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Abstract——External disturbances can induce torsional oscilla‐
tion with weak damping in the shaft system of permanent mag‐
net synchronous generators (PMSGs) based wind generation 
system, thereby inducing low-frequency oscillations. However, 
the influence of electromagnetic torque on the shaft system 
damping and corresponding parameter laws have been scarcely 
explored. We define the electrical damping coefficient as a quan‐
titative measure for the influence of electromagnetic torque on 
the shaft system damping. The torsional oscillation damping 
characteristics of the shaft system under vector control are ana‐
lyzed, and the transfer function for electromagnetic torque and 
speed is derived. Additionally, we elucidate the mechanism by 
which the electromagnetic torque influences the shaft system 
damping. Simultaneously, laws describing the influence of wind 
speed, system parameters, and control parameters on the tor‐
sional oscillation damping are analyzed. Accordingly, the opti‐
mal damping angle of the shaft system a torsional oscillation 
suppression strategy is proposed to compensate for with uncer‐
tainty in the parameters affecting damping. The studied system 
is modeled using MATLAB/Simulink, and the simulation results 
validate the effectiveness of the theoretical analysis and pro‐
posed torsional oscillation suppression strategy.

Index Terms——Permanent magnet synchronous generator 
(PMSG), wind generation system, torsional oscillation, shaft sys‐
tem model, damping, oscillation suppression.

I. INTRODUCTION 

MANY countries have recently established carbon neu‐
trality targets. In line with these targets, the installed 

wind power capacity is projected to grow by 430 GW from 
2022 to 2025, reflecting an upward trend in wind power 
adoption [1], [2]. The permanent magnet synchronous gener‐
ator (PMSG) based wind generation system has gained popu‐

larity owing to benefits such as gearbox-free operation and 
high energy conversion efficiency and performance [3], [4]. 
The integration of large-scale grid-connected wind power 
systems poses various challenges to power systems, includ‐
ing power quality, voltage and frequency control, security, 
and stability [5]. Therefore, the dynamic characteristics of 
PMSG-based wind generation systems must be examined 
along with their interactions with power grids [6]. Further‐
more, analyzing and understanding the dynamic characteris‐
tics of the shaft system in PMSG-based wind generation sys‐
tems can notably enhance the safe and stable operation of 
power systems [7].

Compared with the doubly-fed induction generator, the 
shaft system of PMSG is simpler and consists of only three 
main components: wind turbine (WT), low-speed transmis‐
sion shaft, and generator. These components are directly con‐
nected without a gearbox through a low-speed transmission 
[8], [9]. Owing to its multipole structure, the shaft system of 
PMSG is more flexible than that in a conventional power 
plant [10]. In addition, the PMSG has more pole pairs in ad‐
dition to the flexible shaft system [11].

Although a single-mass model may explain the transient 
instability in a PMSG under drastic disturbances, a double-
mass model is required to accurately represent the system dy‐
namics [12]. This is because the double-mass model accu‐
rately represents the flexibility and mechanical oscillations 
of the shaft system.

Under severe external disturbances such as short-circuit 
faults, the shaft system in a PMSG-based wind generation 
system experiences torsional oscillation, resulting in power 
oscillation in the grid-connected wind power system [11]. 
Torsional oscillations not only induce fatigue in the transmis‐
sion shaft, thereby reducing its service life, but also give rise 
to low-frequency oscillations, potentially compromising the 
safety and stability of the entire PMSG-based wind genera‐
tion systems [12]. Hence, the torsional oscillations in PMSG-
based wind generation systems must be investigated [13].

The torsional oscillation characteristics of PMSG-based 
wind generation systems are influenced by three factors: in‐
put mechanical torque, inherent torque of the shaft system, 
and input electromagnetic torque under external disturbances 
[14]. The former two factors are determined by the intrinsic 
system characteristics, including the generator rotor [15]. 
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The effect of the electromagnetic torque on the torsional os‐
cillation and its potential for oscillation suppression have 
been analyzed in [16] and [17]. However, a research gap per‐
sists concerning the specific parameters and underlying laws 
that govern the influence of the electromagnetic torque on 
torsional oscillation characteristics. Therefore, the damping 
characteristics of PMSG transmission shafting should be un‐
veiled, and its influence mechanism should be understood. 
This study provides insights into the torsional oscillation 
characteristics of PMSG-based wind generation systems. 
Bridging this research gap may have practical implications 
for designing and optimizing torsional oscillation damping 
controllers.

To enhance the stability of PMSG-based wind generation 
systems, various active damping control methods have been 
devised to mitigate torsional oscillation [18]-[20]. In [18], a 
simple real power control strategy is introduced based on the 
rapid torque control for a direct-drive wind energy conver‐
sion system employing a PMSG. This study also outlines the 
parameter tuning procedure for the proposed control strategy. 
In [19], a sensorless active damping control strategy for di‐
rect-driven permanent magnet WT generators uses cascade 
observers to estimate the speeds of the WT and PMSG. In 
[20], the torsional oscillation damping is improved by add‐
ing a damping transfer function proportional to the speed dif‐
ference between the WT and generator. Although previous 
studies have suggested methods to suppress torsional oscilla‐
tions, to the best of our knowledge, few of them have thor‐
oughly and quantitatively analyzed the mechanism of the in‐
fluence of electromagnetic torque on the shaft system damp‐

ing. In addition, an optimal damping angle compensation 
method has not been devised to improve the system stability.

We analyze the torsional oscillation damping characteris‐
tics under vector control using an electromagnetic damping 
torque method. The electrical damping coefficient is defined 
as a quantitative representation of the effect of the electro‐
magnetic torque on the shaft system damping. Then, the 
transfer function for electromagnetic torque and speed is de‐
rived, and the influence of the electromagnetic torque on the 
shaft system damping is characterized. Further, the impact of 
wind speed, system parameters, and control parameters on 
torsional oscillation damping are examined in detail. Based 
on these findings, we propose a torsional oscillation suppres‐
sion strategy for the active power control section of a ma‐
chine-side converter (MSC). This strategy compensates for 
the damping angle of the shaft system and ensures the maxi‐
mum damping.

II. MODELING AND CONTROL OF PMSG-BASED WIND 
GENERATION SYSTEM 

The topology of a grid-connected PMSG-based wind gen‐
eration system typically includes the shaft system, PMSG, 
back-to-back full-power converter, transformers, and the con‐
trol sections of the grid-side converter (GSC) and MSC, as 
shown in Fig. 1, where MPPT is short for maximum power 
point tracking; PI is short for proportional and integral; PCC 
is short for point of common coupling; and PLL is short for 
phase-locked loop. This section presents a mathematical 
model of the considered system using the per-unit system.

A. PMSG Model

The PMSG is controlled in the d-q rotating coordinates 
with the d-axis aligned with magnetic flux linkage of PMSG 
rotor ψf. The stator voltage of PMSG is given by [21]:

ì

í

î

ï
ïï
ï

ï
ïï
ï

usd =-Rsisd -
Ld

ωeb

disd

dt
+ωg Lqisq

usq =-Rsisq -
Ld

ωeb

disq

dt
-ωg Ldisd +ωgψf

(1)

where usd and usq are the d- and q-axis stator terminal voltag‐
es, respectively; isd and isq are the d- and q-axis stator cur‐

rents, respectively; Rs is the stator resistance of PMSG; ωeb 
is the base value of stator angular frequency; ωg is the angu‐
lar frequency of PMSG rotor; and Ld and Lq are the d- and 
q-axis self-inductances of PMSG stator, respectively.

The speed of a megawatt PMSG is relatively low, and 
most PMSG is nonsalient surface-mounted (Ld = Lq). There‐
fore, the electromagnetic torque Te can be formulated as [20]:

Te =ψfisq (2)

B. Double-mass Model

The double-mass model can be expressed as [16]:
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Fig. 1.　Typical topology of PMSG-based wind generation system.
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(3)

where Ht and Hg are the inertial time constants of WT and 
PMSG, respectively; ωt is the WT speed of generator rotor; 
θsh is the torsion angle of WT relative to the generator rotor; 

Ksh is the stiffness coefficient of shaft system; Dsh is the 
damping coefficient of shaft system; and Tm, Te, and Tsh are 
the mechanical, electromagnetic, and shaft system torques, 
respectively.

C. MSC Model

The active power generated by PMSG Pe is expressed as:

Pe =ψfisqωg (4)

From (4), Te and Pe can be accurately controlled by vary‐
ing isq. The active power control loop of MSC is shown in 
Fig. 2.

In Fig. 2, the superscript * represents the reference value; 
Kp1 and Ki1 are the proportional and integral coefficients for 
the power outer loop of MSC, respectively; and Kp2 and Ki2 
are the proportional and integral coefficients of the current 
inner loop on MSC, respectively. P *

e  can be expressed as:

P *
e =

ì
í
î

ïïkoptω
3
g    0 < v < vr

1              vr £ v < vmax

(5)

where kopt is the MPPT curve coefficient; and v, vr, and vmax 
are the actual, rated, and maximum wind speeds, respectively.

Based on Fig. 2, the variable transfer of the active power 
control loop can be formulated as [22]:

ì

í

î

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

i*
sq = (P *

e -Pe ) ( )Kp1 +
Ki1

s

usq =-(i*
sq - isq ) ( )Kp2 +

Ki2

s

isq =-
usq

Lq s/ωeb +Rs

(6)

III. TORSIONAL OSCILLATION DAMPING CHARACTERISTICS 

This section presents the effect of electromagnetic torque 
Te on the torsional oscillation damping characteristics during 
MPPT. We derive the incremental transfer function of the 
electromagnetic torque and rotational speed difference, calcu‐
late the quantitative expression of electrical damping based 
on the electrical damping of synchronous generators (SGs), 
and analyze the effect of electrical damping on shaft system 
damping. Our findings provide a foundation for analyzing 
the influence of the PMSG parameters on the shaft system 
damping characteristics.

A. Electrical Damping Characteristics of PMSG

Using electromagnetic damping analysis, the linearized 
electromagnetic torque of PMSG DTe can be expressed as:

DTe =DeDωD +KeDθsh (7)

where De and Ke are the electrical damping and synchroniza‐

tion coefficients of the PMSG, respectively; and DωD is the 
difference between Dωg and Dωt, i.e., DωD = Dωt -Dωg.

We omit self-damping and the generator rotor. Using (3) 
and (7), the transfer function for torsional angle θsh and me‐
chanical torque Tm is given by:

Dθsh

DTm

=

ωeb

2Ht

s2 + ( )Dsh

2Ht

+
Dsh

2Hg

-
De

2Hg

s +ωeb( )Ksh

2Ht

+
Ksh

2Hg

-
Ke

2Hg

(8)

The damping attenuation factor for torsional oscillation ξ 
can be determined using (8) as:

ξ =
Dsh (Ht +Hg )-De Ht

4Ht Hgωosc
(9)

where ωosc is the natural oscillation angular frequency of the 

shaft system, and ωosc = ωeb [Ksh /(2Ht )+ (Ksh -Ke )/(2Hg )].

The electrical damping coefficient De has a negative corre‐
lation with the torsional oscillation damping coefficient ξ. 
When De < 0, the phase difference between DTe and DωD lies 
in (90°270°), resulting in an increase in ξ. This in turn leads 
to a positive damping of the shaft system, enhancing its sta‐
bility. When De > 0, the phase difference between DTe and 
DωD falls in (090°), causing ξ to decrease. Consequently, the 
shaft system experiences negative damping and thus instabili‐
ty.

B. Shaft System Damping Characteristics of PMSG

To obtain the small-signal output power of the PMSG, the 
MPPT curve can be approximated by a linear function 
around the steady-state operating point as:

DP *
e = 3koptω

2
g0Dωg (10)

where DP *
e  is the linearized increment of the reference gener‐

ator output power; Dωg is the linearized increment of the 
generator speed; and ωg0 is the generator speed at the stable 
running point.

+
�

*isq
*usq

≈1

Current inner loop

1

Lqs/ωeb+Rs
ψfωg

-ωeLdisd+ωeψf -ωeLdisd+ωeψf

*Pe PeKi1
Kp1+ s +

�

+

�

+

�
Ki2

Kp2+ s

usq isq

Fig. 2.　Active power control loop of MSC.
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The linearized increment of reference electromagnetic 
torque on the MPPT curve can be formulated as:

DT *
e = 2koptωg0Dωg (11)

By combining (2) and (4)- (6), the electromagnetic torque 
can be expressed as:

Te =ψfisq =ψf

koptn1n2ω
3
g - n1n2Teωg

Rs + Lq s/ωeb + n2
(12)

where n1 =Kp1 +Ki1 /s; and n2 =Kp2 +Ki2 /s.
Linearizing both sides of the equation simultaneously al‐

lows to formulate the incremental transfer function for the 
linearized electromagnetic torque DTe and DωD as (13). 

DTe

DωD
=-ψf

Ht

Ht +Hg

2koptω
2
g0 [Kp1 Kp2 s2 +

Lq s3 /ωeb + (Rs +Kp2 +ωg0ψf Kp1 Kp2 )s2 +
®

¬
(Kp1 Ki2 +Ki1 Kp2 )s +Ki1 Ki2 ]

[Ki2 +ωg0ψf (Kp1 Ki2 +Ki1 Kp2 )]s +ωg0ψf Ki1 Ki2
(13)

Further, considering (13), we have (14).
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The derivation process is detailed in Supplementary Mate‐
rial A.

The linearized electromagnetic torque can be expressed as 
DTe =mG(s)DωD.

According to (7) and (13), the real part of the incremental 
transfer function for DTe and DωD corresponds to the electri‐
cal damping coefficient De. Moreover, as indicated by (9), 
De is the sole controllable parameter influencing shaft sys‐
tem damping. Hence, investigating the impact of system pa‐
rameters on De is essential for enhancing the damping.

IV. INFLUENCE OF SYSTEM PARAMETERS ON TORSIONAL 
OSCILLATION DAMPING CHARACTERISTICS 

In this section, we examine the correlation between De 
and various system parameters: ωg0, Rs, Kp1, Ki1, Kp2, Ki2, and 
v. Specifically, we investigate the effects of wind speed v, 
the PMSG parameters, and control parameters on De and the 
oscillation characteristics of shaft system. Accordingly, we 
establish a theoretical basis for the proposed torsional oscilla‐
tion suppression strategy outlined in Section V.

The main parameters of the PMSG-based wind generation 
system provided by China Wind Power Group Limited are 
listed in Table I. In addition, the control parameters are 
tuned using Simulink to achieve the optimal performance.

A. Influence of Wind Speed and Stator Resistance on De

Figure 3 shows the Bode diagram of DTe /DωD with vari‐
ous ωg0 ranging from 0.6 to 1.0 p.u., where θosc is the phase 
angle of transfer function G(s) at ωsoc. The phase lag of DTe 
with respect to DωD falls between 90° and 180° near ωosc. 

ωosc=12.748 rad/s
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Fig. 3.　Bode diagram of DTe /DωD with various ωg0.

TABLE Ⅰ
MAIN PARAMETERS OF PMSG-BASED WIND GENERATION SYSTEM

Parameter

Base power value Sb

Base value of AC phase voltage Ub

Base value of DC-link voltage Udcb

Base value of stator angular frequency ωeb

Base value of PMSG rotor speed ωmb

Base value of grid angular frequency ωb

Rated frequency of PMSG fn

Pole pair of PMSG np

Magnetic flux linkage of PMSG rotor ψf

d-axis self-inductance of PMSG stator Ld

q-axis self-inductance of PMSG stator Lq

Stator resistance of PMSG Rs

Inertia time constant of WT Ht

Inertia time constant of PMSG Hg

Damping coefficient of shaft system Dsh

Stiffness coefficient of shaft system Ksh

Proportional coefficient of power outer loop on MSC Kp1

Integral coefficient of power outer loop on MSC Ki1

Proportional coefficient of current inner loop on MSC Kp2

Integral coefficient of current inner loop on MSC Ki2

Capacitance of DC-link voltage C

Proportional coefficient of voltage outer loop on GSC Kp3

Integral coefficient of voltage outer loop on GSC Ki3

Proportional coefficient of current inner loop on GSC Kp4

Integral coefficient of current inner loop on GSC Ki4

Grid inductance Lcg

Grid resistance Rcg

Lowpass filter for Pe ωP

PLL filter ωf

Proportional coefficient of PLL Kppll

Integral coefficient of PLL Kipll

Value

2 MW

575 V

1150 V

377 rad/s

7.85 rad/s

377 rad/s

60 Hz

48

1.18842 p.u.

0.5131 p.u.

0.5131 p.u.

0.0001 p.u.

6.69 s

1 s

1 p.u.

1.6 p.u.

1 p.u.

20 s-1

1 p.u.

10 s-1

0.6232 p.u.

5 p.u.

300 s-1

0.83 p.u.

5 s-1

0.55 p.u.

0.006 p.u.

100 rad/s

100 rad/s

4.1 p.u

200 s-1
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Hence, De is negative, resulting in positive damping pro‐
vided by DTe for the shaft system, thus improving the sys‐
tem stability. The De values corresponding to various ωg0 are 
presented in Table II. De decreases as ωg0 increases, indicat‐
ing an enhanced effect of the electromagnetic torque on the 
shaft system damping.

The variation range of the stator resistance should be mod‐
erated when investigating the impact of temperature changes 
on Rs. The Bode diagram of DTe /DωD and the corresponding 
De are shown in Fig. 4 and Table III, respectively, with vari‐
ous Rs. The curves in the diagram are very similar, suggest‐
ing that changes in Rs have a small influence on De. Thus, 
the effect of DTe on the shaft system damping is negligible 
and does not affect the stability of the shaft system under 
MPPT.

B. Influence of Control System Parameters on De

The active power control loop comprises two PI control‐

lers and four control parameters: Kp1, Ki1, Kp2, and Ki2. We 
set Kp1 = 1 p. u., Ki1 = 20 s-1, Kp2 = 1 p. u., and Ki2 = 10 s-1 as 
default control parameters. Subsequently, we select parame‐
ter within the ranges of 1-3 p.u. for Kp1, 5-25 s-1 for Ki1, 1-3 
p.u. for Kp2, and 10-30 s-1 for Ki2.

Using (13), the Bode diagram of DTe /DωD with various 
Kp1 ranging from 1 to 3 p.u. is shown in Fig. 5. The phase 
lag of DTe with respect to DωD falls between 90° and 180° 
near ωosc for Kp1 of 1.0, 1.5, 2.0, 2.5, and 3.0 p.u.. In such 
cases, De is negative, indicating that Te contributes to posi‐
tive damping of the shaft system, thus enhancing its stabili‐
ty. When Kp1 = 3.0 p.u., the phase lag of Te with respect to 
DωD is between 0° and 90° near ωosc. In this case, the nega‐
tive value of De suggests that Te still contributes to positive 
damping of the shaft system, but its stability deteriorates. Ta‐
ble IV lists the De values corresponding to various Kp1. As 
the PMSG operates under the MPPT, De transitions from 
negative to positive as Kp1 increases. This indicates a weak‐
ening effect of the electromagnetic torque on the shaft sys‐
tem damping, which is unfavorable to stability.

We also use (13) to obtain the Bode diagram of DTe /DωD 
with various Ki1 ranging from 5 to 25 s-1 in steady states. As 
shown in Fig. 6, for Ki1 of 5, 10, 15, 20, and 25 s-1, the 
phase lag of DTe with respect to DωD falls between 90° and 
180° near ωosc. In such cases, De is negative, indicating that 
Te contributes to the positive damping of shaft systems, 
thereby enhancing its stability. The De values corresponding 
to various Ki1 are listed in Table V. When the PMSG oper‐
ates under the MPPT, De  decreases as Ki1 increases, thereby 

TABLE Ⅱ
De VALUES CORRESPONDING TO VARIOUS ωg0

ωg0 (p.u.)

0.6

0.7

0.8

0.9

1.0

De

−0.248

−0.334
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−0.527
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Fig. 4.　Bode diagram of DTe /DωD  with various Rs.

TABLE Ⅲ
De VALUES CORRESPONDING TO VARIOUS Rs

Rs (p.u.)

0.0001

0.0003

0.0005

0.0007

0.0009

De (p.u.)

−0.6260

−0.6260

−0.6260

−0.6260

−0.6259

ωosc=12.748 rad/s

-40

-20

0

20

A
m

p
li

tu
d
e 

(d
B

)

10-1 100 101 102 103
-135

-90

-45

0

P
h
as

e 
(°

)

Frequency (rad/s)

Kp1=1.0 p.u.; Kp1=1.5 p.u.; Kp1=2.0 p.u.

Kp1=2.5 p.u.; Kp1=3.0 p.u.

θoscÎ(-122°, -81.3°)

Fig. 5.　Bode diagram of DTe /DωD with various Kp1.

TABLE Ⅳ
De VALUES CORRESPONDING TO VARIOUS Kp1

Kp1 (p.u.)

1.0

1.5

2.0

2.5

3.0

De  (p.u.)

−0.63

−0.51

−0.30

0.01

0.31
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augmenting the damping effect of the electromagnetic torque 
on the shaft system and improving its stability.

The analysis regarding Kp2 and Ki2 and their impacts on 
the shaft stability is analogous to the analysis conducted for 
Kp1 and Ki1, respectively, as given in Figs. 7 and 8 and Ta‐
bles VI and VII, which is thus not discussed further in this 
subsection.

V. TORSIONAL OSCILLATION SUPPRESSION STRATEGY 

We present a system comprising MPPT, MSC, and GSC 
control strategies. The MSC aims to regulate the output ac‐
tive power Pe and the d-axis stator current. 

An additional damping controller is introduced into the ac‐
tive power control loop to mitigate torsional oscillations in a 
PMSG-based wind generation system.

A. Proposed Torsional Oscillation Suppression Strategy

To enhance the effect of the electromagnetic torque on the 
shaft system damping, De should be reduced, as discussed in 
Section IV. Therefore, we introduce an additional damping 
controller into the active power control loop. Figure 9 shows 
the linearized model of the transfer relationship between DTm 
and DωD, which is obtained using (1) and (13). The dotted 
line in Fig. 9 represents the addition of damping controller 
H(s). The transitive relation between DTe and DωD can be de‐
rived as:

DTe = (m +H(s))G(s)DωD = (m +H(jω))G(jω)DωD =
m |G(jω) |ejθDωD + | H(jω) ||G(jω) |ejθ + φDωD (15)

where θ is the phase angle of transfer function G(s); and φ is 
the phase angle of transfer function H(s).

TABLE VII
De VALUES CORRESPONDING TO VARIOUS Ki2 

Ki2 (s
-1)

10

15

20

25

30

De  (p.u.)

−0.41

−0.63

−0.88

−1.20

−1.61

K
i2=10 s-1; K

i2=15 s-1; K
i2=20 s-1; K

i2=25 s-1; K
i2=30 s-1

ω
osc

=12.748 rad/s
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Fig. 8.　Bode diagram of DTe /DωD with various Ki2 .

TABLE VI
De VALUES CORRESPONDING TO VARIOUS Kp2

Kp2 (p.u.)

1.0
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−0.63

−0.41
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ω
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TABLE V
De VALUES CORRESPONDING TO VARIOUS Ki1

Ki1 (s
-1)

5
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25

De (p.u.)
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−0.96

−1.37

−1.91
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With the additional damping controller in the active power 
control loop, De near ωosc can be expressed as:

ì

í

î

ïïïï

ïïïï

De =De0 +DeH

De0 =m ×Re(|G(jωosc )|ejθosc )

DeH =Re(|H(jωosc )||G(jωosc )|ejφosc )

(16)

where De0 is the electrical damping coefficient without the 
additional damping controller; DeH is the additional electrical 
damping coefficient with the additional damping controller; 
and φosc is the phase angle of transfer function H(s) at ωosc.

From (16) and the expression of G(s), the system reaches 
stability, with both the amplitude and phase of G(s) remain‐
ing stable once the operating conditions, control parameters, 
and system parameters are determined. Therefore, based on 
G(s), we can adjust the amplitude and phase of |H(jωosc )| to 
compensate for phase φosc by modifying additional damping 
controller H(s) and the internal parameters. This adjustment 
aims to decrease De, enhance the damping effect of Te on 
the shaft system, and improve the stability of the shaft sys‐
tem.

The additional damping controller H(s) comprises two pri‐

mary components: bandpass filter controller Hf (s) and phase 
compensation controller Hi (s). The bandpass filter controller 
Hf (s) employs a second-order bandpass filter expressed as:

Hf (s)=
2ξfωn s

s2 + 2ξfωn s +ω2
n

(17)

where ξf is the damping ratio of Hf (s); and ωn is the center 
angular frequency of Hf (s).

We set the damping ratio of Hf (s) to be ξf = 0.15. In addi‐
tion, the center angular frequency of the bandpass filter, 
ωn =12.748 rad/s, corresponds to the inherent oscillation an‐
gular frequency of the shaft system.

The phase compensation controller Hi (s) enhances the con‐
troller performance, and its transfer function is given by:

Hi (s)=Ktod( )1 + sT1

1 + sT2

2

(18)

where Ktod is the damping controller gain; and T1 and T2 are 
the lead and lag correction time constants, respectively.

The additional damping controller H(s) is formulated as:

H(s)=Hf (s)Hi (s)=Ktod( )1 + sT1

1 + sT2

2
2ξfωn s

s2 + 2ξfωn s +ω2
n

(19)

Figure 10 shows a model of a PMSG-based wind farm 
(WF) connected to a four-machine two-area system. In this 
model, the WF comprises two PMSG-based wind generation 
systems with different parameters, which are equivalent to 
two 350 MW WFs, denoted as WF1 and WF2, respectively 
[23]. The parameters for the AC grid and SGs are shown in 
Supplementary Material B and have some modifications. 
The parameters for the PMSG-based wind generation system 
of WF1 are listed in Table I, whereas those for WF2 are pro‐
vided in Supplementary Material C.

This model is employed to evaluate the torsional oscilla‐
tion damping characteristics of PMSG-based wind genera‐
tion systems with various parameters. We also investigate 
the independence of the torsional oscillation suppression 
strategies when multiple PMSG-based wind generation sys‐
tems with different parameters are connected to power grid. 
Additionally, the coupling characteristics of the damping con‐
troller and torsional oscillation are examined.

Increasing Ktod enhances the torsional oscillation suppres‐
sion ability of the damping controller but introduces a new 
oscillation mode. Excessive Ktod values can lead to positive 
real roots, thereby impacting the system stability. Therefore, 

the impact of Ktod on the system stability should be ana‐
lyzed. Supplementary Material D presents a detailed linear‐
ization model of a PMSG-based WF connected to the four-
machine two-area system.

The main oscillations are categorized into eight modes 
(modes 1-8): ① local oscillation mode dominated by the 
SGs in area 1; ② local oscillation mode dominated by the 
SGs in area 2; ③ torsional oscillation mode dominated by 
shaft system of WF1; ④ oscillation mode dominated by the 
PLL; ⑤ interarea oscillation mode dominated by all the 
SGs; ⑥ oscillation mode dominated by the proposed addi‐
tional damping controller in WF1; ⑦ torsional oscillation 

+

+

+

ΔTm ΔωΔ1

2Ht

1

2Hg

1
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-

m
ΔTe +

+
G(s)

Hi(s) Hf (s)

2HtHgs

ωebKsh(Ht+Hg)

2HtHg

Dsh(Ht+Hg)
+

Fig. 9.　Linearized model of transfer relationship between  DTm and DωD.
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Fig. 10.　Model of PMSG-based WF connected to four-machine two-area system.
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mode dominated by shaft system of WF2; and ⑧ oscillation 
mode dominated by the proposed additional damping control‐
ler in WF2.

First, we vary Ktod1 from 0 to 24 with an increment step of 
0.08. The root loci of oscillation modes are shown in Fig. 
11(a). As shown in Fig. 11(b), when Ktod1 increases, modes 3 
and 6 initially converge and then gradually diverge. The ab‐
solute value for the damping ratio of mode 3 first increases 
and then decreases, and when Ktod1 reaches 0.48, it reaches 
the maximum value. Additionally, the variation in Ktod1 has 
no effect on modes 7 and 8. Concurrently, we increase Ktod2 
from 0 to 24 with an increment step of 0.08. As shown in 
Fig. 12, with an increase in Ktod2, the root loci of modes 7 
and 8 follow the same trend as those of modes 3 and 6 
when Ktod1 increases, respectively. Furthermore, the changes 
in the damping characteristics of shaft system for WF2 do 
not affect those for WF1. Therefore, when dealing with mul‐
tiple WTs connected to AC power systems, a shaft system 
damping controller should be designed considering the char‐
acteristics of each PMSG-based wind generation system.

B. Implementation of Proposed Torsional Oscillation Sup‐
pression Strategy

The proposed oscillation suppression strategy is summa‐
rized in the following steps.

Step 1: determine the system operating and control param‐
eters such as wind speed, inertial time constants, stator resis‐
tance, Kp1, Ki1, Kp2, and Ki2.

Step 2: calculate the torsional oscillation frequency.
Step 3: obtain the Bode diagram of DTe /DωD using (13).
Step 4: calculate the phase angle of the Bode diagram at 

the torsional oscillation frequency and obtain the compensa‐
tion angle.

Step 5: calculate the parameters of the phase compensa‐
tion and bandpass filter controllers based on the compensa‐
tion angle.

Step 6: obtain the optimal damper controller gain Ktod 
based on eigenvalue analysis.

Based on the parameters listed in Table I, when the sys‐
tem reaches steady state, the phase-frequency characteristics 
of G(s) are depicted in Fig. 13 with various ωg0 ranging 
from 0.7 to 1.1 p.u.. Figure 13 shows that θosc ranges from 
−132° to −122° at ωosc of 12.748 rad/s. For instance, taking 
ωg0=1.1 p. u. as a reference, the phase angle at ωosc in the 
shaft system stabilizes at approximately −122° during steady-
state operation.

Based on (9) and (13), when DTe and DωD are in anti‐
phase, De reaches its minimum value, and the damping pro‐
vided by DTe is maximized, considerably benefiting the shaft‐
ing stability. Hence, H(s) is used to adjust the phase angle of 
G(s) at ωosc to −180°. The phase angle that Hi (s) must com‐
pensate is φosc =-130° - θosc =-53°. Time constants T1 and T2 
are computed as 0.56 and 0.2 s, respectively. The phase-fre‐
quency characteristic of G(s) after incorporating H(s) is 
shown in Fig. 14. By comparing Figs. 13 and 14, the phase 
angle of G(s) at ωosc has been adjusted to −180°, maximizing 
the damping effect of DTe.

VI. CASE STUDY 

We conduct simulations using the MATLAB/Simulink plat‐
form to evaluate the effectiveness of the proposed torsional 
oscillation suppression strategy. The simulations are execut‐
ed on a personal computer equipped with a 3.3 GHz proces‐
sor and 16 GB of RAM to implement the model depicted in 
Fig. 1. The converter is modeled as a digital system with a 
switching frequency of 2 kHz and sampling time of 5×10-6 s. 
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The parameters of the PMSG-based wind generation sys‐
tem listed in Table I are obtained from China Wind Power 
Group Limited based on an actual system. In addition, the 
control parameters are fine-tuned using Simulink to achieve 
optimal performance.

A. Evaluation of Proposed Torsional Oscillation Suppression 
Strategy

Throughout the simulation, the wind speed is maintained 
constant at 12.1 m/s, which corresponds to the rated wind 
speed. The time-domain simulation incorporates a three-
phase short-circuit fault on node B12 of the studied system 
at t = 50 s. The fault persists for 0.2 s before being cleared at 
t = 50.2 s, after which the system returns to steady state.

The time-domain simulation is aimed to investigate two 
scenarios with and without applying the proposed torsional 
oscillation suppression strategy, i. e., scenarios 1 and 2, re‐
spectively.

The simulation results of studied system in scenarios 1 
and 2 are shown in Fig. 15. The application of the double-
mass model and proposed torsional oscillation suppression 
strategy results in a stabilization of ωg  after the short-circuit 
fault is cleared. In addition, the system attains transient sta‐
bility, with Pg, Udc, and voltage at PCC Uo returning to 
steady-state levels, accompanied by oscillations following 
the disturbance. Implementing the proposed torsional oscilla‐
tion suppression strategy mitigates transient instability and 
reduces the likelihood of low-frequency oscillations during 
the short-circuit fault. Consequently, the oscillations in ωg, 
Udc, Uo, and Pg are attenuated, enhancing the dynamic and 
steady-state operation of the studied system and improving 
the power grid stability compared with the results without 
the additional damping controller.

Then, the fundamental parameters affecting the damping 
of the shaft system, including wind speed, system parame‐
ters, and control parameters, are analyzed. The simulation 
curves of ωg and Pg with different wind speeds under MPPT 

are shown in Fig. 16. Figure 17 shows the simulation curves 
of ωg and Pg with various Rs under MPPT. Additionally, Fig. 
18 illustrates the simulation curves of ωg and Pg with vari‐
ous Kp1 and Ki1 under MPPT. The results for Kp2 and Ki2 are 
ignored because they are similar to those for Kp1 and Ki1, re‐
spectively.
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Figures 16-18 show that the oscillation amplitudes of ωg  
and Pg are smaller and the oscillation attenuation is faster 
with increase of Ki1 and Ki2, indicating the shaft system 
damping improves. However, the oscillation amplitude of ωg  
and Pg is larger and the oscillation attenuation is slower with 
increase of Kp1 and Kp2, indicating that the shaft system 
damping deteriorates. Additionally, the simulation results are 
nearly insensitive to variations in stator resistance Rs within 
a reasonable range influenced by temperature.

B. Comparison of Proposed Torsional Oscillation Suppres‐
sion Strategy with Other Strategies

To evaluate the performance of the proposed torsional os‐
cillation suppression strategy, we compared it with common 
strategies, including speed-feedback-based damping and ac‐
tive damping based on torque estimation [19].

We consider two cases that illustrate the effectiveness of 
the proposed torsional oscillation suppression strategy. In 
case 1, wind speed v remains constant at 12.1 m/s, as in Sec‐
tion VI-A. A three-phase short-circuit fault occurs at node 
B12 of the system and t = 50 s in the time-domain simula‐
tion. The fault persists for 0.2 s before being cleared at 
t = 50.2 s, after which the system returns to steady state. In 
case 2, the initial wind speed is 12.1 m/s and abruptly drops 
to 7.3 m/s at t = 50 s.

Figure 19 shows the transient response curves of ωg, Pg, 
Udc, Uo, Te, and θsh in response to the three-phase short-cir‐
cuit fault using the proposed torsional oscillation suppression 
strategy, active damping strategy considering torque estima‐
tion, and damping strategy based on speed feedback [3], 
[19]. 

The proposed torsional oscillation suppression strategy 
and other strategies improve the shaft system damping and 
suppress the oscillatory instability of the PMSG-based wind 
generation system during the three-phase short-circuit fault. 
The proposed torsional oscillation suppression strategy is 
more effective in suppressing torsional oscillations than the 
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comparison strategies. Additionally, the proposed torsional 
oscillation suppression strategy attenuates the oscillations of 
ωg, Pg, Udc, Te, and θsh faster than other strategies. These re‐
sults indicate that the proposed torsional oscillation suppres‐
sion strategy outperforms other strategies in suppressing tor‐
sional oscillations.

Figure 20 shows that following a drop in wind speed, Pg, 
Te, and ωg initially decrease, and then stabilize after oscilla‐
tion attenuation. 

Likewise, Udc, θsh, and Uo oscillate before reaching steady 
state. The proposed torsional oscillation suppression strategy 
demonstrates a superior performance in attenuating the oscil‐
lations of ωg, θsh, and Pg more rapidly compared with other 

strategies. This superiority is evident in Fig. 20(f), where the 
oscillation of θsh is promptly suppressed. The simulation re‐
sults validate the superiority of the proposed torsional oscilla‐
tion suppression strategy in suppressing torsional oscillations.

C. Verification of Effect of Ktod on System Stability

In this subsection, we analyze the influence of Ktod on the 
system stability. Figure 21 shows the transient response 
curves of ωg, Pg, Udc, Te, and θsh with various Ktod. Figure 
21(a) and (e) shows that ωg and θsh decrease while the shaft 
system damping increases with increasing Ktod, reaching its 
peak when Ktod = 0.48. When Ktod increases to 2, the shaft 
system damping decreases, and the decay rates of ωg and θsh 
decline.

In Fig. 21(b)-(d), an increase in Ktod results in an increase 
in the active power reference value, leading to higher oscilla‐
tion amplitudes in Pg, Udc, and Te. Therefore, the proper se‐
lection of Ktod is crucial for effective oscillation suppression. 
If Ktod is excessively small, the suppression effect becomes 
prominent. By contrast, if Ktod is very large, the suppression 
effect diminishes, increasing the instantaneous values of Pg, 

Ktod=0; Ktod=0.16; Ktod=0.48; Ktod=2

1.090

1.105

1.120

0.85

1.00

1.15

0.98

1.00

1.02

49 51 53 55 57 59
t (s)

(a)

49 51 53 55 57 59
t (s)

(b)

49 51 53 55 57 59
t (s)

(c)

(d)

(e)

ω
g
 (

p
.u

.)
P
g
 (

p
.u

.)
U
d
c 

(p
.u

.)

-1.2

-0.9

-0.6

-1.0

-0.6

-0.2

49 51 53 55 57 59
t (s)

49 51 53 55 57 59
t (s)

T
e 

(p
.u

.)
θ
sh

 (
p

.u
.)

Fig. 21.　Transient response curves of ωg, Pg, Udc, Te, and θsh with various 
Ktod. (a) ωg. (b) Pg. (c) Udc. (d) Te. (e) θsh.

0.90
0.95

1.05
1.10

1.00

1.15

Proposed torsional oscillation suppression strategy

Active damping strategy considering torque estimation

Damping strategy based on speed feedback

0.5

0.9

1.3

0.99

1.00

1.01

0.90

0.95

1.00

-1.0

-0.7

-0.4

-0.8

-0.4

0

49 51 53 55 57 59
t (s)

(a)

49 51 53 55 57 59
t (s)

(b)

49 51 53 55 57 59
t (s)

(c)

49 51 53 55 57 59
t (s)

(d)

49 51 53 55 57 59
t (s)

(e)

49 51 53 55 57 59
t (s)

(f )

ω
g
 (

p
.u

.)
P
g
 (

p
.u

.)
U
d
c 

(p
.u

.)
U
o
 (

p
.u

.)
T
e 

(p
.u

.)
θ
sh

 (
p
.u

.)

Fig. 20.　Transient response curves of ωg, Pg, Udc, Uo, Te, and θsh follow‐
ing a drop in wind speed. (a) ωg. (b) Pg. (c) Udc. (d) Uo. (e) Te. (f) θsh.
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Udc, and Te, and potentially causing system instability.

VII. CONCLUSION 

We analyze the torsional oscillation damping characteris‐
tics based on the electromagnetic damping torque method. 
Subsequently, the transfer function for electromagnetic 
torque and speed is derived, and the influence of electromag‐
netic torque on the shaft system damping is explained. 

The electrical damping coefficient De is the only controlla‐
ble parameter that affects the shaft system damping and is 
negatively correlated with damping coefficient ξ of the tor‐
sional oscillation. Additionally, the real part of the incremen‐
tal transfer function of DTe  and DωD is equivalent to electri‐
cal damping coefficient De.

The influence of wind speed and system control parame‐
ters on torsional oscillation damping is determined. We find 
that v,  Ki1, and Ki2 are positively correlated with the shaft 
system damping, while Kp1 and Kp2 are negatively correlated 
with shaft system damping, and a change in stator resistance 
Rs within a reasonable range has a negligible effect on damp‐
ing. Therefore, to ensure the stable operation of a PMSG-
based wind generation system, the high-speed operation is 
recommended. In addition, while ensuring an active power 
tracking rate and stability in the high-frequency range, we 
recommend minimizing Kp1 and Kp2, as well as increasing 
Ki1 and Ki2.

We propose an oscillation suppression strategy on the ac‐
tive power control loop to compensate for the damping an‐
gle between DTe and DωD and thus improve the stability of 
the shaft system based on the previous analysis. The studied 
system is modeled using MATLAB/Simulink, and the simula‐
tion results show that the proposed torsional oscillation sup‐
pression strategy outperforms other strategies in eliminating 
torsional oscillations. The simulation results verifies the ef‐
fectiveness of our theoretical analysis and control strategy.

In future work, we will investigate an adaptive compensa‐
tion method for the damping angle of a PMSG-based wind 
generation system considering the frequency offset.
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