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Abstract——The optimal dispatch of energy storage systems 
(ESSs) in distribution networks poses significant challenges, pri‐
marily due to uncertainties of dynamic pricing, fluctuating de‐
mand, and the variability inherent in renewable energy sources. 
By exploiting the generalization capabilities of deep neural net‐
works (DNNs), the deep reinforcement learning (DRL) algo‐
rithms can learn good-quality control models that adapt to the 
stochastic nature of distribution networks. Nevertheless, the 
practical deployment of DRL algorithms is often hampered by 
their limited capacity for satisfying operational constraints in re‐
al time, which is a crucial requirement for ensuring the reliabili‐
ty and feasibility of control actions during online operations. 
This paper introduces an innovative framework, named mixed-
integer programming based deep reinforcement learning (MIP-
DRL), to overcome these limitations. The proposed MIP-DRL 
framework can rigorously enforce operational constraints for 
the optimal dispatch of ESSs during the online execution. This 
framework involves training a Q-function with DNNs, which is 
subsequently represented in a mixed-integer programming 
(MIP) formulation. This unique combination allows for the 
seamless integration of operational constraints into the decision-
making process. The effectiveness of the proposed MIP-DRL 
framework is validated through numerical simulations, demon‐
strating its superior capability to enforce all operational con‐
straints and achieve high-quality dispatch decisions and show‐
ing its advantage over existing DRL algorithms.

Index Terms——Voltage regulation, optimal dispatch, distribu‐
tion network, mixed-integer programming, deep reinforcement 
learning (DRL), energy management.

NOMENCLATURE

A. Sets and Indices

A Set of actions

B Set of nodes with energy storage systems (ES‐
Ss)

L Set of lines in distribution network

mn Indices of nodes

N Set of nodes in distribution network

t Index of time steps

i Index used for summations over layers and 
units

j Index of units

k Index of layers in deep neural network (DNN)

K Total number of layers (excluding the input 
layer) in DNN

P State transition function

R Reward function

S Set of states

T Set of time steps

Uk Total number of units in layer k

B. Parameters

ηB
mcη

B
md Charging and discharging efficiencies of ESSs

λ Discount factor

ω Parameter of trained policy

πω Policy network

ρ t Electricity price at time step t

σ Penalty factor

θ Parameter of trained critic networks consist‐
ing of weights and biases

ÑθÑω Gradients for updating policy parameters 

bk
j Bias of unit j in layer k

ck
j Objective function cost of unit j in layer k

d k
j Objective function cost for binary activation 

variable of unit j in layer k
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h(×) Activation function, specifically ReLU func‐
tion for DNN

-
I

2
mn The maximum squared value of current mag‐

nitude for line mn
-
P

B
m, -P

B
m The maximum and minimum charging/dis‐

charging power of ESS connected to node m
Qθ Critic network

RmnXmn Resistance and reactance of line mn
- -- -----
SOC

B
m, - -- -----SOC B

m The maximum and minimum states of charge 
(SOCs) of ESS connected to node m

-
V

2
, -V

2 The maximum and minimum squared values 
of voltage magnitudes

C. Continuous Variables
-
E

B
m Capacity of ESS connected to node m 

PmntQmnt Active power, reactive power, and current of 

Imnt line mn at time step t
P PV

mt Active power generation of photovoltaic (PV) 
system at node m at time step t

P N
mt Net power of node m at time step t

P B
mt Charging/discharging power of ESS connect‐

ed to node m at time step t
P D

mtQ
D
mt Active and reactive power demands of node m 

at time step t
P S

mtQ
S
mt Active and reactive power from slack node at 

time step t

SOC B
mt SOC of ESS connected to node m at time step 

t
Vmt Voltage of node m at time step t

sk
j Slack variable associated with ReLU function 

for unit j in layer k

xk
j Output of unit j in layer k

D. Matrices and Vectors

bk - 1 Matrix of biases for layer k - 1
W k - 1 Matrix of weights for layer k - 1
xk Output vector of layer k

I. INTRODUCTION 

THE proliferation of distributed energy resources (DERs) 
poses various challenges in the control and operation of 

electrical distribution networks [1]. Voltage issues can be ob‐
served in networks with high photovoltaic (PV) penetration 
and peak loads. To overcome this problem, the energy stor‐
age systems (ESSs) are being increasingly deployed, offering 
ancillary services such as voltage magnitude regulation to 
the distribution system operators (DSOs). These ancillary ser‐
vices can be provided by exploiting the flexibility of ESSs 
in response to a dynamic electricity price throughout the 
day, which can be obtained by solving an optimal dispatch 
problem of ESSs. From the view of DSO, the defined dis‐
patch of ESSs should minimize the operational costs while 
ensuring the voltage magnitude constraints of the distribu‐
tion network. Nevertheless, such a dispatch problem is inher‐

ently challenging due to the stochastic and uncertain nature 
of the dynamic electricity prices, the demand consumption, 
and the renewable generation, e.g., PV generation [2].

Traditional research, e. g., [3], in the optimal dispatch of 
ESSs has predominantly focused on developing accurate 
models and approximated formulations that make the prob‐
lem amenable for commercial solvers, collectively known as 
model-based approaches. Nevertheless, these model-based ap‐
proaches struggle with real-time solution quality due to the 
increased complexity and uncertainty introduced by DERs 
[4]. To overcome these shortcomings, the model-free ap‐
proaches have been proposed as an alternative. These model-
free approaches model the optimal dispatch problem of ESSs 
as a Markov decision process (MDP) and leverage reinforce‐
ment learning (RL) algorithms to define the optimal sequen‐
tial decisions [5], [6]. By exploiting the good generalization 
capabilities of deep neural networks (DNNs), the deep rein‐
forcement learning (DRL) algorithms can perform sequential 
interpretations of data, learning good-quality control models 
that can adapt to the stochastic nature of an environment [7].

Implementing DRL algorithms in a real system typically 
follows a two-stage process: ① an offline initial training 
stage utilizing a simulator, and ② an online execution of the 
trained algorithm into the real system [8]. This allows refin‐
ing and rigorously testing DRL algorithms before their expo‐
sure to the real system. As for the optimal dispatch problem 
of ESSs, the most crucial aspect is ensuring the feasibility 
and safety during the online execution of DRL algorithms 
[9]. Nevertheless, after training, the standard DRL algo‐
rithms cannot provide the feasibility for defined actions dur‐
ing the online execution, impeding the implementation of 
DRL algorithms in the dispatch problems of ESSs.

Several approaches have been developed to improve the 
constraint enforcement capabilities of DRL algorithms [10]. 
The enforcement of soft constraints is currently the most 
widely used approach [11]. In this approach, a large and 
fixed penalty term is incorporated into the reward function 
when training the parameters of the control policy [12]. This 
enables the DRL algorithm to avoid actions that result in un‐
feasible operations. For instance, in [13], the problem of dis‐
patching PV inverters has been addressed by a decentralized 
framework that penalizes RL agents when their actions lead 
to voltage magnitude violations. Although these strategies 
may enforce operational constraints during training, they can‐
not guarantee the feasibility of the defined operating sched‐
ule in real time, especially during peak periods of consump‐
tion and renewable generation [14].

Instead, safe DRL algorithms are implemented to directly 
handle constraints in distribution network operations without 
adding penalty terms in the reward function. In [15], a safe 
DRL algorithm is introduced to define a fast-charging strate‐
gy for lithium-ion batteries to enhance the efficiency of EV 
charging without compromising battery safety. Utilizing the 
soft actor-critic (SAC) based Lagrange DRL in a cyber-phys‐
ical system, the charging speeds are optimized by leveraging 
an electro-thermal model, outperforming existing deep deter‐
ministic policy gradient (DDPG) and SAC based DRL algo‐
rithms in terms of optimality. To ensure that the updated pol‐
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icy stays within a feasible set, a cumulative constraint viola‐
tion index is maintained below a predetermined threshold in 
[16] and [17]. This approach is also used in [18] and [19], 
where the constraint violation index is designed to reflect 
the voltage and current magnitude violation levels due to the 
defined dispatch of ESSs. Nevertheless, enforcing constraints 
via cumulative indices can only provide a probabilistic no‐
tion of safety, failing to enforce voltage and current magni‐
tude constraints in real time due to their instantaneous na‐
ture. Alternatively, a projection operator can be developed to 
project actions defined by the DRL algorithm into a feasible 
set [20], [21]. For instance, the projection operator proposed 
in [22] uses the action defined by the DRL algorithm as a 
starting point to solve a mathematical programming formula‐
tion, thus ensuring compliance with the constraints. A simi‐
lar approach is implemented in [23] to regulate the voltage 
magnitude of distribution networks via the control of smart 
transformers. However, implementing such projection opera‐
tors can degrade the performance of DRL algorithm, as dis‐
cussed in [24].

A summary of different constraint enforcement approaches 
used by safe DRL algorithms in various operational prob‐
lems of energy system is presented in Table I [14], [15], 
[18], [19], [22], [25]-[38].

TABLE I
SUMMARY OF CONSTRAINT ENFORCEMENT APPROACHES USED BY SAFE 

DRL ALGORITHMS IN VARIOUS OPERATIONAL PROBLEMS OF 
ENERGY SYSTEM

Reference

[26]

[27]

[28]

[29], [30]

[14]

[31]

[32]

[33]

[34]

[15]

[35]

[36]

[25]

[22]

[37]

[38]

[18]

[19]

Operational problem

Microgrid operation

Voltage regulation

Optimal power flow

Energy dispatch

Optimal energy system 
dispatch

Home energy 
management

Electric vehicle (EV) 
in microgrid

Microgrid energy 
management

Cooling system control

EV charging/
discharging operation

Distribution network 
operation

Voltage regulation

Microgrid operation

Energy management

Energy hub trading

Microgrid operation

Distribution network 
operation

EV management

Constraint enforcement 
approach

Penalty function

Primal-dual DDPG

Primal-dual SAC

Constrained policy 
optimization

Gaussian process

Lagrange SAC

Safe layer

Safe layer

Q-network formulated 
MIP

Safe layer

Gaussian process or 
safe layer

Action projection

Constrained policy 
optimization

Is open-
accessed?

No

Yes

No

No

Yes

No

No

No

No

No

No

Yes

Yes

No

No

No

No

The optimal dispatch of ESSs mandates strict operational 

constraints so that the safety and feasibility can be guaran‐
teed, especially during the online execution [25]. Although 
the safe DRL algorithms presented in Table I notably en‐
hance the constraint enforcement capabilities and mitigate 
the violations significantly during the training, a significant 
challenge persists: these algorithms cannot provide control 
decisions with a theoretical guarantee of constraint enforce‐
ment during the online execution. This limitation poses a 
substantial barrier to the widespread implementation of DRL 
algorithms for the optimal dispatch of ESSs. It is paramount 
to ensure the action feasibility in real-time applications, not 
only for the operation reliability of ESSs but also for the 
broader adoption and trust in DRL solutions within this field.

In our previous work [25], a value-based safe DRL algo‐
rithm is proposed to address the microgrid operation prob‐
lem with strict constraint enforcement of power balance 
equality. This work integrates the optimization techniques 
with DRL theory, representing the trained Q-network as a 
mixed-integer programming (MIP) formulation. Leveraging 
this innovative approach, we now broaden the scope of our 
research to conceptualize and develop a more versatile and 
comprehensive framework that strictly enables state-of-the-
art (SOTA) actor-critic DRL algorithms to enforce the opera‐
tional constraints. This framework is called MIP-DRL. Dis‐
tinct from our earlier contribution, the proposed MIP-DRL 
framework is not confined to a specific algorithm but is envi‐
sioned as a general framework that can empower many stan‐
dard actor-critic DRL algorithms to enforce the operational 
constraints. Our contributions are systematically structured 
to highlight the innovation and applicability of the proposed 
MIP-DRL framework, as follows.

1) We propose the MIP-DRL framework to enforce opera‐
tional constraints with strict adherence during the online op‐
erations. Utilizing the robust constraint enforcement capabili‐
ties of MIP, the proposed MIP-DRL framework ensures com‐
pliance with operational constraints, guaranteeing zero con‐
straint violations during the online execution. This innova‐
tion extends the theoretical underpinnings of DRL applicabil‐
ity and enables the feasibility of its real-time applications.

2) The proposed MIP-DRL framework broadens its utility 
across diverse DRL algorithms that employ DNNs for Q-
function approximation. We implement and test the proposed 
MIP-DRL framework with SOTA standard DRL algorithms 
such as DDPG and SAC, demonstrating the capability to 
strictly enforce the operational constraints.

3) Demonstrating its practical efficacy, the proposed MIP-
DRL framework is used to address the complex challenge of 
the optimal dispatch problem for ESSs in distribution net‐
works. The results illustrate the performance superiority of 
the proposed MIP-DRL framework over existing standard or 
safe DRL algorithms to improve the performance and ensure 
action feasibility, even in unseen scenarios.

II. MATHEMATICAL FORMULATION FOR OPTIMAL DISPATCH 
PROBLEM OF ESSS 

The optimal dispatch of ESSs in a distribution network 
can be modeled using the nonlinear programming (NLP) for‐
mulation given by (1) - (11). The objective function in (1) 
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aims to minimize the total operational cost over the time ho‐
rizon T, comprising the cost of importing power from the 
main grid. The operational cost at time step t is settled ac‐
cording to the day-ahead electricity prices ρ t in €/kWh.

min
P B

mt"mÎB"tÎ T

ì
í
î

ïï
ïï∑tÎ T

 
é

ë

ê
êê
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û

ú
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úρ t∑

mÎN
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mt -P PV

mt )Dt
ü
ý
þ

ïï
ïï

(1)
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nmÎL

Pnmt - ∑
mnÎL
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mnt )+P B
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mt =

P D
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∑
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mnÎL
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-
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2
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The steady-state operation of distribution network is mod‐
eled by the load flow sweep method, as shown in (2)-(5), in 
terms of the active power Pmnt, reactive power Qmnt, and cur‐
rent magnitude Imnt of line mn at time step t, and the voltage 
magnitude of node m at time step t Vmt. Formula (6) models 
the state of charge (SOC) dynamics of ESSs in set B, while 
(7) enforces the SOC limits, and BÍN. Finally, (8) enforces 
the discharging/charging limits of ESSs, (9) and (10) enforce 
the voltage magnitude and line current limits, respectively, 
while (11) enforces that only one node is connected to the 
substation. Notice that to solve the above NLP formulation, 
all long-term operational data (e. g., expected PV generation 
and consumption) must be collected to properly define the 
dispatch decisions of ESSs, while the power flow formula‐
tion must also be considered to enforce the voltage and cur‐
rent magnitude limits.

In the formulated problem, we assume that only PV pan‐
els and ESSs are installed in the distribution networks. The 
active power flexibility provided by the dispatch of ESSs is 
used to provide economic benefits and ensure safe voltage 
magnitude levels for the distribution network. It should be 
mentioned that the ESS model can be further refized, includ‐
ing a detailed physical dynamic model, e. g., efficiency 
curves, temperature, and degradation. However, since this pa‐

per aims to assess the performance of the proposed MIP-
DRL framework, the ESS dynamics are simplified using the 
linear model [12].

III. MDP FORMULATION FOR DISPATCH PROBLEM OF ESSS 

The above mathematical formulation can be modeled as a 
finite MDP, represented by a 5-tuple (SAPRγ). The deci‐
sion of which action at is chosen in a particular state st is 
governed by a policy π(at|st ). In a standard RL algorithm, an 
RL agent employs the policy π(at|st ) to interact with the for‐
mulated MDP, which defines a trajectory of states, actions, 
and rewards: τ = (s0a0s1a1). Here, the goal of RL agent 
is to estimate a policy that maximizes the expected discount‐

ed return J(π)=Eτ  π( )∑
tÎ T
γtrt , where Eτ  π is the expectation 

of the trajectory distribution under the current policy; and ∑
tÎ T
γtrt is the cumulative return.

Different from the standard RL algorithm, in a constrained 
MDP, the RL agent aims to estimate a policy π confined in a 
feasible set ΠC ={π: JCi

(π)£ 0i = 12}, where JCi
(π)=

Eτ  π( )∑
tÎ T
γtCit  is a cost-based constraint function induced by 

the constraint violation functions Cit (×)i = 12; and ∑
tÎ T
γtCit is the cumulative constraint violation. Based on 

these definitions, a constrained MDP can be formulated as a 
constrained optimization problem:

ì

í

î

ïïïï

ïïïï

max
π

J(π)=Eτ  π( )∑
tÎ T
γtrt

s.t.  JCi
(π)£ 0        "i = 12

(12)

A more detailed MDP description for the optimal dispatch 
problem of ESSs is presented below.

The state st = (P N
mt|mÎNρ tSOC B

mt|mÎBt) denotes the operat‐
ing status of the distribution network that the agent can ob‐
serve. The PV generation P PV

mt and consumption P D
mt, day-

ahead electricity price ρ t, and current time step t belong to 
endogenous features, which are independent of the agent ac‐
tions, while SOC B

mt belongs to exogenous features, which de‐
pends on the agent action and previous state st - 1.

The action at = (P B
mt|mÎB ), which refers to the charging/dis‐

charging dispatch for the ESS connected to node m in the 
distribution network. atÎA, and A is a continuous space.

Given the state st and action at, the system transiting to 
the next state st + 1 is defined by the transition probability:

P(St + 1Rt|StAt )= Pr{St + 1 = st + 1Rt = rt|St = stAt = at }    (13)

The transition probability function P models the endoge‐
nous distribution network and ESS dynamics, determined by 
the physical model of the distribution network and ESSs, 
and the exogenous uncertainty caused by the PV generation, 
demand consumption, and day-ahead electricity price dynam‐
ics. In practice, it is not possible to build an accurate mathe‐
matical model for such a transition probability function. Nev‐
ertheless, the model-free RL algorithms do not require prior 
knowledge of function P as it can be implicitly learned by 
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interacting with the environment.
RL algorithms can learn representative operation strategies 

from interactions with the environment. To achieve this goal, 
the environment must provide a reward rt to quantify the 
goodness of any action taken during the interaction process. 
In this case, the raw reward is defined as the negative value 
of the operational cost for the distribution network, i.e.,

 Rt (stat )= rt =-ρ t

é

ë

ê
êê
ê∑

mÎN
(P D

mt +P B
mt -P PV

mt )
ù

û

ú
úú
úDt (14)

DRL algorithms optimize the operational costs while ad‐
hering to the operational constraints of ESSs and the distribu‐
tion network. These constraints include the SOC limit (7), 
the maximum discharging/charging limit (8), and voltage 
magnitude constraint (9). While constraints on action spaces 
((7) and (8)) are straightforward to enforce through action 
boundaries, the voltage magnitude constraint (9) requires ad‐
dressing the physical dynamics of the distribution network. 
To manage these limits, the constraint violation functions 
Cmt are integrated into the reward function (14) as penalties, 
converting the constrained optimization problem (12) into an 
unconstrained one, redefined as:

rt =-ρ t

é

ë

ê
êê
ê∑

mÎN
(P D

mt +P B
mt -P PV

mt )
ù

û

ú
úú
úDt - σ∑

mÎB
Cmt (Vmt )    (15)

where σ balances the operational costs against penalties for 
constraint violations. The constraint violation functions Cmt 
in (15) can be modeled using different functions, e. g., L2 
function, which is defined as [12]:

Cmt =min
ì
í
î
0
-
V - -V

2
- |V0 -Vmt |üý

þ
 "mÎB (16)

Nevertheless, it is critical to notice that enforcing opera‐
tional constraints by only adding a penalty term into the re‐
ward function during the training might lead to infeasible op‐
erational states during the online execution, as observed in 
[14]. To address this, we propose the MIP-DRL framework, 
leveraging constraint enforcement capabilities of MIP to en‐
sure feasible solutions during the online execution.

IV. CONSTRAINT ENFORCEMENT OF PROPOSED MIP-DRL 
FRAMEWORK 

The proposed MIP-DRL framework is defined through 
two main procedures: ① training, where the Q-function is 
approximated, and ② deployment, which is executed during 
the online decision-making. Both of these procedures are ex‐
plained in detail below [39]-[46].

A. Step-by-step Training

The step-by-step training for the proposed MIP-DRL 
framework integrates concepts from actor-critic DRL algo‐
rithms, including DDPG [39], twin delayed deep determinis‐
tic policy gradient (TD3) [40], and SAC [44], within a uni‐
fied training procedure. Figure 1 illustrates the interaction of 
the actor πω (×) (also known as policy) and critic Qθ (×) (also 
known as Q-function) models with the environment (distribu‐
tion network). Initially, the parameters of actor πω (×) and crit‐
ic Qθ (×) are randomly initialized. The training progresses 

through interaction with the environment: actions at are sam‐
pled from the actor model, prompting the environment to 
transition to new states and generate rewards, as shown in 
Fig. 1(a). These state transitions and rewards inform the stor‐
age of transition tuples (statrtst + 1 ) in a replay buffer R. 
Subsequently, the subsets of these tuples are used to itera‐
tively update the actor and critic models, enhancing the per‐
formance of policy and accuracy of Q-function estimation.

In general, the main objective of actor-critic algorithms is 
to approximate a good policy network πω (×) while the Q-
function is used during exploration to improve the quality of 
the policy network. After training, the Q-function Qθ (×) is 
discarded. Different from this procedure, the proposed MIP-
DRL framework follows the actor-expert definition [45], 
which aims to get an optimal action based on the optimal Q-
function Qθ (×). Thus, during the training, the policy network 
πω (×) is only used to explore and exploit new states and ac‐
tions to improve the quality of Q-function Qθ (×), while the 
policy network πω is discarded. Once a good-quality repre‐
sentation of Q*

π (×) is obtained via the optimal Q-function Q̂(×), 
the state st and optimal actions at can be sampled from the 
optimal policy, i.e., at~π

* (st ), which is obtained as:

π* (st )= max
aÎA

Q̂(sta) (17)

As a result, the training procedure for the MIP-DRL algo‐
rithms, i. e., MIP-DDPG, MIP-TD3, and MIP-SAC, resem‐

Δ

θ

Δ

ω

ω
Q-function

Qθ(·)

Policy

πω(·)

Replay buffer
(st, at, rt, st+1)

at~πω(st)

st

st+1

rt

Environment

Interaction

(a)

(b)

(c)

System

parameters

Environment

System

measurements

State transition

Reward Power flow solver

Battery

dispatch

st

rt

at

st

at

st πω(st)

Qθ(st, at)

Policy exploration 

Q-function

at

Fig. 1.　Training of proposed MIP-DRL framework. (a) Interaction with en‐
vironment. (b) Environment (distribution network). (c) Policy network 
πω (st ).
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bles that of their corresponding standard DRL algorithms. 
Nevertheless, the actions defined using only such a Q-func‐
tion Qθ (×) cannot strictly enforce the operational constraints 
during the online execution. To overcome this, the proposed 
MIP-DRL framework leverages the MIP formulation of the 
trained Q-function Qθ (×) to enforce operational constraints 
during the online execution.

B. Constraint Enforcement During Online Execution

The trained Q-function Qθ (×) obtained from MIP-DRL al‐
gorithms with fixed parameters θ can be transformed into an 
MIP model, facilitating the operational constraint enforce‐
ment during the online execution. This transformation en‐
ables the incorporation of system constraints directly into the 
action decision process, as detailed in [25].

Based on the definitions in [25], the Q-function Qθ (×) ob‐
tained from trained MIP-DRL algorithms with fixed parame‐
ters θ can be modeled as a valid MIP problem [46]:
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Each layer kÎ{01K} in DNN-formulated Q-function 
has Uk units, with j being the unit index in layer k. We de‐
note the output vector of layer k as xk =[xk

j ], j = 12Uk. 
The weights wk - 1

ij  and biases bk
j  are fixed (constant) parame‐

ters, and the same holds for the objective function costs ck
j  

and d k
j . The activation function output for each unit is de‐

fined by (19), while (20) and (21) define the lower and up‐
per bounds for the x and s variables. For the input layer (k =
0), the input x0 is the same as the inputs of Q-function Qθ (×), 
i. e., state st and action at, while the defined bounds have 
physical meanings (the same limits as the inputs of Qθ (×)). 
For k ³ 1, the bounds are defined based on the fixed parame‐
ters, as explained in [25].

Then, the max-Q problem for Q-function Qθ (×) in (17) is 
equivalent to solving (18)-(21) [43]. In this case, as the deci‐
sion variables are the actions at (corresponding to the charg‐
ing/discharging dispatch of ESSs), the SOC limit (7), the 
charging/discharging limit (8), the voltage magnitude con‐
straint (9) can all be added on top of (18)-(21). As a result, 
the optimal actions obtained by solving this MIP formulation 
strictly enforce all the actions and operational constraints of 
environment. A general mathematical proof of the optimality 
for the proposed MIP-DRL framework is presented in [25]. 

This integrated MIP formulation can be represented as:
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(22)

To better understand the MIP formulation, Fig. 2 shows a 
visual representation, where a1 and a2 are the action values 
in two dimensions. Such formulation defines the linear space 
within the blue line, whose boundaries are formed by the hy‐
perplanes defined by the activation functions derived from 
the deconstructed DNN Qθ (s×) [44]. In Fig. 2, the blue 
point represents the optimal solution of (17), denoted as â. 
Note that â also corresponds to the solution of the MIP for‐
mulation in (18)-(21). Similarly, the set of constraints (7)-(9) 
forms the linear space, as represented within the dashed grey 
line. Therefore, solving the MIP formulation in (22) provides 
solution a*, which represents the optimal solution of (17) 
that simultaneously enforces the operational constraints de‐
fined by (7)-(9).

The online execution for the MIP-DRL algorithms, i. e., 
MIP-DDPG, MIP-TD3, and MIP-SAC, as shown in Algorithm 
1, takes this MIP representation, incorporating not only the 
structure of Qθ but also system-specific constraints, e.g., volt‐
age magnitude constraint. By solving the MIP formulation in 
(22), we obtain action at that maximizes the expected reward 
while strictly adhering to operational constraints, thus ensur‐
ing the feasibility and optimality of the decisions made by the 
proposed MIP-DRL framework.

V. SIMULATION RESULTS AND DISCUSSIONS 

A. Simulation Setup

1)　Environment Data and Framework Implementation
To demonstrate the effectiveness of the proposed MIP-

DRL framework, a modified IEEE 34-node test system is 
used, as shown in Fig. 3. ESSs are placed at nodes 12, 16, 

a?

a
*

a
2

a
1

Fig. 2.　Visualization representation of MIP formulation.

Algorithm 1: online execution for MIP-DDPG, MIP-TD3, and MIP-SAC

1: Extract trained parameters θ from Qθ (×)
2: Formulate Qθ (×) as an MIP formulation according to (18)-(21) and add 

the operational constraints (7)-(9)
3: Extract initial state s0 based on real-time data
4: for t ∈ T  do
5: Get the optimal action by solving (22) using commercial MIP solvers 

for state st

6: end for
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27, 30, and 34 due to their higher chances of over- and un‐
der-voltage issues. The training data used corresponds to his‐
torical day-ahead electricity prices in the Dutch market, 
while load and PV generation measurements with a 15-min 
resolution are provided by a DSO. The original one-year da‐
taset is divided into two additional datasets: training and test‐
ing datasets. The training dataset contains the first three 
weeks of data in each month, while the testing dataset con‐
tains the remaining data. This allows the DRL algorithm to 
learn any seasonal and weekly PV generation and load con‐
sumption data [25].

Table II summarizes the key parameters for the MIP-DDPG, 
MIP-TD3, and MIP-SAC. This includes the discount factor γ, 
optimizer type, learning rate, batch size, and replay buffer size 
for each algorithm. Additionally, the specific parameters for 
the entropy in the MIP-SAC, the reward function, and the op‐
erational limits for ESSs are listed. The voltage magnitude lim‐
its are defined as 

-
V = 1.05 and -V = 0.95 p. u.. PyTorch and 

OMLT [45] packages have been used to implement the pro‐
posed MIP-DRL framework. Default settings shown in Table 
II are used for all the implemented MIP-DRL algorithms. The 
MIP-DRL algorithms are solved with Gurobi [46]. All imple‐
mented algorithms and the environment are open-accessed in 
[47] and [48].
2)　Validation and Benchmarks for Comparison

To demonstrate the superior performance of the MIP-DRL 
algorithms (MIP-DDPG, MIP-TD3, and MIP-SAC), we com‐
pare their dispatch outcomes with those of standard DRL algo‐
rithms (DDPG, TD3, and SAC) and a safe DRL algorithm 
(safe DDPG). The hyperparameters of DDPG, TD3, and SAC 
are aligned with those of MIP-DDPG, MIP-TD3, and MIP-
SAC, respectively. For safe DDPG, we adopt a linear safe lay‐
er and follow the default parameter settings as described in 
[20]. The comparison relies on two key metrics: ① operational 
cost, which reflects the economic efficiency of the schedules, 
and ② cumulative penalty for voltage magnitude violations, 
indicating the ability to enforce constraints during the online 
execution of these algorithms. Furthermore, we also use the 
optimal global solution based on a perfect forecast for the next 
24 hours as the benchmark. This optimal solution is obtained 
by solving the NLP formulation in Section III, implemented 
using Pyomo and IPOPT solver.

B. Performance of MIP-DRL Algorithms on Training Set

Figure 4 displays the average total reward (15), operation‐
al cost (the first term in (15)), and the cumulative penalty of 
voltage magnitude violations (the second term in (15)) dur‐
ing the training process for the MIP-DRL algorithms. The re‐
sults shown in Fig. 4 are the average of over five execu‐
tions. The average total reward increases rapidly during the 
training, while simultaneously, the cumulative penalty of 
voltage magnitude violations decreases. This is a typical 
training trajectory of the penalty-based DRL algorithms. At 
the beginning of the training process, the parameters of 
DNN are randomly initialized, and as a consequence, the ac‐
tions defined cause a high penalty of voltage magnitude vio‐
lations. Throughout the training, introducing a large penalty 
term in the reward definition in (14) leads to updating the 
parameters of DNN, resulting in higher quality of actions. It 
primarily learns to reduce the voltage magnitude violations, 
and later on improves the general performance. All three 
MIP-DRL algorithms converge at around 1000 episodes. The 
total rewards of MIP-TD3 and MIP-DDPG converge at 
2.01 ± 0.02 and 1.94 ± 0.02, respectively, and that of MIP-
SAC converges at a low value of 1.57 ± 0.01, indicating that 
MIP-SAC has a lower quality of actions. Notice that for 
MIP-DDPG and MIP-TD3, the operation costs significantly 
increase during the training process, while MIP-SAC does 
not improve after 400 episodes.

After the last training episode, the cumulative penalty of 
voltage magnitude violations of MIP-TD3 is around 1. In 
contrast, a higher cumulative penalty of voltage magnitude 
violations for the MIP-DDPG and MIP-SAC is observed at 
around 2. This result shows that MIP-DRL algorithms can ef‐
fectively learn from interactions, reducing the cumulative 
penalty of voltage magnitude violations while minimizing 
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Fig. 3.　Modified IEEE 34-node test system with distributed PV generation 
and ESSs.

TABLE II
KEY PARAMETERS FOR DIFFERENT ALGORITHMS AND ENVIRONMENT

Algorithm or 
environment

MIP-DDPG

MIP-TD3

MIP-SAC

Reward

ESSs

Parameter

γ = 0.995

Optimizer type: Adam

Learning rate: 6 ´ 10-4

Batch size: 512

Replay buffer size: 4 ´ 105

γ = 0.995

Optimizer type: Adam

Learning rate: 6 ´ 10-4

Batch size: 512

Replay buffer size: 4 ´ 105

γ = 0.995

Optimizer type: Adam

Learning rate: 6 ´ 10-4

Batch size: 512 

Replay buffer size: 4 ´ 105 

Entropy: fixed

σ = 400
-
P

B
= 100 kW- P

B =-100 kW- -- -----
SOC

B
= 0.8- -- -----SOC B =

0.2 ηB
c = 0.98ηB

d = 0.98

603



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 2, March 2025

the total operation cost by learning to dispatch the ESSs cor‐
rectly. However, these trained policies cannot strictly enforce 
voltage magnitude constraints. If such algorithms are used di‐
rectly during the online execution, they might lead to infeasi‐
ble operation, causing voltage violations.

C. Constraint Enforcement Capabilities and Performance

Figure 5 displays the voltage magnitudes of the nodes to 
which the ESSs are connected, the SOC of ESSs, and day-
ahead electricity price during a typical day in the test datas‐
et. The results in Fig. 5(c) - (h) are obtained after using the 
dispatch decisions provided by the MIP-DDPG, MIP-TD3, 
and MIP-SAC. As can be observed in Fig. 5(a), if the opera‐
tion of ESSs is disregarded, the voltage magnitude at node 
27 faces under-voltage problems during 14:00-16:00 and 18:
00-20: 30. Thus, a proper dispatch of the available ESSs 
must enforce that such voltage magnitude constraints are 
met. As all the MIP-DRL algorithms dispatch the ESS con‐
nected to node 27 in the discharging mode during 14:00-16:
00 and 18: 00-20: 30, all under-voltage issues are solved. In 
terms of dispatch decisions, all the MIP-DRL algorithms 
first learn to discharge all ESSs to the minimum SOC during 
00: 00-06: 00, as observed in Fig. 5(b), (f), and (h). Then, all 

ESSs are dispatched in the charging mode during 10:00-17:00 
when the electricity price is low, and then operate in the dis‐
charging mode during 16:00-22:00. This operational dispatch 
during the peak consumption period reduces the amount of 
power consumption while simultaneously solves the under-
voltage issues. Compared with the MIP-DDPG, the MIP-
TD3 and MIP-SAC provide more conservative dispatch deci‐
sions, leading to higher operational costs. The operational 
cost resulting from the dispatch defined by the MIP-DDPG 
is 13.87 k€, which is 3.1% and 7.5% lower than the dispatch 
defined by MIP-TD3 and MIP-SAC, respectively.

D. Performance Comparison with Benchmarks

Figure 6 displays the charging/discharging decisions and 
SOC changes of the ESS connected to node 27 provided by 
the MIP-DDPG, safe DDPG, and standard DDPG as well as 
the optimal solution provided by solving the NLP formula‐
tion. Compared with the optimal solution provided by solv‐
ing the NLP formulation, the dispatch decisions provided by 
the MIP-DDPG in Fig. 6(c) show a similar operation pat‐
tern, especially in the afternoon when the electricity price 
changes dynamically, as shown in Fig. 5(b). As expected, 
when the electricity price is low during 10: 00-14: 30, the 
MIP-DDPG dispatches the ESS in the charging mode, while 
when the electricity price is high during 17: 00-22: 00, the 
ESS is dispatched in the discharging mode. In this sense, the 
standard DDPG and safe DDPG capture and exploit such ar‐
bitrage opportunities. Although the MIP-DDPG fails to cap‐
ture such behavior for this specific ESS, the decisions de‐
fined for the remaining ESSs ensure a maximization of prof‐
its without voltage magnitude violations. In this case, the 
costs of dispatch decisions provided by the standard DDPG 
and safe DDPG are 22.3% and 27.3% higher than that by 
the MIP-DDPG, respectively. This shows that the standard 
DDPG and safe DDPG fail to fully leverage and coordinate 
all ESSs connected to the distribution network.

Figure 7 displays the voltage magnitude of node 27 to 
which an ESS is connected. Without the dispatch of ESSs, 
node 27 suffers serious under-voltage conditions during 14:30-
15:30 and 17:30-21:00 due to overloading. As expected, the 
dispatch decisions provided by the MIP-DDPG strictly en‐
force the voltage magnitude constraints due to the feasibility 
guarantee. In contrast, although the dispatch decisions pro‐
vided by the standard DDPG and safe DDPG can significant‐
ly alleviate the under-voltage condition, they fail to enforce 
voltage magnitude constraints during several time periods 
such as 18:30-19:30 and 20:00-21:00. These results indicate 
that the constraint enforcement capabilities of both standard 
DDPG and safe DDPG are not capable of handling complex 
stochastic environments (such a distribution network), and 
even the projection layer deployed by the safe DDPG fails 
to map the relationship between actions and constraints accu‐
rately, ultimately deploying unfeasible actions.

Comparing the optimal solution provided by solving the 
NLP formulation, it can be observed that the MIP-DRL algo‐
rithms dispatch the ESSs following a more conservative ap‐
proach (see charging/discharging behavior in Fig. 5(d)). The 
MIP-DRL algorithms generally avoid charging all ESSs to 
the maximum SOC when the electricity price is low. 
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This can be considered a sub-optimal decision. In this 
case, the operational cost resulting from the dispatch deci‐
sions provided by MIP-DDPG, MIP-TD3, and MIP-SAC are 
9.5%, 12.9%, and 18.4% higher, respectively, than the opti‐
mal solution provided by the NLP formulation. The differ‐
ence in this dispatch decision can be due to the estimated Q-
function, which might not be good enough to represent the 
true Q-function. As the MIP-DRL algorithms choose actions 

that maximize the Q-value estimation, the largest Q-value 
might not represent the best action for this specific state-ac‐
tion pair. Nevertheless, even in executing a sub-optimal deci‐
sion, the MIP-DRL algorithms enforce all voltage magnitude 
constraints, guaranteeing the operational feasibility. On the 
other hand, the safe DRL algorithm, i.e., safe DDPG, fails to 
enforce voltage magnitude constraints strictly, as the safe lay‐
er cannot track the dynamics of complex environments.
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Fig. 5.　Voltage magnitude of nodes to which ESSs are connected, SOC of ESSs, and day-ahead electricity price. (a) Voltage magnitude of nodes (without 
operation of ESSs). (b) Day-ahead electricity price. (c) Voltage magnitude of nodes (MIP-DDPG). (d) SOC of ESSs (MIP-DDPG). (e) Voltage magnitude of 
nodes (MIP-TD3). (f) SOC of ESSs (MIP-TD3). (g) Voltage magnitude of nodes (MIP-SAC). (h) SOC of ESSs (MIP-SAC).
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E. Error Assessment and Computational Performance

Table III presents the average error (with respect to opti‐
mal solution provided by solving the NLP formulation) of 
the operational cost, the average number of voltage magni‐
tude violations, and the total average computational time of 
the MIP-DRL algorithms as well as their benchmark DRL al‐
gorithms over 30 test days. As can be seen in Table III, the 
MIP-TD3, MIP-DDPG, and MIP-SAC can strictly enforce 
the voltage constraints. Among all these MIP-DRL algo‐
rithms, MIP-DDPG has the lowest average error, i.e., 10.4%. 
In contrast, their standard counterparts, such as DDPG, show 

poor performance, with an error of 34.3%, and the voltage 
magnitude constraint violations in around 45 time steps. As 
expected, the computational time required to execute the 
MIP-DRL algorithms is higher than standard DRL algo‐
rithms. This increase in the computational time is due to the 
MIP formulation to be solved to enforce all the operational 
constraints (see (22)). Nevertheless, in this case, the MIP-
DRL algorithms can still be used for real-time operation as 
they only require less than 60 s for one-day (96 time steps) 
execution.

F. Scalability Analysis

Table IV presents the performance of MIP-DDPG in distri‐
bution networks with different sizes. Table IV includes the 
training time, computational time, number of voltage magni‐
tude violations, and error of operational cost for networks 
with 34, 69, and 123 nodes. The training time increases with 
the size of distribution network, as expected. This increase is 
primarily due to the time required to solve the power flow 
equations during the training process. As the size of distribu‐
tion network grows, the complexity of solving these equa‐
tions increases, leading to longer training time. The error of 
operational cost remains consistent across different sizes, 
ranging from 10.1% to 11.3%. This suggests that the size of 
distribution network does not significantly impact the perfor‐
mance of MIP-DDPG. Moreover, the MIP-DDPG successful‐
ly enforces voltage constraints in all the tested networks, as 
evidenced by the absence of voltage magnitude violations. 
Finally, the computational time does not increase significant‐
ly with the size of distribution network. This is because the 
computational time is primarily influenced by the size of Q-
network used in the MIP formulation. Once the Q-network 
is trained, the execution phase involves solving the MIP, 
which only depends on the complexity of Q-network.

TABLE IV
PERFORMANCE OF MIP-DDPG IN DISTRIBUTION NETWORKS WITH 

DIFFERENT SIZES

Node 
number

34

69

123

Training 
time (hour)

4.0

4.7

6.5

Computational 
time (s)

43±5.1

49±6.9

53±3.4

Number of 
voltage 

magnitude 
violations

0

0

0

Error of 
operational 

cost (%)

10.4±0.7

10.1±0.9

11.3±0.7
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Fig. 6.　Charging/discharging decisions and SOC changes of ESS connect‐
ed to node 27 provided by different algorithms. (a) NLP formulation. (b) 
MIP-DDPG. (c) DDPG. (d) Safe DDPG.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT DRL ALGORITHMS

Algorithm

MIP-TD3

MIP-DDPG

MIP-SAC

TD3

DDPG

SAC

Safe-DDPG

Error of 
operational cost (%)

13.2±0.5

10.4±0.7

19.3±1.5

28.5±0.4

34.3±0.7

32.2±0.5

39.7±0.8

Number of voltage 
magnitude violations

0

0

0

33±2

45±11

44±17

41±1

Computational 
time (s)

57±6.7

43±5.1

57±6.3

16±0.1

16±0.1

16±0.1

37±0.1
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VI. DISCUSSION 

We have successfully combined deep learning and optimi‐
zation theory to bring constraint enforcement to DRL algo‐
rithms. By using the trained Q-network as the surrogate func‐
tion of the optimal operational decisions, we have guaran‐
teed the optimality of the action from the Q-network through 
the MIP formulation. Moreover, by integrating the voltage 
constraints into the MIP formulation, the feasibility of the ac‐
tion is enforced. However, the performance of MIP-DRL al‐
gorithms is determined by the approximation quality of the 
Q-network obtained after the training process. During this 
training process, the Q-iteration faces the exploration v.s. ex‐
ploitation dilemma, which can impact the approximation 
quality. For instance, the MIP-DDPG outperforms the MIP-
TD3, while the MIP-SAC performs poorly. This discrepancy 
may be caused by the divergence between the exploration 
policies, leading to different exploration efficiencies and Q-
network update rules. The conservative performance of the 
MIP-SAC might be caused by the soft Q-network update 
rule, which introduces more assumptions, impacting the esti‐
mation for accurate approximation.

Formulating a trained Q-network as an MIP problem intro‐
duces extra computational time due to the maximization of 
the Q-value function. In this case, such an MIP formulation 
is considered to be a nondeterministic polynomial (NP) com‐
plete problem. The worst-case computational time grows ex‐
ponentially with the number of integer variables, which is 
proportional to the total number of ReLU activation func‐
tions used. However, the computational time can be greatly 
reduced by various techniques like improved branch-and-
bound, and customized ReLU function algorithms [46]. Pre‐
vious research shows that only 0.8 s are needed for solving 
an MIP problem formulated by a network with 300 ReLU 
units [49]. In our experiments, the MIP-DRL algorithms re‐
quired less than 60 s for execution, supporting the applicabil‐
ity of MIP-DRL algorithms in real systems. In summary, the 
MIP-DRL algorithms can provide good quality dispatch deci‐
sions while strictly enforcing all voltage magnitude con‐
straints, leading to high-quality feasible decisions. Compared 
to standard DRL algorithms, this superiority is achieved by 
directly transforming the Q-network (after training) as an 
MIP formulation, defining the optimal solution instead of le‐
veraging an approximated policy. The operational constraints 
are added on top of the obtained MIP formulation, guarantee‐
ing feasibility.

VII. CONCLUSION 

This paper proposes an MIP-DRL framework to define 
high-quality dispatch decisions (in terms of the total opera‐
tional cost) for ESSs in a distribution network, while ensur‐
ing their technical feasibility (related to enforcing voltage 
magnitude constraints). The proposed MIP-DRL framework 
consists of a Q-iteration and deployment procedure. During 
the Q-iteration procedure, a DNN is trained to represent the 
accurate state-action value function. Then, during the deploy‐
ment procedure, this Q-function DNN is transformed into an 
MIP formulation that can be solved by commercial solvers. 

Results show that the dispatch decisions defined by MIP-
DRL algorithms can ensure zero voltage magnitude viola‐
tions while standard DRL algorithms fail to meet such con‐
straints in uncertain scenarios. Additionally, the MIP-DRL al‐
gorithms show less errors compared with the optimal solu‐
tion obtained with a perfect forecast of the stochastic vari‐
ables.
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