 
power constraints (27)-(30). Constraint (29) represents climb‐
ing constraint of the CHP unit, indicating its ability support‐
ing rapid changes. EBs convert electric energy into heat ener‐
gy. The electro-heat conversion equation of EBs is presented 
in (31), and electric power consumption constraints of EBs 
are denoted in (32) and (33). During the EES operation, the 
equations of power balance and the constraints of energy 
storage capacity, charging power, and discharging power are 
illustrated in (34)-(38), while those during the TES operation 
are illustrated in (39)-(43).

P st
chpke = ηchpke Hgas F st
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ek =E st - 1

ek + ( )P st - 1
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ek - P st - 1
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0 £P st
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0 £P st
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kch ηch

hk - H st - 1
kdis ηdis

hk Dt (39)

E st = 0
hk =E st = T

hk (40)

E min
hk £E st

hk £E max
hk (41)

0 £H st
kch £H max

kch (42)

0 £H st
kdis £H max

kdis (43)

where ηchpke and ηchpkh are the efficiencies of CHP units 
that convert natural gas to electric and heat power, respec‐
tively; P st

chpke and H st
chpkh are the electric and heat power gen‐

erated by CHP units, respectively; Ru
chpt and Rd

chpt are the up‐
per and lower limits of the ramp rate of CHP units, respec‐
tively; F max

htgk and F min
htgk are the upper and lower limits of gas 
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Fig. 1.　Operation of EH-based IES.
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power consumption, respectively; ηebk is the conversion effi‐
ciency of EB; H st

ebk is the heat power of EB; Ru
ebt and Rd

ebt 
are the upper and lower limits of the ramp rate of CHP 
units, respectively; P max

ebk and P min
ebk are the upper and lower 

limits of electric power consumption, respectively; E st
ek, 

E st = 0
ek , and E st = T

ek  are the EES capacities in the period t, ini‐
tial period, and end period, respectively; E max

ek  and E min
ek  are 

the upper and lower limits of EES capacity, respectively; ηch
ek 

and ηdis
ek are the charging and discharging efficiencies of 

EES, respectively; P st
kch and P st

kdis are the charging and dis‐
charging power of EES, respectively; P max

kch and P max
kdis are the 

upper limits of the charging and discharging power of EES, 
respectively; E st

hk, E st = 0
hk , and E st = T

hk  are the TES capacities in 
the period t, initial period, and end period, respectively; E max

hk  
and E min

hk  are the upper and lower limits of TES capacity, re‐
spectively; ηch

hk and ηdis
hk are the charging and discharging effi‐

ciencies of TES, respectively; H st
kch and H st

kdis are the charg‐
ing and discharging power of TES, respectively; and H max

kch  
and H max

kdis are the upper limits of charging and discharging 
power of TES, respectively.

Constraints (44) and (45) correspond to the electric energy 
balance equation and heat energy balance equation during 
the operation of EH.

P st
PVk +P st

WTk +P st
chpke -P st

kch +P st
kdis -P st

ebk =P t
htek (44)

H st
chpkh +H st

ebk -H st
kch +H st

kdis    =H t
hthk (45)

where P st
PVk and P st

WTk are the generated PV power and wind 
power in the EH, respectively; and P t

htek and H t
hthk are the de‐

terministic interactive power between the EH and PDN and 
between the EH and TDN, respectively.

III. DISTRIBUTED ROBUST OPTIMAL DISPATCH MODEL OF 
RIESS 

A. ADMM Algorithm with Adaptive Step Size

The concept of ADMM algorithm was first proposed in 
[41] and was systematically developed into a comprehensive 
theory in the mid-1990s. The ADMM algorithm, employing 
decomposition coordination, offers an effective solution for 
distributed convex optimization problems by combining dual 
decomposition and the augmented Lagrangian method in con‐
straint optimization. ADMM algorithm also coordinates the 
solutions of the local problems to yield that of the global 
problem [42]. ADMM algorithm is widely implemented in 
various domains, including engineering design, multi-period 
investment portfolio optimization, and time series analysis 
and dispatch. Due to its strong robustness and convergence, 
ADMM algorithm is well suited for solving complex prob‐
lems such as constraint (46).

ì
í
î

min ( )f ( )x + g ( )z

s.t.   Ax +Bz = c
(46)

where f ( )x  and g ( )z  are the objective functions of two dif‐
ferent subproblems; AÎRp ´ n, BÎRp ´m, and cÎRp are the 
coupling coefficient matrices between the variables; and 
xÎRn and zÎRm are the coupling variables between the 
two subproblems.

The ADMM algorithm allows the incorporation of the cou‐
pling variable constraints to the objective function (46) to ac‐

quire its augmented Lagrangian function:

Lρ( )xzλ = f ( )x +g ( )z +λT( )Ax+Bz-c +   
ρ
2
 Ax+Bz-c

2

(47)

where Lρ( )xzλ  is the augmented Lagrangian function; λT is 

the dual variable; and ρ is the step size, ρ > 0.
Iterative solutions of two RIESs in different regions are 

detailed as:

xα + 1 = arg min
x

Lρ( )xzαλα (48)

zα + 1 = arg min
z

Lρ( )xα + 1zλα (49)

λα + 1 = λα + ρ ( )Axα + 1 +Bzα + 1 - c (50)

where α is the iteration number; xα + 1 and zα + 1 are the cou‐
pling variables obtained after the (α+ 1)th iteration; and λα + 1 
is the dual variable obtained after the (α+ 1)th iteration.

Optimization utilizing the standard ADMM algorithm in‐
volves an iterative process between two regions performed 
alternately in a predetermined orders 1-4, as shown in Fig. 
3. The updated optimization value of Region 1 is substituted 
into Region 2 to obtain the optimization solution. Once all 
regions have undergone this optimization process, global iter‐
ation variables are updated and broadcast via the coordina‐
tion center.

The iteration process terminates when the original and du‐
al residuals are below the minimal value, denoted as:

ì
í
î

ïï

ïïïï

 rα + 1

2
£ εpri

 sα + 1

2
£ εdual

(51)

ì
í
î

ïï
ïï

rα + 1 =Axα + 1 +Bzα + 1 - c

sα + 1 = ρAT B ( )zα + 1 - zα
(52)

where rα + 1 and sα + 1 are the values of the original and dual 
residuals after the (α+ 1)th iteration, respectively; and εpri and 
εdual are the upper tolerance limits of the original and dual re‐
siduals, respectively.

The choice of step size significantly impacts the calcula‐
tion speed of the ADMM algorithm, thus the ADMM algo‐

Coordination center

1

Region 1 Region 2

Update xα+1

Coordination center

2

Region 1 Region 2

Update zα+1

xα+1

Coordination center

3

Region 1 Region 2

Update λα+1
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4

Region 1 Region 2

xα+1 zα+1 λα+1 λα+1

Fig. 3.　Optimization of two regions with standard ADMM algorithm.
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rithm with adaptive step size is adopted in this paper. It can 
automatically update the step size based on the relative rela‐
tionship between the original and dual residuals, as shown in 
(53). This approach enhances the convergence speed at the 
start of the iteration and mitigates oscillation toward the end, 
subsequently resulting in significant improvements in calcula‐
tion speed.

ρα + 1 =

ì

í

î

ï
ïï
ï

ï
ïï
ï

τ incr ρα  rα
2
> μ sα

2

ρα τdecr  sα
2
> μ rα

2

ρα otherwise

(53)

where μ > 1 is the proportional coefficient between the origi‐
nal and dual residuals; and τ incr > 1 and τdecr > 1 are the accel‐
eration and deceleration factors, respectively, which are used 
to increase and decrease the step size during the iteration. 
When the original residual increases, the step size is adjust‐
ed to modify the relationship between the coupling variables 
x and z, which will expedite the convergence of the original 
residual. When the dual residual increases, the step size is re‐
duced to expedite the convergence of z and diminish the os‐
cillation of the objective function.

B. Distributed Optimization Mechanism of RIESs

Although the PDN, GDN, and TDN largely maintain inde‐
pendent operation, notable progress is being made in some 
domains [43]. Referring to energy station operators of park 
type and layer scheduling departments of regional distribu‐
tion network, this paper considers each EH and RIES opera‐
tor as a separate entity.

The distributed optimization framework of the electricity-
gas-heat IES with multiple EHs is depicted in Fig. 4. First, 
the optimization model for IES and EH is developed to mini‐
mize the system operation cost. The RIES operator manages 
the PDN, GDN, and TDN, while EH operators manage their 
respective EHs. It should be noted that the resolution of un‐
certainty for each subject occurs internally, and the energy 
flow information between the RIES and EHs is determinis‐
tic, devoid of scenario information.

Constraints (54)-(56) must be satisfied to achieve the dis‐
tributed optimal operation of EHs in the IES. Constraint (54) 
represents that the interactive electric power injected in the 
PDN P st

ethk is equal to that exported from the EH P st
htek. Con‐

straint (55) represents that the interactive heat power inject‐
ed in the TDN H s

St is equal to that exported from the EH 
H st

hthk. Constraint (55) denotes that the interactive gas power 

exported from the TDN F st
gthk is equal to that injected in the 

EH F st
htgk.

P st
ethk =P st

htek (54)

H s
St =H st

hthk (55)

F st
gthk =F st

htgk (56)

C. Solution to Bi-level Robust Optimization Model

Stochastic optimization techniques often rely on assump‐
tions regarding specific probability distribution for handling 
uncertainties. However, accurately determining these proba‐
bility distributions of random variables can be challenging. 
Robust optimization closely considers the worst-case scenari‐
os during the optimization process, potentially yielding over‐
ly conservative outcomes. In contrast, the distributed robust 
approach leverages statistical characteristics for decision-
making, avoiding high costs associated with excessive con‐
servatism while not necessitating accurate probability distri‐
butions.

The adoption of the distributed robust optimal dispatch 
model stabilizes system fluctuations caused by the random‐
ness of wind and PV power outputs of EH, enhancing the 
safe operation of IES. The objective is to minimize the opti‐
mal dispatch cost of the IES in the worst-case scenarios.

min max
s
∑

t
(Cbuyt P

s
buyt +Cgast F

st
Sm )+CpvtDP s

pvt +CwtDP s
wt +

∑
t
∑

k
∑

b

é
ëP st

ebkQ
st
ebb( )Vebb + Yebb

ù
û+Hgas F st

htgkQ
st
chpb( )Vchpb + Ychpb

(57)

The objective function can be simplified as:

min max
s

f ( )xs (58)

where x denotes all the decision variables; and f ( )xs  de‐
notes the cost function in each scenario.

The objective function (58) can be converted into (59) for 
the solution.

ì
í
î

min y

s.t.  y ³ f ( )xs
(59)

where y is the one-dimensional decision variable. The cost 
function in the worst-case scenario could be obtained 
through (59).

In this way, the bi-level robust optimization model could 
be converted to a single-level one to be solved.

D. Distributed Robust Optimization Model for RIES

Compared with stochastic optimization and robust optimi‐
zation techniques, distributed robust optimization bridges the 
gap between data and decision-making, employing statistical 
and optimization frameworks. Additionally, it inherits the 
solvability of robust optimization and the flexibility of sto‐
chastic programming for characterizing stochastic problems. 
The distributed robust optimization employs the worst-case 
scenarios to regularize the optimization problem, thus allevi‐
ating the solution problem associated with the low efficiency 
of the optimizer in stochastic optimization.

In distributed optimization, the optimization of the electric‐
ity-gas-heat IES with multiple EHs can be decomposed into 

PDN TDN

RIES operators

EH1 operator 

Thermal energy flow

GDN

EH1

EH2 operator 

EH2

EHv operator 

EHv
…

Electrical energy flow; Natural gas energy flow

Fig. 4.　Distributed optimization framework of electricity-gas-heat IES with 
multiple EHs.
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the IES subproblems and k EH subproblems.
The augmented Lagrangian function of the IES subprob‐

lems is established as:

Ls
ies =∑

t

(Cbuyt P
s
buyt +Cgast F

st
Sm )+∑

t
∑

k

é

ë
êêêêλstα

ek ( )P st
ethk -P stα

htek +

λstα
hk (H s

St -H stα
hthk ) + λstα

gk (F st
gthk -F stα

htgk ) +
ραk
2 (P st

ethk -P stα
htek ) 2

+
ραk
2 (H s

St -H stα
hthk ) 2

 
ù

û
úúúú+

ραk
2 ( )F st

gthk -F stα
htgk

2

(60)

where λstα
ek , λstα

hk , and λstα
gk  are the dual variables governing 

the consistency of the electric power between PDN and EH, 
the consistency of the heat power between TDN and EH, 
and the consistency of the gas power between the GDN and 
EH, respectively; and ραk is the step size in α iteration.

The augmented Lagrangian functions of the k EH subprob‐
lems are depicted as:

Ls
ehk =∑

t

ì
í
î
( )CpvtDP s

pvt +CwtDP s
wt +

∑
k
∑

b
[ P st

ebkQ
st
ebb( )Vebb + Yebb +

ù
û Hgas F st

htgkQ
st
chpb( )Vchpb + Ychpb + λstα

ek (P stα + 1
ethk -P st

htek ) +
λstα

hk (H sα + 1
St -H st

hthk ) + λstα
gk (F stα

gthk -F st
htgk ) +

ραk
2 (P stα + 1

ethk -P st
htek ) 2

+

ü
ý
þ

ραk
2 ( )H sα + 1

st -H st
hthk

2
+
ραk
2 ( )F stα

gthk -F st
htgk

2

(61)

The original and dual residuals should satisfy the stopping 
criteria as depicted in constraints (62) and (63), respectively.
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êê
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2
1
2

£ εdual (63)

In the final model, (57) represents the overall objective 
function, (60) and (61) denote the objective functions for 
each subject, and (2) - (9), (11) - (14), (16) - (45), (53) - (56), 
(62), and (63) are the constraints.

IV. CASE STUDY 

A. Introduction

We validated the proposed model in an electricity-gas-heat 
IES, comprising a modified 33-node PDN, a 20-node GDN 
[44], a 32-node Barry Island TDN [45], and three EHs, as 
shown in Fig. 5. The PDN, GDN, and TDN have the maxi‐
mum electricity, gas, and heat loads of (3.715 + j2.3)
MVAh, 438.6 m3, and 2.164 MWh, respectively, in a single 
time period. The electricity, gas, and heat load curves are 

shown in Fig. 6.

Among the three EHs, EH1 installs PV units, EH2 installs 
wind turbines, and EH3 does not install any renewable ener‐
gy unit. CHP units and EBs can each consume up to 1 MW/
h of gas and electric power, respectively. The capacity of 
EES/TES is 1 MWh. The peak-valley time-of-use electricity 
price is used for purchasing from the upper grid, while the 
natural gas price is fixed at 3.45 ¥/m3, equivalent to a calorif‐
ic value price of 0.349 ¥/kWh. Table I provides the electrici‐
ty and gas prices, and Table II lists the parameters of equip‐
ment in EH. Based on historical data from a northwest Chi‐
nese city, the wind and PV power output scenarios [46] are 
reduced to 20 based on Monte Carlo method [47]. The re‐
duced scenarios are shown in Figs. 7 and 8, where different 
colors represent wind and PV power outputs in different sce‐
narios. The unit operation cost of CHP units, EBs, EES, and 
TES is 0.05 ¥/kWh. In the distributed optimization model, 
the upper tolerance limit for the original residual and dual re‐
sidual is set to be 5 × 10-4, μ is set to be 10, and τdecr and 
τ incr are set to be 2. We employ GAMS for programming, 
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and apply the GUROBI solver to address the SOC program‐
ming problem.

The optimal dispatch results are acquired after solving the 
proposed model. The electric/heat power balance is analyzed 

via the example of EH1 in Scenario 10, as shown in Fig. 9. 
Given the similar situation of EH2 and EH3, we refrain 
from reiterating the analyses of their electric/heat power bal‐
ance in this paper. During off-peak hours (valley hours), 
EBs provide heat, causing CHP units to remain inactive 
during 01:00-07:00 and at 24:00. In contrast, in the normal 
and peak periods, CHP units are engaged for power and heat 
supplies. If excess PV cannot be accommodated in EH1, it 
can be fully consumed through the EB or directed to the dis‐
tribution grid. The EES/TES is charged at a lower electricity 
purchase price and discharged at a higher price, enhancing 
the economy of the operation of the system.

B. Economic Analysis of Distributed Robust Optimization Al‐
gorithm

Theoretically, distributed robust optimization promises the 
most robust operation strategy. This subsection compares 
and analyzes the results of distributed robust optimization 
and distributed stochastic optimization algorithms, as shown 
in Table III. To render the experiment more practical, we in‐
corporate load shedding into the analysis, with the penalty 
cost for load shedding set to be 10 times the energy pur‐
chase cost.

It is observed that the operation costs of RIES, EH1, and 
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TABLE I
ELECTRICITY AND GAS PRICES

Period

Peak period (12:00-14:00, 19:00-22:00)

Normal period (08:00-11:00, 15:00-18:00)

Valley period (01:00-07:00, 23:00-24:00)

Electricity 
price (¥/kWh)

1.188

0.871

0.475

Gas price 
(¥/kWh)

0.349

0.349

0.349

TABLE II
PARAMETERS OF EQUIPMENT IN EH

Parameter

Ru
chpi

Ru
ebi

E max
ek

P max
kdis

E min
hk

ηchpke

ηch
ek

Value

200 kW

200 kW

900 kWh

300 kW

100 kWh

35%

95%

Parameter

Rd
chpt

Rd
ebt

E min
ek

Ehk0

H max
kch

ηchpkh

ηch
hk

Value

200 kW

200 kW

100 kWh

500 kWh

300 kW

45.5%

95%

Parameter

P max
ebk

Eek0

P max
kch

E max
hk

H max
kdis

ηebk

Value

1000 kW

500 kWh

300 kW

900 kWh

300 kW

90%
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Fig. 8.　Predicted PV power output curves.
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EH2 obtained by the distributed robust optimization algo‐
rithm are marginally higher than those obtained by the dis‐
tributed stochastic optimization algorithm. This is because 
the distributed stochastic optimization algorithm considers 
the operation cost in each scenario, while the distributed ro‐
bust optimization algorithm solely considers the worst-case 
scenarios. Consequently, the distributed robust optimization 
algorithm is more conservative, but entails higher operation 
costs. At the same time, the distributed robust optimization 
algorithm involves lower operation risk and the cost of load 
shedding is much lower than that of the distributed stochas‐
tic optimization algorithm. Therefore, the total dispatch cost 
of the distributed robust optimization algorithm is lower than 
that of the distributed stochastic optimization algorithm.

C. Analysis of Centralized and Distributed Optimization Re‐
sults

The centralized optimization model and the proposed mod‐
el with initial step sizes ρ of 1, 3-7, 10, and 40 are solved, 
and the results are shown in Table IV. The results obtained 
using the proposed model align with those from the central‐
ized optimization model across various step sizes. This agree‐
ment indicates that the proposed model attains the optimal 
operation results, achieving the integrated optimization of 
electric-gas-heat RIES and EHs as well as the autonomous 
decision-making of each subject. In addition, the number of 
iterations and computation time required for distributed opti‐
mization fluctuate with different initial step sizes. The step 
size of 4 yields fewer iterations and shorter convergence 
time, while step sizes below or above 4 lead to gradually 
slowing convergence. Therefore, selecting an appropriate 
step size can yield superior results.

The dispatch center under centralized optimization manag‐
es the system including the PDN, GDN, TDN, and EH, 
which is infeasible under practical engineering conditions. 
However, distributed optimization allows the regional system 
operator to optimize the PDN, GDN, and TDN dispatch, 
while EH operators optimize the dispatch of EH. This ap‐
proach reduces the information interaction and communica‐
tion demand. Using the proposed model with the step size of 
4, the cost convergence curves of the electricity-gas-heat IES 
and EHs are shown in Fig. 10. At the beginning of the itera‐
tion, the cost of each sub-region shows a considerable 
change. However, by receiving information from neighbor‐
ing sub-regions, each region adjusts its power allocation to 
achieve the overall balance of the IES.

D. Analysis of Convergence of ADMM with Adaptive Step 
Size

Table V illustrates the performance of the traditional AD‐
MM algorithm and ADMM algorithm with adaptive step 
size for initial step sizes of 1, 4, and 40. When ρ = 4, the 
computational efficiency of the ADMM algorithm with adap‐
tive step size aligns closely with that of the traditional AD‐
MM algorithm. However, when ρ = 1 or ρ = 40, the ADMM 
algorithm with adaptive step size demonstrates significantly 
superior performance than the traditional ADMM algorithm, 
with results similar to those with step size of ρ = 4. This im‐
provement stems from the ADMM algorithm with adaptive 
step size could automatically adjust the step size based on 
the relationship between the residuals at various initial step 
sizes, which makes the convergence more stable.

TABLE IV
RESULTS OF CENTRALIZED OPTIMIZATION MODEL AND PROPOSED MODEL

Model

Central‐
ized

Proposed

ρ

1

3

4

5

6

7

10

40

RIES 
cost 
(¥)

83540

83540

83540

83540

83540

83540

83540

83540

83540

EH1 
cost 
(¥)

1070

1070

1070

1070

1070

1070

1070

1070

1070

EH2 
cost 
(¥)

970

970

970

970

970

970

970

970

970

EH3 
cost 
(¥)

540

540

540

540

540

540

540

540

540

Total 
cost 
(¥)

86120

86120

86120

86120

86120

86120

86120

86120

86120

Number 
of itera‐

tions

32

34

26

29

32

32

40

38

Compu‐
tation 

time (s)

155

825

799

637

696

765

772

965

1233TABLE III
COMPARISON OF RESULTS USING DISTRIBUTED ROBUST OPTIMIZATION AND 

DISTRIBUTED STOCHASTIC OPTIMIZATION ALGORITMHS

Algorithm

Distributed robust 
optimization

Distributed stochastic 
optimization

Cost (¥)

RIES

74380

73260

EH1

1040

1030

EH2

930

920

EH3

480

540

Load 
shedding

21790

27630

Total

98620

103380
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Fig. 10.　Cost convergence curves of electricity-gas-heat IES and EHs us‐
ing proposed model. (a) Operation cost of electricity-gas-heat IES. (b) Oper‐
ation cost of EHs.
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Figure 11 illustrates the convergence curves of dual and 
original residual values of both algorithms using an initial 
step size of 1. Both algorithms exhibit a similar convergence 
trend. However, traditional ADMM algorithm exhibits slow 
convergence of the original and dual residuals during [0, 1], 
with values dropping by merely 0.052414 and 0.008866 in 
the last 40 iterations. In contrast, for the ADMM algorithm 
with adaptive step size, only 33 iterations are necessary, 
which solves the problem of low convergence efficiency 
caused by the suboptimal initial step size settings of tradi‐
tional ADMM algorithms.

V. CONCLUSION 

This paper proposes a distributed robust optimal dispatch 
model of RIES, taking into account the distribution network 
and each EH as independent operators. Robust optimization 
is employed within each operator to improve the operation 
security in cases of wind and PV power output uncertainties, 
with only deterministic information exchanged at the bound‐
aries. In addition, the ADMM algorithm is implemented for 
the distributed optimization operation of the multi-energy 
RIES, maximizing the operational data safety and benefits 
for each entity. Furthermore, the traditional ADMM algo‐
rithm with fixed step size is modified to an ADMM algo‐
rithm with adaptive step size, effectively mitigating exces‐
sive information exchanges between operators resulting from 
suboptimal step size settings. The validity of the proposed 
model is validated using an example system, yielding the fol‐

lowing results: ① the robust optimization entails higher oper‐
ation costs than stochastic optimization, the latter results in a 
more significant load reduction in post-decision, which 
means that robust optimization costs less; ② the ADMM al‐
gorithm with adaptive step size achieves identical dispatch 
results as the centralized optimization algorithm. However, 
when the initial step size setting is suboptimal, it outper‐
forms the traditional one. Therefore, the proposed model of‐
fers a new solution to the optimal dispatch issue of RIES in‐
volving various stakeholders. Future research will focus on 
energy sharing among EHs.
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