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Abstract——Contingencies, such as behavior shifts of microgrid 
operators (MGOs) and abrupt weather fluctuations, significant‐
ly impact the economic operations of multi-microgrids (MMGs). 
To address these contingencies and enhance the economic and 
autonomous performance of MGOs, a self-organizing energy 
management modeling approach is proposed. A second-order 
stochastic dynamical equation (SDE) is developed to accurately 
characterize the self-organizing evolution of the operating cost 
of MGO incurred by contingencies. Firstly, an operating model 
of MMG relying on two random graph-driven information ma‐
trices is constructed and the order parameters are introduced 
to extract the probabilistic properties of variations in operating 
cost. Subsequently, these order parameters, which assist individ‐
uals in effectively capturing system correlations and updating 
state information, are incorporated as inputs into second-order 
SDE. The second-order SDE is then solved by using the finite 
difference method (FDM) within a loop-structured solution 
framework. Case studies conducted within a practical area in 
China validate that the proposed self-organizing energy manage‐
ment model (SEMM) demonstrates spontaneous improvements 
in economic performance compared with conventional models.

Index Terms——Contingency, energy management, multi-mi‐
crogrid (MMG), graph, stochastic dynamic equation (SDE), self-
organizing feature.

I. INTRODUCTION 

MICROGRID (MG) is widely recognized for its effi‐
cient utilization of renewable energy sources (RESs) 

[1]. Multi-microgrid (MMG) systems associate different mi‐
crogrid operators (MGOs) as an integrated entity that active‐
ly engages in economic operations [2]. However, the integra‐
tion introduces the risk of economic losses due to abrupt 
changes in RES generation and decision-making of MGOs 
[3], [4]. To effectively mitigate the impact of these contin‐
gencies on economic performance, it is imperative to estab‐
lish an autonomous and resilient energy management model.

Until now, various studies have focused on the modeling 
method for MMG systems. An effective energy trading (ET) 
mechanism is a crucial aspect of MMG energy management 
modeling [5]-[7]. In [5], a contribution-based ET mechanism 
among MGs is developed, which allocates surplus energy to 
consumers based on historical contributions. A non-coopera‐
tive game-based method wherein buyers compete with each 
other for allocation using priority factors is presented in [6]. 
Additionally, a dynamic energy interaction mechanism based 
on individual contributions is proposed to address the com‐
plex business relationships involving multiple owners [7]. 
However, these studies are primarily driven by individual in‐
terests, which pay limited attention to modeling the dynamic 
cooperative relationships inherent in MMG systems. In this 
paper, we propose a novel self-organizing energy manage‐
ment model (SEMM) for MMGs that relies on graph-driven 
information matrices to store ET information derived from 
random graphs and extract probabilistic properties on ET 
among MGOs.

Accurately addressing the uncertainties associated with 
RES and operator decision-making becomes a significant 
challenge in energy system modeling. A prominent methodol‐
ogy involves incorporating operational research-based mod‐
ules into the energy system modeling. The scenario-based 
random optimization [8], [9] and robust optimization [10] 
are widely applied. However, the former heavily relies on 
the quantity and quality of the scenario set, while the latter 
requires consideration of worst-case scenarios that may nev‐
er occur, inevitably sacrificing a portion of the economic ef‐
ficiency. The aforementioned issues are effectively addressed 
through a series of enhancements [11] - [14]. A novel multi-
stage robust scheduling for MGs with energy storage to bal‐
ance the uncertain load and significantly reduce electricity 
cost is developed in [11]. In [12] and [13], a distributionally 
robust (DR) optimization model is presented for the resilient 
operation of integrated electricity and heat energy distribu‐
tion and MG systems under uncertainties. A moment-based 
DR model is proposed for distribution network configuration 
problems with random contingencies in [14]. However, these 
above studies provide unsatisfactory performances when 
faced with relatively sparse historical data such as abrupt 
changes in operator behaviors.

In addition to the above-mentioned operational research-
based models, the data-driven agent model based on Markov 
decision process (MDP) offers an alternative avenue for ad‐
dressing uncertainties. Especially, the partially observable 
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MDP (POMDP) model is introduced in [15]. The POMDP 
model treats the acquired system state as uncertain, provid‐
ing the partially observed system state to the agent, which 
then adapts the probability distribution of historical data to 
estimate the actual state. This model aligns more closely 
with practical power system operations. Therefore, it has un‐
dergone refinements and is applied in energy management 
[16], resilience-focused dispatch control [17], and reactive 
power optimization [18], [19] for MG and distribution sys‐
tems. Similar to DR model, the MDP model also requires re‐
training with relevant data when encountering unfamiliar op‐
erating scenarios. The dependence on external factors high‐
lights limitations in terms of spontaneous adjustments, ulti‐
mately impacting economic operations.

The above-mentioned studies exhibit passivity towards un‐
certain contingencies and negatively impact the economic 
performance in the event of data sparsity. Therefore, it is im‐
perative to explore modeling techniques that do not rely sole‐
ly on data and can autonomously adapt to uncertainties.

Stochastic dynamics is a crucial branch of self-organizing 
theory [20] - [22]. It formulates the changes in complex sys‐
tems as state transitions and models the process of individu‐
al state transitions with uncertain events as a probability-driv‐
en stochastic dynamical equation (SDE), which is a differen‐
tial equation. Specific differential terms in SDE characterize 
the state transition caused by uncertainty and the self-orga‐
nizing process that emerges new states after such transitions. 
This process eliminates passive data-driven approaches and 
represents a spontaneous evolutionary phenomenon. Al‐
though stochastic dynamics demonstrate significant advantag‐
es in election prediction modeling [22], their application in 
energy management modeling for MMG is still in its infan‐
cy. In our previous study [23], a first-order SDE is em‐
ployed to model the MMG system with small-scale uncer‐
tainties. However, it fails to capture the dynamic trends in 
system state transitions resulting from uncertainties, particu‐
larly in the context of strong contingencies in MMG. There‐
fore, by considering the operating costs of MGO as the 
state, we propose a novel second-order SDE to accurately de‐
scribe the trend of the self-organizing evolution of the state, 
specifically referring to operating costs of MGO in contin‐
gencies.

To this end, this study proposes a novel SEMM to accu‐
rately characterize the self-organizing evolution of the operat‐
ing cost of MGOs. The main contributions can be summa‐
rized as follows.

1) A random graph-based ET model that incorporates the 
interrelationships among MGs as node connections within a 
random graph structure is proposed. Two random graph-driv‐
en information matrices are constructed to store ET informa‐
tion and extract the probabilistic properties of variations in 
the operating cost.

2) A second-order SDE is developed to enhance the eco‐
nomic performance of MGOs in contingencies. We consider 
the operating cost of MGOs as the state, and mathematically 
represent the state transition as the second-order SDE based 
on order parameters. These parameters precisely depict the 
state transition as a self-organizing evolution process in con‐

tingencies. The second-order SDE effectively rectifies the un‐
foreseen impact on state transitions, particularly in scenarios 
lacking historical data.

3) We further verify the practicability of the proposed 
SEMM by applying it to a realistic MMG system. Simula‐
tion results demonstrate its spontaneity and superiority in im‐
proving the economic performance when facing abrupt 
weather fluctuations and shifts in MGO behavior.

The rest of this paper is organized as follows. Section II 
elaborates on the modeling of MMG operating block. Then, 
the modeling of stochastic dynamics block is presented in 
Section III. Case studies are reported in Section IV. Conclu‐
sions are drawn in Section V.

II. MODELING OF MMG OPERATING BLOCK 

As illustrated in Fig. 1, the proposed SEMM involves a 
typical smart MMG system with RES generation and multi-
stakeholders. Specifically, the proposed SEMM comprises an 
MMG operating block and a stochastic dynamics block for 
the self-organizing perception of variations in the operating 
cost. The input of the MMG operating block includes the 
trading information from each MGO. Through a cooperative 
relationship-oriented structure, an adjacency information ma‐
trix and a state information matrix are established to charac‐
terize the operating costs of MGOs. Additionally, by consid‐
ering variations in the operating cost as state transitions, the 
order parameters are introduced to extract statistical and 
probabilistic features of state transitions. These order parame‐
ters serve as inputs to the stochastic dynamics block, which 
mathematically characterizes state transitions as a probability-
driven SDE. Specific differential terms extract state transi‐
tions caused by uncertainties while accounting for the self-or‐
ganizing emergence of new states after these transitions oc‐
cur. Solving the SDE with the finite difference method 
(FDM) yields corrected states, which are then output for 
MGO to optimize their energy management. In this section, 
we present a comprehensive description of the MMG operat‐
ing block, followed by an introduction to the stochastic dy‐
namics block in the Section III.

A. Single MG Model

The research in this paper is based on an MMG system 
connected to the main grid, consisting of I MGs and indexed 
by i. Note that there may not be a direct connection between 
each MG, and energy transaction is facilitated by the upper-
level main grid. Moreover, we consider a discrete-time mod‐
el, assuming the range is divided into K equal operation peri‐
ods and indexed by k. The controllable objects at a single 
MG include RES, gas turbine (GT), battery energy storage 
system (BESS), and ET.
1)　RES

A single MG is considered as an entity with RES, specifi‐
cally photovoltaic (PV) and wind turbine (WT). The physi‐
cal attributes of these sources are described as:

P PV
ik =

Hik

Histd

P PV
ir (1)
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s.t.

ì
í
î

ïï
ïï

0 £P PV
ik £P PV

imax

0 £P WT
ik £P WT

imax

(3)

where P PV
ik  and P WT

ik  are the predicted outputs of PV and WT, 
respectively; Hik is the predicted irradiance based on meteo‐
rological data; Histd is the standard irradiance; P PV

ir  is the rat‐
ed output of the PV panel; P WT

ir  is the rated output of WT; 
vir, viout, viin, and vik are the rated, cut-out, cut-in, and pre‐
dicted wind speeds based on meteorological data, respective‐
ly; and P PV

imax and P WT
imax are the upper limits for outputs of 

PV and WT, respectively.
2)　GT

GT plays a significant role in balancing the supply and de‐
mand power of MG. The ramping constraint of GTs, indicat‐
ing the difference in output power between adjacent periods, 
is given in (6). The mathematical model of GT is given as:

P GT
ik =V gas

ik C gas
i ηGT

i (4)

s.t.

P GT
imin £P GT

ik £P GT
imax (5)

-U down
i Dτ GT

i £P GT
ik -P GT

ik - 1 £U up
i Dτ GT

i (6)

where Dτ GT
i  is the adjustment time of GT; P GT

ik  is the supply 
power of GT; V gas

ik  is the consumption of gas; C gas
i  is the cal‐

orific value of gas; ηGT
i  is the efficiency of GT; P GT

imin and 
P GT

imax are the lower and upper limits of P GT
ik , respectively; 

and U down
i  and U up

i  are the lower and upper limits of the 
ramping rate, respectively.

3)　BESS
BESS is a highly efficient controllable power generation 

equipment. Equation (10) indicates that energy remains un‐
changed at the beginning and the end of a scheduling cycle. 
The mathematical model of the BESS is described as:

E BESS
ik =E BESS

ik - 1 +Dτ
BESS
i (ηBESSch

i P BESSch
ik - 1 +

P BESSdis
ik - 1

ηBESSdis
i ) (7)

s.t.

E BESS
imin £E BESS

ik £E BESS
imax (8)

ì
í
î

ïï
ïï

0 £P BESSch
ik £P BESSch

imax

0 £P BESSdis
ik £P BESSdis

imax

(9)

∑
k = 1

K

ηBESSch
i P BESSch

ik - 1 +∑
k = 1

K P BESSdis
ik - 1

ηBESSdis
i

= 0 (10)

where E BESS
ik  is the state of charge (SOC) of BESS; P BESSch

ik  
and P BESSdis

ik  are the charging and discharging power of 
BESS, respectively; ηBESSch

i  and ηBESSdis
i  are the charging and 

discharging efficiency factors of BESS, respectively; Dτ BESS
i  

is the adjustment time of BESS; E BESS
imin  and E BESS

imax  are the low‐
er and upper limits of E BESS

ik , respectively; and P BESSch
imax  and 

P BESSdis
imax  are the upper limits of P BESSch

ik  and P BESSdis
ik , respec‐

tively.

B. Random Graph-based ET Model

To model ET patterns, we propose a dynamic identity-driv‐
en model based on the principles of random graph theory. A 
random graph is generated through a stochastic process, 
where the formation of edges between nodes follows specif‐
ic probabilistic rules [24]-[26]. Specifically, as illustrated in 
Fig. 2, we consider a random graph with a set of nodes, 
where the probability of establishing an edge between any 
two nodes is contingent upon their respective state informa‐
tion. The degree of connectivity is represented by parameter 
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λ, which quantifies the extent of interconnections. In random 
graph theory, the degree is commonly employed to character‐
ize the level of coupling between a node and the rest of the 
network. The mathematical representation of the random 
graph theory significantly simplifies the modeling complexi‐
ties within intricate networks.

Considering that the MMG system in the energy transac‐
tion operates as a point-to-point network with stochastic co‐
operative relationships, a generalized random graph-based 
modeling of MMG system is proposed to abstractly repre‐
sent the virtual topology of the ET. Based on individual re‐
quirements, MGs select their own identity, which includes 
both cooperators and non-cooperators. The cooperator alli‐
ance refers to MGs who adopt the identity and actively par‐
ticipate in the transaction. In contrast, the non-cooperator al‐
liance refers to MGs who choose not to do so. The two 
types of MGs are distinguished by using the abbreviations 
MG-C and MG-NOC in Fig. 2, respectively. Consequently, 
the concept of the stochastic connection is redefined as a 
two-dimensional and dynamic identity selection that encom‐
passes both cooperative and non-cooperative aspects. The 
specific modeling steps are as follows.

The random graph of the MMG system is expressed as 
G = (XS), where XÎR1 ´ I is the adjacency information ma‐
trix, which characterizes the stochastic cooperation relation‐
ships; and SÎRI ´ 14 is the state information matrix, which 
collects the meteorological and scheduling information.
1)　Adjacency Information Matrix

Given the virtual nature of adjacency, this study employs 
random cooperative information as a representation of the ad‐
jacency information matrix Xk, which is the adjacency infor‐
mation matrix of X at the sampling time k.

Xk =[x1kx2kxNk ]T (11)

where xikÎ{01} is the probability of MG i becoming a coop‐
erator.

To address the limitation of disregarding the cooperative 
resource surplus in the model proposed in [5]-[7], we intro‐
duce the average degree λk to quantitatively measure the lev‐
el of the cooperation readiness among MGs. λk is defined as:

λk = Gk = (I - 1)x̄k =
I - 1

I ∑i = 1

I

xik (12)

where ·  is the degree of the graph; Gk is the random graph 
of the MMG system at the sampling time k; and x̄k is the av‐
erage value of xik.

2)　State Information Matrix
The state information matrix S, which encompasses meteo‐

rological and scheduling data of MGs, such as operating 
costs, control variables, equipment parameters, and meteoro‐
logical data, is described as:

Sik =[F CNOC
ik ΩikD

WT
ik D

PV
ik ] (13)

Ωik =[P GT
ik P

BESSch
ik P BESSdis

ik P ET
ik ] (14)

DWT
ik =[P WT

ir virvioutviinvi.k ] (15)

DPV
ik =[HistdP

PV
imaxHik ] (16)

where Ωik is the strategy information vector, which includes 
controllable variables of MG, incorporating the adjustment 
time of GT, BESS, and ET; P ET

ik  is the trading power, where 
P ET

ik = 0 means MG i is a non-cooperator; F CNOC
ik  is the oper‐

ating cost, which is elaborated in Section II-C; and DWT
ik  and 

DPV
ik  are the matrices of equipment parameters and day-ahead 

meteorological data for PV and WT, respectively.

C. Operating Cost of MGs

To represent the operating cost of cooperator and non-co‐
operator alliances, we propose a mechanism based on a nov‐
el public goods game model [27] - [29]. In this mechanism, 
the interactive energy of cooperators is accumulated as indi‐
vidual contributions, allowing cooperators to obtain certain 
subsidies for participating in the proposed SEMM. Besides, 
identity transformation incurs additional costs. This mecha‐
nism promotes a virtuous cycle among cooperators. Note 
that only the prices from the buyer and seller are allowed to 
be transmitted within the cooperator alliance to ensure priva‐
cy and minimize information transmission.
1)　Operating Cost of Cooperator Alliance

Mathematically, the operating cost based on multi-interests 
of a cooperator alliance F C

i  is constructed as:

F C
i =∑

k = 1

K

(C GT
ik +C BESS

ik +C MAIN
ik +C ET

ik - T ET
ik +C NOCC

ik ) (17)

where C GT
ik  and C BESS

ik  are the operating costs of GT and 
BESS, respectively; C MAIN

ik  and C ET
ik  are the costs of interac‐

tive power with the main grid and other cooperators, respec‐
tively; T ET

ik  is the subsidy designed to incentivize cooperators 
to accumulate their contributions; and C NOCC

ik  is the adminis‐
trative cost of identity transformation.

C GT
ik =P GT

ik cGT
i (18)

C BESS
ik =P BESSch

ik cBESSch
i +P BESSdis

ik cBESSdis
i (19)

C MAIN
ik = (P load

ik -P buy
ik +P sell

ik )cMAIN
ik (20)

C ET
ik =P buy

ik cbuy
ik -P sell

ik csell
ik +P ET

ik ctra (21)

T ET
ik =

κ
I∑i = 1

I

φik sik P ET
ik (22)

C NOCC
ik = (sik - 1 + sik )cNOCC (23)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

cBESSch
i = αi

E BESS
ik

E total
i

+ βi

cBESSdis
i =-αi

E BESS
ik

E total
i

+ γi

(24)
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φik = φik - 1 + logω( )λk - 1

λk
(25)

P ET
ik =P sell

ik +P buy
ik (26)

where cGT
i  is the cost of GT; cBESSch

i  and cBESSdis
i  are the 

charging and discharging costs of the BESS, respectively, 
which are designed as a linear dynamic calculation to pre‐
vent overuse from damaging the BESS; αi, βi, and γi are the 
linear coefficients, which are set informed by [24]; E total

i  is 
the total capacity of BESS; φik is the synergistic factor that 
characterizes the abundance level of heterogeneous resources 
of the MMG system; ω is the fixed coefficient that character‐
izes the fluctuation scale of the synergy factor; P buy

ik  and P sell
ik  

are the purchased and bidding power, respectively; cbuy
ik  and 

csell
ik  are the final purchased and sell prices, respectively, 

which are two fixed values; κ is the fixed price coefficient, 
which is used for the profit reduction process of cooperators; 
and cNOCC is the administrative cost if MG i is a non-cooper‐
ator during period k - 1.

Herein, playing a role as cooperator alliance refers to par‐
ticipating in ET. Furthermore, the unit interactive power 
needs to pay the transmission cost ctra to the main grid. We 
establish a priority for energy transmission between MGs 
over procurement from the main grid. The incentive for mar‐
ket enthusiasm comes from T ET

ik , that is to say, participating 
in the cooperator alliance can make a profit. In addition, the 
profit is a dynamic indicator determined by the market de‐
mand, which is defined in (22) and (25). When MG i is a co‐
operator, sik = 1; and when MG i is a non-cooperator, sik=0.
2)　Operating Cost of Non-cooperator Alliance

For non-cooperator alliances, although they do not partici‐
pate in the state transaction, they can also receive some sub‐
sidies for playing a backup role. Mathematically, the operat‐
ing cost of a non-cooperator alliance F NOC

i  is constructed as :

F NOC
i =∑

k = 1

K

(C GT
ik +C BESS

ik - T NOC
ik +C CNOC

ik ) (27)

where T NOC
ik  is the subsidy from all cooperators according to 

the rules of the public goods game; and C CNOC
ik  is the admin‐

istrative cost.

T NOC
ik =

π
I∑δ = 1

N C
k

T ET
δk (28)

C CNOC
ik = (sik - 1 + sik )cCNOC (29)

where δ is the index of the cooperator; N C
k  is the number of 

cooperators; and π is the fixed distribution coefficient used 
for profit reduction process of non-cooperators.

III. MODELING OF STOCHASTIC DYNAMICS BLOCK 

A. Description of Typical First-order SDE

To bolster the autonomous capabilities of MGO in dealing 
with contingencies, we formulate the state transition process 
of MMG systems as a probability-driven stochastic dynam‐
ics block. Notably, we consider the operating cost of MGO 
as state and its variations as state transitions.

The first-order differential equations are often used to 

characterize a dynamics problem. The typical first-order 
SDE is illustrated as:

ì
í
î

dP = μ1 Pdt + μ2W͂dt

W͂ =W +DW
(30)

where P is the state variable; W͂ and W are the actual and 
ideal system states, respectively; DW is the state transition in‐
duced by uncertainties; and μ1 and μ2 are the coefficients.

B. Description of Second-order SDE

Abrupt weather fluctuations and the erratic behavior of 
MGOs result in dynamic changes in the trends of state transi‐
tions. That is to say, the first-order differential equations al‐
low for the representation of state transitions, akin to “veloc‐
ity”. However, they fail to capture the dynamic trends associ‐
ated with these state transitions. Therefore, we propose a 
novel second-order SDE that incorporates specific second-or‐
der differential terms to depict the evolving trends of state 
transitions, which resembles “acceleration”. By accumulat‐
ing and iteratively retaining memory of these state transition 
trends, these second-order terms illustrate the spontaneous 
emergence of new states following state transitions, thereby 
establishing a self-organizing mechanism. The stochastic dy‐
namics block is described in detail as follows.
1)　Mathematical Preparation

Mathematically, we divide the interval between sampling 
points into h smaller parts Dt, so the sampling interval is rep‐
resented as tk® k + 1 = hDt. As mentioned above, we set F CNOC

i  
as the state of MG i.
2)　Order Parameter

In the self-organizing mechanism, there is a parameter 
that describes the evolutionary trend of state transitions. We 
define f inc

ik  and f dec
ik  as the order parameters to characterize 

the increasing and decreasing trends of the state transitions 
of MG i. According to the mathematical modeling in Section 
II-C, f inc

ik  is influenced by the profits and subsidies from ET, 
while f dec

ik  is determined by the cost of excessive device regu‐
lation and identity transformation. Furthermore, we assume 
that the transition rate of f inc

ik  and f dec
ik  over tk® k + 1 is uniform, 

and denote their trends as Df inc
i  and Df dec

i  in Dt, respectively.
3)　State Transition

In the presence of distinct operational environments, the 
probability of an individual state transition exists. We ex‐
press the probability that the amplitude of state transition of 
MG i in a specific interval of discrete time n equals to fi as 
P( fin). As depicted in Fig. 3, the modeling of state transi‐
tion is represented as (31), which means the probability of 
state transition at the current state is strongly correlated with 
the probability at the previous state. Besides, P( fi -Df inc

i n -
1) and P( fi +Df dec

i n - 1) incorporate uncertainties into the 
state transition process, and also involve iterative memory of 
the state from the previous state, enabling the previous state 
to spontaneously become the source for the state at the next 
state.

P( fin)=P( fi -Df inc
i n - 1)+P( fi +Df dec

i n - 1)-P( fin - 1)
 (31)
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4)　Second-order SDE
Through iterative memorization of (31), the probability 

that the amplitude of state transition equals fi within n + l 
subintervals over any interval l is derived as:
P( fin + l)=

ì

í

î

ïïïï

ïïïï

∑
ab = 0

l (-1)(l- a - b)l!
a!b!(l - a - b)!

P( fi - aDf inc
i + bDf dec

i n)    l - a - b > 0

0                                                                                   l - a - b £ 0
(32)

Considering the second-order state transition as the coun‐
terpart of self-organizing in second-order SDE, we perform a 
Taylor series expansion on (32), retaining up to the second-
order SDE. To ensure the Taylor series expansion is only 
performed in the vicinity of fi and to meet the requirement 
of small computational memory, we set l = 2. Therefore, the 
second-order SDE is represented as:

dP( fit)
dt

= μik1
d2 P( fit)

dfi
2

- μik2
dP( fit)

dfi

- μik3
d2 P( fit)

dt2 (33)

ì

í

î

ïïïï

ï
ïï
ï

μ ik1 = ( f inc
ik )2 - f inc

ik f dec
ik + ( f dec

ik )2

μ ik2 = f inc
ik - f dec

ik

μ ik3 = 1

(34)

where dP( fit) dfi is a common transition to another level 

state; d2 P( fit) dfi
2 is a random transition to another level 

state caused by random disturbances; dP( fit) dt is the state 

transition speed; d2 P( fit) dt2 is a self-organizing process, 

where both common and random state transitions are acceler‐
ated and self-organizing by the current state; and μik1, μik2, 
and μik3 are the dynamic coefficients of (33).
5)　Boundary Conditions

To facilitate the solving approach for differential equation, 
the boundary conditions for potential variations are estab‐
lished as follows.

We assume that the probability of state transition must rap‐
idly decrease and become 0 for high values, which means 
that the limit conditions are described as:

P( fit)|fi =±¥
= 0 (35)

Regarding the initial boundary conditions, we represent 
them as a delta function based on objective empirical laws, 
implying that P( fit) iterates from either 0 or 1, which is ex‐
pressed as:

P( fit)|t = 0 = δ( fi - 0)=
ì
í
î

1      fi = 0

0     fi ¹ 0
(36)

Moreover, we must also establish a third initial condition 
due to varying degrees of random disturbances. They affect 

the rate of state transitions of MGs, causing some to experi‐
ence larger changes while others weaken. Therefore, we set 
a periodic initial boundary condition for the rate of state tran‐
sition ¶P( fit) ¶t as:

|
|
||||¶P( fit)

¶t
t = 0

=
ρ( fi +Dfi0 + t)- ρ( fi0)

Dt
=

1
Dt

cos
2πfi

μik1
  (37)

where ρ( fi0) is the value of fi when t = 0.

C. Solving Approach for Proposed SEMM

To facilitate implementation, we propose a solving ap‐
proach for the proposed SEMM, as outlined in Algorithm 1. 
Initially, we establish two finite sets of candidate strategies: 
a cooperative set and a non-cooperative set, distinguished by 
their assigned numbers. The solving approach for the pro‐
posed SEMM splits the task into two components: informa‐
tion extraction and self-organizing modeling. We employ the 
MMG operating block for the former and the stochastic dy‐
namics block for the latter.

Initially, we set the optimization objective to minimize the 
operating cost of each MG and employ the MMG operating 
block to perceive transaction information. The resulting 
trend of state transition is generated as order parameters for 
stochastic dynamics block, which obtains the coefficients of 
the second-order SDE.

By integrating (33) through (35)-(37) and selecting the am‐
plitude of state transition corresponding to the maximum am‐
plitude |ρ( fikDk)| as the initial value for the subsequent itera‐
tion, we can then output results based on the correspondence 
between the state and the strategy sets, as indicated by the 
adjacency information matrix Sk. Subsequently, we update 
the order parameters accordingly. This process is repeated 
until all pending energy management tasks for MMG are 
completed.

Note that Algorithm 1 offers a simplified solving ap‐
proach for the proposed SEMM. Our primary focus in this 

State transitionPresent

 state

  

inc∆fi… …
dec∆fi

fi,n−2 fi,n−1 fi,n+1fi,n

inc∆fi
dec∆fi

inc∆fi
dec∆fi

inc∆fi
dec∆fi

inc∆fi
dec∆fi

P( fi,
 n)=P( fi�∆fi

inc, n�1)+P( fi+∆fi
inc, n�1)�P( fi,

 n�1)

Previous

 state

Fig. 3.　Process of state transition.

Algorithm 1: solving approach for proposed SEMM

1.  Initialization: k = 1, adjacency information matrix X, state information 
matrix S, and order parameters f inc

ik = 1 and f dec
ik = 1

2.  for k = 1 to K do
3.   for i = 1 to I do
4.   Input adjacency information matrix Xk and state information ma‐

trix Sk

5.   Calculate operating cost F CNOC
ik , average degree λk, synergy factor 

at next point φik + 1, and dynamic coefficients μik1, μik2, and 
μik3 of (33)

6.   Establish boundary conditions
7.   Resolve second-order SDE with FDM
8.   Download the maximum amplitude |ρ( fikDk)|
9.   Extract corresponding amplitude of profit shift fikD

10.   Update Fik + 1 =Fik + fikD

11.    Obtain strategy set corresponding to Fik + 1

12.    Update order parameters f inc
ik + 1 and f dec

ik + 1

     if corresponding strategy set is cooperative
              xik = |ρ( fikDk)|

  else
      xik = 0
  end if

13.  end for
14. Update Sk + 1 and Xk + 1

15. end for
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paper is to develop the self-organizing model and compare 
its performance with other models, rather than requiring a 
complex solving approach. However, it is worth noting that 
future research will explore the integration of high-perfor‐
mance solving approach.

IV. CASE STUDIES 

A. Setup

In this study, the case overview and parameter settings are 
as follows: the proposed SEMM is validated with an MMG 
system consisting of five MGs, as illustrated in Fig. 1. Since 
the MGs are not physically interconnected and interact only 
through the main grid, the specific physical topology infor‐
mation is unavailable. For the analysis and explanation pur‐
poses, simulation results of three MGs from the MMG sys‐
tem are presented to demonstrate the feasibility of the  solv‐
ing approach for the proposed SEMM. Parameters of MGs 
and operation are detailed in Tables I and II, respectively. 
Moreover, we define two strategy sets: the cooperative strate‐
gy set ranges from 1 to 500 and the non-cooperative strategy 
set ranges from -500 to -1. Each controllable variable exhib‐
its a small numerical fluctuation interval of ±5 kW. All ex‐
periments are conducted on a server equipped with CPU 
R93950X, GPU RTX4090, and RAM of 32 GB.

B. Results and Analysis of MMG Operating Block

Figure 4 displays energy management results without ET. 
The adjustable resources in each MG exhibit frequent adjust‐
ments and poor stability. The energy management results 
with ET are shown in Fig. 5. For instance, MG 1 adopts the 
cooperative identity for nearly 20 hours with the assistance 
of the mechanism. During the WT peak periods, an average 
of 186.92 kW is sold per sample point, while an average of 
213.46 kW is purchased during the load peak periods. More‐
over, the frequency of adjustments for BESS and GT are de‐

creased by 10.31% and 63.86%, respectively, leading to an 
increase in economic profits of 41.32%.

For MG 3, however, it selects the non-cooperative identity 
almost all the time. The analysis indicates that both MG 1 
and MG 2 have only one highly penetrative RES, and the 
volatility of the RES makes it difficult for them to increase 
profits through less self-adjustment of resources. Therefore, 
they would rather choose to cooperate even if they have to 
pay certain fees for transmission and platform management. 
MG 3 possesses a diverse set of energy sources, which re‐
sults in a relatively smaller impact on profits. Therefore, 
MG 3 chooses the non-cooperative identity for a prolonged 
period. The results demonstrate that a flexible interaction 
framework based on dynamic identities is a more rational 

TABLE I
PARAMETERS OF MGS

MG No.

1

2

3

4

5

PV power 
(kW)

0

1000

800

800

600

WT power 
(kW)

1500

0

1500

1000

1500

GT power 
(kW)

600

600

600

0

500

BESS power 
(kWh)

500

500

500

300

500

TABLE II
PARAMETERS OF OPERATION

Parameter

P PV
ir  (kW)

P WT
ir  (kW)

P BESSch
max , P BESSdis

max  (kW)

E BESS
min , E BESS

max  (p.u.)

ηGT

cNOCC, cCNOC (¥)

Value

350

800

150, 150

0.1, 0.9

0.3

50, 200

Parameter

ηBESSch, ηBESSdis

α, β, γ (¥)

C buy, C sell, 
C MAIN (¥/kWh)

cMAIN (¥/kWh)

κ ω, π

Value

0.97, 0.95

1.5, 6.1, 4.2

0.55, 0.55, 0.55

0.1

2, 0.5, 0.8
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Fig. 4.　Energy management results without ET. (a) MG 1. (b) MG 2. (c) 
MG 3.
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Fig. 5.　Energy management results with ET. (a) MG 1 (b) MG 2 (c) MG 3.

580



CHEN et al.: SELF-ORGANIZING ENERGY MANAGEMENT MODELING FOR MULTI-MICROGRIDS IN CONTINGENCIES

and effective approach for MMG systems.

C. Comparison of First-order and Second-order SDEs

To visually demonstrate the equation performance of the 
proposed SEMM, the comparison of decision-making pro‐
cess is depicted in Fig. 6, we compare the distribution of 
scheme selection across three stages in first-order and sec‐
ond-order SDEs. Figure 6 depicts a multi-factor grouped 
boxplot. The boxes represent the range of scheme numbers 
occupying from 25% to 75% of the total count. The whis‐
kers in the box plot depict the entire range of values. The 
“points + curves” on the right side of the boxes illustrate the 
distribution of scheme numbers, with the “points” represent‐
ing the optimal scheme number and outlier numbers. Addi‐
tionally, the mean of each distribution group is annotated on 
Fig. 6.

The second-order SDE outperforms the first-order SDE. 
In the initial stage 1, the second-order SDE sets the initial 
collaborative factor to be 0.8, which encourages the SDE to 
explore more feasible schemes and accumulate some prelimi‐
nary “memory”. Thus, the distribution of the schemes fluctu‐
ates significantly during the phase of iterative experimenta‐
tion and refinement, but the second-order SDE still performs 
better.

Subsequently, from the mid-term stage 2 to the later stage 
3, as the synergistic factor dynamically decreases, based on 

accumulated “memory”, the second-order SDE can perceive 
information and obtain the optimal scheme by itself. There‐
fore, it converges faster and more stable. Specifically, for 
MG 2, the variance of the scheme number across the three 
stages for the second-order SDE is 35.95, lower than 2.67 
for the first-order SDE. Moreover, the frequency of outlier 
occurrence is 18.34% lower than that of the first-order SDE.

D. Analysis of Addressing Contingencies

The subsequent analysis pertains to the performance of 
the proposed SEMM in addressing contingencies. As men‐
tioned in Section I, contingencies in MMG system are typi‐
cally characterized by the randomness of the individual man‐
agement behaviors and the volatility of RES. Therefore, we 
consider the chance of increase in WT output and the ran‐
dom addition of multiple new entities to the MMG system 
as small and large disturbances, respectively. Two novel data-
driven models, DR model [11]-[14] and POMDP model [16]-
[18], are selected for comparison to analyze the spontaneous 
capabilities after contingencies occur.
1)　Benchmark Analysis

We conduct a benchmark of the performance of the three 
models under normal conditions without any contingency. 
For the DR model, the real prediction error is used as the un‐
certainty set, and the algorithm parameters are set based on 
[30]. In the case of POMDP model, we utilize actual data 
from the first 20 days of a particular month as the training 
set for the agent, and the last 10 days as the test set. During 
the training process, the learning rate and the discount factor 
are set as 0.01 and 0.9, respectively [18].

The economic performance of the three models under the 
benchmark condition is similar, as demonstrated in Fig. 7(a). 
However, during the majority of periods, DR and POMDP 
models exhibit slightly better economic performance than 
the proposed SEMM. A statistical test is conducted with a 
significance level of 0.05 to confirm this finding. The p-val‐
ue is greater than 0.05, indicating that there is no statistical‐
ly significant difference in the economic performance among 
the three models. In the absence of random disturbances, the 
proposed SEMM does not appear to be the optimal choice 
when compared to the advanced modeling models.
2)　Contingency 1: Accidental WT Fluctuation at 06:00

The accidental WT fluctuation has a relatively significant 
impact on the energy management of MG systems. Howev‐
er, it does not substantially disrupt the stable operating rules 
of the overall system. Therefore, we introduce it as a mild 
disturbance at 06: 00 and observe the performance of self-
governing for three models after the contingency.

Taking MG 1 as an example and adopting the cooperative 
identity, Fig. 8 illustrates an average increase in WT output 
of 31.62% at 06:00. The analysis reveals that DR model ad‐
dresses this contingency by utilizing the maximum capacity 
of the BESS to store energy. However, in numerical terms, 
DR model decreases the overall revenue by 4.59% compared 
with the benchmark. Therefore, while DR model shows ef‐
fectiveness in managing WT contingencies, its impact on the 
economic performance of the system requires careful evalua‐
tion.
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However, the proposed SEMM and POMDP model dem‐
onstrate superior economic performance due to their adap‐
tive use of the cooperative identity. Specifically, the pro‐
posed SEMM achieves a 13.52% increase and the POMDP 
model achieves a 10.18% increase in revenue compared with 
the DR model. Furthermore, the proposed SEMM shows a 
13.73% increase in energy transactions compared to POMDP 
model. This analysis suggests that leveraging the rules of the 
free market in a self-organizing way during mild disturbanc‐
es could enhance the economic performance.

Similarly, we analyze the behavior of MG 3 within the 
non-cooperator alliance. As shown in Fig. 9, the DR model 
exhibits consistent responses to the WT fluctuation as previ‐
ously described. Due to the fixed identity of MG 3 during 
the training set period, the POMDP model initially maintains 
its non-cooperative identity. However, it struggles with equip‐
ment stability, requiring adjustments more frequently than 
the proposed SEMM by 28.85%. The dynamic adjustment of 
the proposed SEMM of the cooperative factor prompts MG 
3 to transition into a cooperator role during this period, ac‐

tively engaging in ET. Notably, between 08: 00 and 24: 00, 
MG 3 autonomously reverts to a non-cooperative identity, 
prioritizing self-sufficiency.

3)　Contingency 2: Expansion of MMG System at 06:00
To validate the self-organizing capability under large-scale 

disturbances, we introduce three new MGs into the original 
MMG system at 06:00. These MGs share identical parame‐
ters with MGs 1-3 but lack historical data. For cooperators, 
the entry of additional MGs into the MMG system reinforc‐
es their cooperative identity, which requires no further dis‐
cussion.
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In the case of MG 3, as depicted in Figs. 7(d) and 10, the 
proposed SEMM demonstrates superior economic perfor‐
mance compared with DR and POMDP models, although it 
experiences a restructuring of the revenue structure at 06:00. 
A detailed examination reveals that they experience algo‐
rithm shutdown for approximately 1.2 and 2.0 hours, respec‐
tively, before resuming operation. The shutdown incapaci‐
tates them from making decisions, resulting in an average 
economic downturn of 171.8 and 282.9 ¥/hour, respectively. 
In contrast, the proposed SEMM continues to cooperate with 
others during the disturbance, with a slight impact on the 
economic performance.

After the restart, MG 3 in the proposed SEMM maintains 
the cooperative identity for 15.3 hours to avoid a higher de‐
vice adjustment frequency. However, the DR and POMDP 
models maintain the non-cooperative identity, resulting in a 
device adjustment frequency, which is 31.17% and 21.02% 
higher than that of the proposed SEMM, respectively. The 
economic performance also declines by 39.33% and 16.26%, 
respectively. These results highlight the instability of DR 
and POMDP models when faced with randomness and unfa‐
miliar historical data of new entities.

However, as shown in Fig. 11, the economic performance 
of the proposed SEMM for MG 6 is slightly inferior to that 
for MG 1 with similar parameters due to the unfamiliarity of 
the new entity. Specifically, the device adjustment frequency 
is 14.48% higher than that of MG 1, resulting in a 3.76% re‐
duction in profit. This indicates that the proposed SEMM 
adopts a conservative management approach when dealing 
with a new entity for the first time, which could be an area 
for improvement in the future research.

V. CONCLUSION 

This study proposes an SEMM to enhance the economic 
performance of MGOs in contingencies. The proposed 
SEMM incorporates an identity-based MMG operating block 
and stochastic dynamics block that applies second-order 
SDE to accurately characterize the self-organizing evolution 
of the operating cost incurred by contingencies. Specifically, 
the MMG operating block relies on two random graph-driv‐
en information matrices and introduces order parameters to 
extract probabilistic properties of variations in the operating 
cost. These order parameters are then input into the stochas‐
tic dynamics block with SDEs resolved by FDM. The main 
conclusions can be given as follows.

1) The identity-based cooperation mechanism within the 
MMG operating block effectively reduces the need for fre‐
quent equipment adjustments, thereby improving cost-effec‐
tiveness.

2) The second-order SDE demonstrates enhanced stability 
and faster convergence compared with the first-order SDE.

3) In stable scenarios, the proposed SEMM performs com‐
parably to state-of-the-art data-driven models such as DR 
and POMDP models. However, when faced with contingen‐
cies accompanied by sparse historical data, the proposed 
SEMM exhibits remarkable autonomous adjustment capabili‐
ties.

Future research directions include the development of en‐
hanced stochastic dynamics approaches integrating high-per‐
formance solution algorithms to effectively manage contin‐
gencies arising from fragmented and aggregated resource in‐
tegration.
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