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Abstract——With the development of the carbon markets 
(CMs) and electricity markets (EMs), discrepancies in prices be‐
tween the two markets and between two time periods offer prof‐
it opportunities for generation companies (GenCos). Motivated 
by the carbon option and Black-Scholes (B-S) model, GenCos 
are given the right but not the obligation to trade carbon emis‐
sion allowances (CEAs) and use instruments to hedge against 
price risks. To model the strategic behaviors of GenCos that 
capitalize on these cross-market and cross-time opportunities, a 
multi-market trading strategy that incorporates option-jointed 
daily trading and reinforcement learning-jointed weekly contin‐
uous trading are modeled. The daily trading is built with a bi-
level structure, where a profit-oriented bidding model that joint‐
ly considers both the optimal CEA holding shares and the best 
bidding curves is developed at the upper level. At the lower lev‐
el, in addition to market clearing models of the day-ahead EM 
and auction-based CM, a B-S model that considers carbon trad‐
ing asynchronism and option pricing is constructed. Then, by 
expanding the daily trading, the weekly continuous trading is 
modeled and solved using reinforcement learning. Binary expan‐
sion and strike-to-spot price ratio are utilized to address the 
nonlinearity. Finally, case studies on an IEEE 30-bus system are 
conducted to validate the effectiveness of the proposed trading 
strategy. Results show that the proposed trading strategy can in‐
crease GenCo profits by influencing market prices and leverag‐
ing carbon options.

Index Terms——Multi-market trading, carbon market, electrici‐
ty market, Black-Sholes model, carbon option, reinforcement 
learning.

NOMENCLATURE

A. Indices and Sets

Ωg Generator set in generation company (GenCo) 
g

φS
n, φ

N
n Generator set and node set at node n

g Index of GenCos

h Index of selling block in carbon market (CM)
i Index of generators
k Index of buying block in CM
mn Indices of power network nodes
t Index of time periods
v Index of selling block in electricity market 

(EM)

B. Parameters and Constraints

αCSmin
ih αCSmax

ih The minimum and maximum carbon emission 
allowance (CEA) prices of generator i in each 
selling block h

αCBmin
ik αCBmax

ik The minimum and maximum CEA prices of 
generator i in each buying block k

αGmin
iv αGmax

iv The minimum and maximum electricity prices 
of generator i in each selling block v

β Ratio between strike price of carbon option 
and CM clearing price (i.e., strike-to-spot 
price ratio)

ξ Volatility rate of CEA prices

σ Variance value of predicted CEA price
μ Expected value of predicted CEA price

ρ Soft update coefficient

λC
minλ

C
max Lower and upper values of CM clearing price

λG
iv Generation cost of generator i related to bid‐

ding block v
λRSλRB Selling and buying prices for CEA reserve
Bnm Admittance between nodes n and m
M A sufficiently large positive number
P D

nt Power demand of node n at time t
P Gmin

iv P Gmax
iv Lower and upper EM bidding limits of genera‐

tor i in block v
P min

it P
max
it The minimum and maximum power genera‐

tions of generator i at time t
P Lmax

nm Line capacity between nodes n and m
Q Expansion coefficient
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QBmin
k QBmax

k Lower and upper limits during CEA buying of 
block k

QSmin
h QSmax

h Lower and upper limits during CEA selling of 
block h

Qtrans
i Surplus or deficit CEA allowed for transfer of 

generator i
r Continuously compounded risk-free rate
r pre

d Price premium ratio of carbon option
RURD Ramping up and down limits
T Number of daily time periods
T1 Expiration time of carbon option

C. Variables

λE
nt Locational marginal price at node n at time t
λFSλFB Future selling and buying prices of CM
λC CM clearing price
δm/nt Voltage angle at each node m or n at time t
αCS

ih/kα
CB
ih/k Selling and buying prices of CEA of generator 

i in block h or k
αG

iv Bidding price of generator i in block v
θϕ Weight coefficients of critic and actor net‐

works
πϕ Actor network with weight ϕ

φεκ Lagrangian multipliers from individual sides 
of each constraint

C SH
g C BH

g Costs of buying put and call options of GenCo 
g

C callC put Call and put option prices
d1d2 Intermediate variables
I base

i Carbon emission intensity (CEI) benchmark 
of generator i

Ii Real CEI of generator i
L Loss function of actor network
P G

ivt Power generated by of generator i in block v 
at time t

ps Strike price of carbon option

Qnet
i Net surplus CEA of generator i

QS
ih/kQ

B
ih/k Selling and buying amounts of CEA of genera‐

tor i in block h or k
QST

i QBT
i Selling and buying amounts of CEA of genera‐

tor i
QSH

g QBH
g Holding amounts of CEA for seller and buyer 

of GenCo g
QSHT

id QBHT
id Transferred holding amount of CEA of genera‐

tor i for seller and buyer on day d to the next 
day

r min
d Forced transaction ratio of CM on day d

rewardd Reward achieved after action on day d
RE

g Income of GenCo g in EM

RCS
g C CB

g Income and expense of selling and buying 
amounts of CEA of GenCo g in CM at present

RFS
g C FB

g Income and expense of selling and buying 
amounts of CEA of GenCo g in CM in future

stated State array of reinforcement learning on day d

ui Auxiliary binary variable of generator i
Vθ1

Vθ2
Critic networks with different weights θ1 and 
θ2 

Y Estimated value of state

I. INTRODUCTION

AS the carbon markets (CMs) and electricity markets 
(EMs) evolve, power generators are confronted with 

the challenge of integrating power production with carbon 
mitigation within their EM-CM trading strategies. Fluctua‐
tions in equivalent prices across different time and markets 
create unique profit opportunities. Traditional trading strate‐
gies that concentrate exclusively on EMs fail to account for 
carbon obligations and are ill-equipped to exploit these new‐
ly emerging profit landscapes.

In CMs, generators must provide an equivalent quantity of 
carbon emission allowances (CEAs) to counterbalance their 
real carbon emissions at the end of each compliance period 
[1]. These CEAs are first distributed by governments in the 
primary CM [2], and can then be traded among generation 
companies (GenCos) in the daily secondary CM [3]. In gen‐
eral, there are two types of allocation mechanisms: auction-
based allocation (ABA) and output-based allocation (OBA). 
The ABA mechanism is used by the European Emissions 
Trading System [4] and Regional Greenhouse Gas Initiative 
[5], which requires generators to buy CEAs through auc‐
tions. By contrast, the OBA mechanism implemented in Chi‐
na and Canada [6], [7] grants GenCos complementary CEAs 
equal to the baseline carbon emission intensity (CEI) per 
unit of power generated.

Regarding the OBA, generators experience either gains or 
losses based on their actual CEI relative to the baseline val‐
ue [8]. GenCos that act as sellers with a lower CEI than the 
baseline can benefit from selling surplus CEAs. By contrast, 
GenCos with a higher CEI incur losses as buyers. These dy‐
namics subsequently affect the behavior of GenCos in the 
EM, where bidding prices are adjusted for arbitrage or loss 
conduction [9]. Consequently, generators must consider the 
implications of cross-market trading. In addition, given the 
asynchronism between the annual compliance and daily 
transactions of CEAs, GenCos may hold their CEA shortag‐
es or surpluses for more favorable prices in the future. There‐
fore, generators must also consider cross-time trading in the 
CM.

Cross-market trading in CMs and EMs has been widely 
analyzed and can generally be categorized into three groups. 
The first group focuses solely on the end-user side. Based 
on peer-to-peer transactions, a total emission cap decomposi‐
tion method for prosumers and a suitable carbon-aware pric‐
ing scheme are proposed in [10] and [11], respectively. In 
[12], carbon-electricity integrated optimal bidding strategies 
for a power plant are studied. In [13] and [14], transactive 
trading strategies are designed for microgrids in the energy 
market. Other studies have been conducted based on various 
demand-side resources [15], [16]. The second group has 
shed some light on the generation side. In [17] and [18], an 
optimal price-taker trading strategy and a risk-seeking sto‐
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chastic offering strategy for wind power are proposed, re‐
spectively. Strategic reactions and the corresponding equilib‐
ria for power producers in the EM, CM, and natural gas mar‐
ket are modeled in [19]. The last group attempts to link the 
transmission and distribution sides using a carbon flow trac‐
ing technique [20]. In [21], a hierarchical EM-CM frame‐
work is developed, where the peer-to-peer transaction results 
are used for carbon responsibility measures. However, most 
existing studies have focused on the ABA mechanism for 
CEAs, wherein market participants can only buy CEAs in 
CMs. Although some studies such as [22] have indicated the 
differences between ABA and OBA mechanisms, these stud‐
ies all assume that the CEA price is predefined and remains 
static. However, the generators under the OBA can be either 
CEA buyers or sellers, and the CM clearing price, in prac‐
tice, is dynamically determined by demand and supply, mak‐
ing the aforementioned strategies unsuitable.

Cross-time arbitrage in EMs for generators has been thor‐
oughly analyzed, which is primarily based on price-forecast‐
ing techniques [17] and long-term forward contracts [23]. 
Notably, via the forward or futures EM contract, generators 
can settle the future selling price (called the strike price) pri‐
or to physical delivery in the spot market. Thus, once the 
strike price is higher than the spot price (also known as the 
stock price), cross-time profits can be achieved [24]. Even if 
the spot price is higher, this type of financial derivative tool 
can be used to hedge against risks.

A similar derivative market also exists in CMs as the car‐
bon option [25], which is a practical instrument for genera‐
tors to hedge against the risks of CEA price fluctuations 
[26]. Carbon options provide buyers with the right but not 
the obligation to buy or sell CEAs at a predetermined price 
and date [23]. On the one hand, the carbon option can en‐
sure CEA delivery in the future and prevent economic losses 
from shortfall penalty or surplus logout. On the other hand, 
the carbon option provides a cross-time profit space between 
the strike prices and exercise date stock prices [27]. Take 
CEA buyers as an example. The generator may prefer to buy 
CEAs in the future if the future price is expected to be low‐
er. The waiting risks derived from price fluctuations can be 
hedged through buying carbon options in the opposite price-
changing direction. This refers to a call option if the strike 
price is higher than the spot price; otherwise, it refers to a 
put option. By contrast, EM generators are normally sellers, 
whereas those with trading positions in the CM can be bidi‐
rectional. Few studies have considered the reality of carbon 
options in hedging against risks and making profits during 
CM trading as well as when combining the carbon option 
with the EM.

Given that carbon options can provide the aforementioned 
benefits, it is crucial to evaluate their prices for the further 
use of generators. Specifically, only after the generator 
weighs profits against the costs of carbon options can the op‐
timal CEA trading-holding portfolio be determined. The com‐
monly used pricing models of options include the Black-
Scholes (B-S) model [28], binomial model [29], and fractal 
Brownian motion model [30], with the B-S model being one 
of the most mature and widely used [31]. As most carbon 

options are based on European options [32] and the CEA 
price follows a geometric Brownian motion with constant 
volatility and no bankruptcy [30], the carbon option value 
can be calculated using the B-S model with five variables: 
the strike price of an option, current stock price, time to ex‐
piration, risk-free rate, and volatility [33]. However, in its 
nonlinear logarithmic functions, the B-S model contains sev‐
eral variables, making it mathematically complex. Therefore, 
it can be challenging to incorporate the B-S model directly 
into an optimization problem because of the nonlinearity and 
complexity involved.

Notably, in our previous work, the strategic behaviors of a 
GenCo are modeled in EM-CM markets and the effects of 
dynamic CEIs on the markets are investigated [9]. However, 
an ideal yet practical assumption was made that any carbon 
emissions not accounted for in the day-ahead electricity mar‐
ket must be promptly offset with an equivalent number of 
CEAs in the spot market. This is necessary to unify the 
multi-market trading period and foreground the effects of dy‐
namic CEI. However, in practice, asynchronism in trading 
periods exists between two markets, where the physical dis‐
patch schedules of generators must be balanced in the day-
ahead EM, whereas their surplus or deficit CEAs can be 
stocked temporally and must only be annually balanced prior 
to the end of each compliance period. Under these circum‐
stances, generators have widely adopted a hold-and-see strat‐
egy for buying CEAs in a piecemeal manner. Consequently, 
cross-market trading decisions have been expanded to in‐
clude cross-time long-term optimization problems. So far, on‐
ly a few studies have captured these features and built adap‐
tive simulation frameworks.

Based on the aforementioned investigations, three issues 
need be addressed.

1) A model must be constructed that evaluates hold-and-
see actions in the CM while jointly considering expectations, 
uncertainties, and lasting time from individual price percep‐
tions over the annual compliance period and under different 
time-waiting windows.

2) A trading strategy must be developed to simulate the 
practical behaviors of generators while considering the asyn‐
chronized interactions of EM and CM during cross-market 
and cross-time trading.

3) A reformulation method and an explainable algorithm 
must be devised to linearize and accelerate the multi-market 
bidding strategy with the derivative carbon option.

This paper thus makes the following contributions to the 
existing literature.

1) The B-S model is introduced to price the carbon option 
value and CEA hold-and-see costs under various triangular 
probability distributions that reflect an individual’s percep‐
tion of future price expectations, price variances, and wait‐
ing periods. In addition, temporal asynchronism between dai‐
ly power balance and annual carbon compliance can be coor‐
dinated.

2) A multi-market trading strategy that incorporates the op‐
tion-jointed daily trading and reinforcement learning (RL) -
jointed weekly continuous trading with three core markets of 
electricity spot, carbon spot, and carbon option is proposed 
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to model the cross-market and cross-time EM-CM trading of 
generators. Accordingly, fact-based CM mechanisms includ‐
ing call auctions, stability reserves, and OBA are adaptively 
supplemented.

3) To facilitate the solution method and better incorporate 
it into the proposed trading strategy, nonlinear terms during 
market clearing are partly reformulated using binary expan‐
sion, whereas those in the B-S model are modified by the 
strike-to-spot price ratio. By scanning this parameter, we can 
achieve the best CEA trading-holding portfolio and holding 
period in the carbon option contract.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the modeling assumptions and framework. 
Section III describes how the multi-market trading strategy 
of GenCos is modeled for cross-time and cross-market arbi‐
trage. Section IV describes the reformulation and solution 
methods. Section V describes case studies that test and vali‐
date the proposed trading strategy. Section VI concludes this 
paper.

II. MODELING ASSUMPTIONS AND FRAMEWORK

A. Modeling Assumptions

1)　EM
In this paper, EM refers to the day-ahead spot market or‐

ganized by an independent system operator (ISO). Renew‐
able uncertainties can be accounted for, as in [9], and they 
are ignored here to streamline the model. Prior to the start of 
EM, the reserve is determined by the ancillary service mar‐
kets, and generators that have been informed of the exact 
granted reserve will reduce their upper power limits in the 

EM. This aligns with the method used in West Inner Mongo‐
lia, China [34].
2)　CM

In an OBA-based secondary CM, CEA prices can be deter‐
mined through over-the-counter or on-floor trading [35]. Re‐
search works on CEA exchanges such as those conducted by 
the European Energy Exchange [36], Intercontinental Ex‐
change [25], and Korea Exchange [37] suggest that on-floor 
“continuous trading with auctions” is a common form of 
trading. Thus, the closing auction price, recognized for its 
highly efficient price discovery [38], is predominantly used 
in this paper.

Given that the trading actions of generators in the CM are 
influenced by their carbon emissions from power generation 
in the EM, and because clearing carbon prices are deter‐
mined by the bidding curves of both supply and demand-
side generators, this paper assumes that the trading strategy 
of power producers can affect the carbon price.

The objective of this paper is to model the behavior of 
strategic GenCos. Other entities are modeled using a sequen‐
tial transaction strategy, where the bidding amounts in the 
CM are calculated based on the clearing results from the 
first EM. Normal generators without market information em‐
ploy fixed bidding prices determined by predetermined costs.

B. Trading Process and Model Framework

Figure 1 shows the trading framework and information 
flow under the option-jointed daily trading and the RL-joint‐
ed weekly continuous trading for generator cross-market and 
cross-time trading in the EM and CM. T2, T3, and T4 repre‐
sent different CEA holding time for different carbon price 
distributions. The details are described as follows.

(a)

(b)

Carbon price

probability

distribution   

Cross-market trading strategy

CEA holding time in CMs

µ2, σ2

µ3, σ3

µ4, σ4

GenCo trading strategy

max{EM profits + CM profits +

CEA holding profits �
carbon option  costs} 

Clearing

results 

Clearing

results 

Level 2

Day-ahead

EM clearing model

min{EM dispatch costs} 

Level 1

Bi-directional

CM clearing model

max{CEA seller income �
CEA buyer costs} 

Bidding

curve

Bidding or

offering curve

Carbon

option price
B-S model

Cross-time trading strategy

Day 1 Day 2 Day 3 Ending day

...

Action Action Action

EM 

Transferred amount

Carbon spot market

Action rd
min

Carbon option

market

SHT        BHT
Start day Qi,d    , Qi,d

+
+

� �
+

T2

T3

T4

Fig. 1.　Trading framework and information flow. (a) Daily trading. (b) Weekly continuous trading.
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1) The GenCo submits a price-quantity curve to the EM 
ISO, which shows the price and quantity of electricity that 
the GenCo is willing to buy or sell in the market.

2) The ISO checks the bidding ceiling of the GenCo 
based on results from the reserve ancillary market, and con‐
ducts an EM clearing. The allocated power and locational 
marginal prices are then fed back to the GenCo.

3) The GenCo calculates its net demand for CEAs using 
the information from the EM ISO and employs the B-S mod‐
el to price carbon options. The GenCo determines the CEA 
trading quantity for buying or selling in the market and the 
amount to hold for future delivery. This is accomplished by 
obtaining call or put carbon options.

4) Once the bidding order of GenCo in the CM is re‐
ceived, both the CM clearing outcomes and option prices in 
the B-S model can be updated.

Based on this trading process, the option-jointed daily 
trading in the EM and CM is modeled. At Level 1, the pric‐
es of carbon options with different configurations (i.e., differ‐
ent CEA holding time, predicted expectations, and variances 
of different future CEA prices) are valued using the B-S 
model. From this valuation, the strategy of GenCo is deter‐
mined by optimizing its bidding prices and trading or hold‐
ing amounts of CEA. At Level 2, the model encompasses an 
EM clearing model and a bidirectional CM clearing model, 
generating clearing outcomes in terms of prices and quanti‐
ties.

In general, two sources of CEA net trading demand exist: 
net shortage from EM generation, and the amount trans‐
ferred from previous trading. By contrast, three strategies are 
used to fulfill these demands: trading in the carbon spot mar‐
ket, holding options immediately through buying, or transfer‐
ring them to the next day. In terms of daily trading, GenCos 
must optimize their multi-market strategic behaviors simulta‐
neously. The same conclusion has been obtained in [39]. 
Thus, the upper level is optimized with feedback from the 
lower level.

As Fig. 1(b) shows, via the expansion of the aforemen‐
tioned daily trading to weekly continuous trading, the Gen‐
Co can execute continuous trading by determining the exact 
day to buy carbon options rather than allocating equal 
amounts of carbon options to net holding CEAs. The daily 
trading state transition processes and optimal trading action 
decisions are then determined via RL.

III. MODEL FORMULATION

A. Upper-level 1: Daily Trading of GenCo

At this level, the option-jointed daily trading of GenCo 
for electricity-carbon trading under the OBA mechanism is 
proposed. The profit-maximization objective function Obj of 
the strategic GenCo is given by (1)-(8).

max Obj =RE
g +RCS

g -C CB
g +RFS

g -C FB
g -C SH

g -C BH
g (1)

RE
g =∑

t
∑
iÎΩg

( )λE
nt - λ

G
iv P G

ivtDt (2)

C CB
g = λC ∑

iÎΩgk

QB
ik + λ

RB∑
iÎΩg

( )QBT
i -∑

k

QB
ik (3)

RCS
g = λC ∑

iÎΩgh

QS
ih + λ

RS∑
iÎΩg

( )QST
i -∑

h

QS
ih (4)

C FB
g = λFBQBH

g e-rT1 (5)

RFS
g = λFSQSH

g e-rT1 (6)

C BH
g =C callQBH

g (7)

C SH
g =CputQSH

g (8)

In the EM, the profit depends on the discrepancy between 
locational marginal prices and generation costs, as expressed 
in (2). CEA transactions affect the profits of GenCo when its 
actual CEI diverges from the benchmark. Mandated by CEAs 
reflecting real carbon emissions, the profits of GenCo fluctu‐
ate with CEA trading that aligns with the CEI. For example, a 
CEA buyer can opt to acquire CEAs through a current-deliv‐
ery exchange, as shown in (3), where settled CEAs are paid at 
the CM clearing price and unsettled CEAs are absorbed by the 
market stability reserve using upper and lower limit prices to 
stabilize CEA circulation. By contrast, the buyer can hold 
CEAs for future procurement, as shown in (5). To ensure fu‐
ture delivery, avoid market penalties, and achieve cross-time 
profit, the GenCo can buy call options via (7). The profit com‐
ponents of the CEA sellers in (6) and (8) are similar to those of 
CEA buyers. The constraints of the strategic behaviors of Gen‐
Co are expressed by (9)-(20).

αCSmin
ih £ αCS

ih £ α
CSmax
ih     "ih (9)

αCBmin
ik £ αCB

ik £ α
CBmax
ik     "ik (10)

αGmin
iv £ αG

iv £ α
Gmax
iv     "iv (11)

αCS
ih - 1 £ α

CS
ih    "h ³ 2"i (12)

αCB
ik - 1 ³ α

CB
ik     "k ³ 2"i (13)

αG
iv - 1 £ α

G
iv    "v ³ 2"i (14)

Qnet
i =∑

t

é

ë

ê
êê
ê ù

û

ú
úú
ú( )∑

v

P G
ivt ( )I base

i - Ii     "i (15)

Qnet
i =QST

i +QSH
i -QBT

i -QBH
i     "i (16)

0 £QST
i +QSH

i £Mui    "i (17)

0 £QBT
i +QBH

i £M (1 - ui )     "i (18)

QST
i QSH

i QBT
i QBH

i ³ 0    "i (19)

Q(×)
g = ∑

iÎΩg

Q(×)
i (20)

The bidding prices of GenCo adhere to the specified price 
range expressed in (9)-(11). For the GenCo that acts as a seller 
or buyer in markets, bidding orders follow non-decreasing or 
non-increasing curves, as constrained in (12) - (14). Equation 
(15) defines the daily net surplus of the CEA of the GenCo. 
The transaction status of the GenCo as a seller or buyer in the 
CM is identified by (16). Constraints (17)-(19) ensure that the 
holding or trading amounts of CEAs remain positive based on 
the big-M method [8]. GenCo manages the CM trading of the 
owned generators, as outlined in (20).

In the proposed trading strategy, future CEAs can be ex‐
changed based on the CEA price predictions of the GenCo. 
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However, in real-life situations, a precise probability distribu‐
tion of future CEA prices may be unavailable. A triangular 
distribution can be used to solve this problem, with only the 
lowest and highest price values being required [40]. Via the 
probability density function as presented in Fig. 2, the equiv‐
alent expectation value of the forecasted price can be ob‐
tained as the mean of the two extreme values. The equiva‐
lent variance of the forecasted price can be calculated based 
on the difference between the highest and mean prices.

Note that hedging risk is the key objective with the use of 
carbon options. In the CM, the GenCo is obliged to submit 
equal amounts of CEAs to real carbon emissions. Thus, if 
the generator chooses to wait-and-buy CEAs, the call option 
can avoid future penalties for CEA shortages. By contrast, if 
the generator chooses to wait-and-sell CEAs, the put option 
can prevent losses when CEAs are cancelled after their expi‐
ration date (and thus cannot be sold).

If we consider the CEA buyer in Fig. 2(a) as an example, 
the original intention of holding demands and waiting to buy 
is based on the prediction that the CEA expectation price μ 
will be less than the current price λC. To hedge against risks 
from unexpected extreme values, the GenCo can buy call op‐
tions with a strike price ps higher than λC. With these call op‐
tions, transactions can be settled using ps when real prices 
are higher. Similarly, the cross-time trading of CEA sellers 
can be modeled by buying put options, as shown in Fig. 

2(b). Finally, considering carbon options, the settlement price 
of the CEA buyer or seller can be calculated by obtaining 
the present value of the future price expectation in (21) and 
(22), respectively.

λFB =
é

ë
êêêê∫

μ - σ

μ ( )1
σ2

x +
σ - μ
σ2

xdx + ∫
μ

ps( )σ + μ
σ2

-
1
σ2

x xdx +

∫
ps

μ + σ( )σ + μ
σ2

-
1
σ2

x psdx
ù

û
úúúú e-rT = é

ë
êêêê

1
6σ2

p3
s -

σ + μ
2σ2

p2
s +

1
2σ2 (σ + μ) 2

ps -
1

3σ2
μ3 +

1
6σ2 ( μ - σ ) 3ù

û
úúúú e-rT (21)

λFS =
é

ë
êêêê∫

μ - σ

ps ( )1
σ2

x +
σ - μ
σ2

psdx + ∫
ps

μ ( )1
σ2

x +
σ - μ
σ2

xdx +

∫
μ

μ + σ( )-1
σ2

x +
σ + μ
σ2

xdx
ù

û
úúúú e-rT = é

ë
êêêê

1
6σ2

p3
s +

σ - μ
2σ2

p2
s +

1
2σ2 (σ - μ) 2

ps -
1

3σ2
μ3 +

1
6σ2 ( μ + σ ) 3ù

û
úúúú e-rT (22)

B. Upper-level 2: B-S Option Pricing Model

The B-S option pricing model is presented in (23) - (27). 
Developed in 1973 by Black, Merton, and Scholes, the B-S 
model was the first mathematical method to be widely used 
in calculating the theoretical value of an option contract un‐
der current stock prices λC (also known as the clearing price 
in CMs), the option’s strike price ps, risk-free rate r, expira‐
tion time T1, and price volatility rate ξ [33].

To hedge against future price increases and decreases and 
generate cross-time profits, the CEA buyer or seller may buy 
call and put options valued by (23) and (24), respectively. 
N ( )×  is the cumulative probability density function of a nor‐
mally distributed variable. In (27), β is defined as the quotient 
of ps and λC, which is a pre-determined constant, and via set‐

tling, the nonlinearity from ln (λC ps ) in (25) can be eliminated.

C call =N (d1 ) λC -N (d2 ) pse
-rT1 (23)

Cput =N ( - d2 ) pse
-rT1 -N ( - d1 ) λC (24)

d1 =
1

ξ T1

é

ë

ê
êê
êln ( λC

ps ) + (r +
ξ 2

2 )T1

ù

û

ú
úú
ú

(25)

d2 = d1 - ξ T1 (26)

ps = βλ
C (27)

C. Lower-level 1: EM Clearing

We next establish an EM clearing model based on [41] 
for the lowest dispatch costs derived from (28).

min∑
t
∑

iv

αG
iv P G

ivt (28)

s.t.

-∑
mÎ φN

n

Bnm( )δnt - δmt + ∑
iÎ φS

n v

P G
ivt -P D

nt = 0    [ λE
nt ]     "nt   (29)

P Gmin
i £P G

ivt £P Gmax
i     [φGmin

ivt φGmax
ivt ]     "ivt (30)
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Fig. 2.　Triangle probability distribution of future CEA price. (a) Call op‐
tion for CEA buyer. (b) Put option for CEA seller.
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P min
it £∑

v

P G
ivt £P max

it     [φmin
it φ

max
it ]     "ivt (31)

-RDi £∑
v

(P G
ivt + 1 -P G

ivt )£RUi     [ εD
itε

U
it ]     "i"tT (32)

Bnm(δnt - δmt ) £P Lmax
nm     [ εLmax

nmt ]     "ntmÎ φN
n (33)

-π £ δnt £ π    [ εδmin
nt εδmax

nt ]     "nt (34)

δ1t = 0    [ εδ1

t ]     "t (35)

The variables in the square brackets on the right side indi‐
cate the Lagrangian multipliers from the individual sides of 
(29)-(35). The constraints on the energy balance and output 
limits for each offering block are defined by (29) and (30), 
respectively. Restrictions on the total output power, genera‐
tor ramping capability, transmission line capacity, and volt‐
age angle are enforced through (31)- (34), respectively, with 
specified upper and lower limits. Node 1 is established in 
(35) as the reference node for the power angle with a fixed 
value of 0. Importantly, the dual variables for the individual 
constraints are shown in the square brackets on the right 
side, with the locational marginal price identified as the dual 
variable in (29).

D. Lower-level 2: CM Clearing

We next describe a CEA exchange model that utilizes call 
auctions based on [9] to facilitate bidirectional trading. All 
GenCos must provide their CM selling and buying curves in 
a price-quantity format, following a stepwise method, while 
ensuring compliance with the designated time restriction. 
The model is characterized by (36)-(41).

max (∑ik αCB
ik QB

ik -∑
ih

αCS
ih QS

ih ) (36)

s.t.

∑
ik

QB
ik =∑

ih

QS
ih    [ λC ] (37)

QSmin
h £QS

ih £QSmax
h     [κ Smin

ih κ Smax
ih ]     "ih (38)

QBmin
k £QB

ik £QBmax
k     [κBmin

ik κBmax
ik ]     "ik (39)

∑
h

QS
ih £QST

i     [κ ST
i ]     "i (40)

∑
k

QB
ik £QBT

i     [κBT
i ]     "i (41)

The objective function of the CM-clearing model is formu‐
lated in (36) to maximize social welfare. The variables in 
the square brackets on the right side indicate the Lagrangian 
multipliers from the individual sides of (37) - (41). Equation 
(37) represents the CEA balance constraint. The clearing 
price in the CM, which establishes the marginal selling price 
to maximize turnover, is defined in terms of the dual vari‐
able associated with the CEA balance constraint. Constraint 
(38) sets the lower cap for each bidding block for CEA sell‐
ers, whereas (39) sets the upper cap for CEA buyers. Con‐
straints (40) and (41) set limitations on the CEA capacity for 
sellers and buyers, respectively.

E. Model Modification for Weekly Continuous Trading

Next, the daily trading is expanded to a weekly continu‐
ous trading model by introducing a choice to transfer the 
holding CEA surplus or deficit. For modification, in addition 
to the subscript of day d, the constraints in (5), (6), (17), 
and (18) of the aforementioned daily trading are reformulat‐
ed as:

C FB
gd = λ

FB
d ( )QBH

gd +QBHT
gd e-rT1 (42)

RFS
gd = λ

FS
d ( )QSH

gd +QSHT
gd e-rT1 (43)

0 £QST
id +QSH

id +QSHT
id £Muid    "i (44)

0 £QBT
id +QBH

id +QBHT
id £M (1 - uid )     "i (45)

When the daily separated trading is linked with transferra‐
ble QSHT

id  or QBHT
id , the weekly continuous trading model be‐

comes a Markov decision process, which can be transformed 
into an RL problem for accelerating the simulation. The key el‐
ements of RL (i. e., state, action, reward, and state-transition 
functions) are defined as state = (dQST

id Q
SH
id Q

SHT
id QBT

id Q
BH
id   

)QBHT
id βdObjd  and action = ( )r min

d .

The state transition between states d and d + 1 is ex‐
pressed in (46), which can be activated by the action r min

d  
through the constraints (47) and (48). Here, a certain share 
r min

d  of the overall CEA surplus or deficit should be traded in 
the spot market or protected through buying pull or call car‐
bon options.

Qnet
id +QSHT

id - 1 -QBHT
id - 1 =QST

id +QSH
id +QSHT

id -QBT
id -QBH

id -QBHT
id

(46)

QST
id +QSH

id ³ r min
d ( )QST

id +QSH
id +QSHT

id +QSHT
id - 1 (47)

QBT
id +QBH

id ³ r min
d ( )QBT

id +QBH
id +QBHT

id +QBHT
id - 1 (48)

The reward value of each action is equal to the objective 
value Objd of the trading state on day d. We assume that on‐
ly a certain number of CEA demands Qtrans

i  can be trans‐
ferred to the next week, whereas the rest of the weekly CEA 
surplus or deficit of GenCo should be traded in the spot mar‐
ket or protected by carbon options.

IV. REFORMULATION AND SOLUTION METHODS

A. Reformulation of Lower-level Problems

The application of the Karush-Kuhn-Tucker conditions [8] 
enables the initial problem to be restated as a single-level 
model. The complementary constraints of (36) - (41) are ob‐
tained from (S1) - (S5) in Supplementary Material A. As the 
EM model can be reformulated in the same manner, the de‐
tailed process is not presented here.

B. Linearization Methods

Despite the transformation of the model into a single-level 
one, the presence of compounded nonlinearities poses chal‐
lenges that hinder the resolution process. The model exhibits 
two categories of nonlinearity.
1)　Nonlinearities of Complementary Slackness

These nonlinearities are mainly expressed in (S1)- (S5) in 
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the form of the product of decision and dual variables, 
which can be linearized via the big-M method [8]. As an ex‐
ample, (S3) can be reformulated as:

0 £QB
ik -QBmin

k £Mu (49)

0 £ κBmin
ik £M (1 - u) (50)

2)　Bilinear Terms from Product of Two Decision Variables
As an example, λCQSH

g  in (8) can be discretized and linear‐
ized using the binary expansion method [42] expressed in 
(51) - (56). The same reformulation technique can be used 
with the bilinear terms λCQBH

g , λCQB
ik, and λCQS

ih.
The carbon price λC can be ranged in [ ]λC

minλ
C
max  according 

to the price limits set by the government or historical data. 
Then, when the auxiliary variable xSH

y  is introduced, the car‐
bon price can be expanded as in (51) and (52). Note that the 
discretization resolution of λC is determined by the expan‐
sion number Y, where a higher Y can yield a more precise 
approximation but higher complexity.

λC = λC
min +Dλ∑

y = 0

Y - 1

2y xSH
y (51)

Dλ = ( )λC
max - λ

C
min 2Y (52)

Then, after both sides are multiplied by QSH
g , (51) can be 

reformulated to (53). To simplify model expression, a new 
variable QX SH

y =QSH
g xSH

y  is defined and incorporated into lin‐
ear equation (54).

λCQSH
g = λC

minQSH
g +Dλ∑

y = 0

Y - 1

2yQSH
g xSH

y (53)

λCQSH
g = λC

minQSH
g +Dλ∑

y = 0

Y - 1

2y ×QX SH
y (54)

The nonlinearity in QX SH
y =QSH

g xSH
y  can be solved using 

the big-M method as:

0 £QSH
k -QX SH

k £M (1 - xSH
k ) (55)

0 £QX SH
k £MxSH

k (56)

C. Twin-delayed Deep Deterministic (TD3) Policy Gradients

Based on the Markov decision described in Section III-E, 
multiple RL methods can be adopted for simulation accelera‐
tion. However, as a continuous variable is used here, a poli‐
cy-based deep RL method is the most suitable. TD3 policy 
gradients are regarded as more stable successors of the tradi‐
tional deep deterministic policy gradients (DDPGs) [43]. Ac‐
cordingly, they are adopted here with the detailed Algorithm 
1 [44].

The relevant equations include (57)-(61). Equation (57) in‐
dicates that action r min

d  and noise ε (following a normal distri‐
bution N ) cannot exceed the pre-defined limits. Equation 
(58) is the Bellman transition equation for calculating the es‐
timated value. Equation (59) shows the minimum-seeking up‐
date for the critic network. Equation (60) shows the DPG-
based update for the actor network. The soft-update tech‐
nique [45] is utilized in (61) to eliminate the target value 
fluctuation during the estimation.

r min
d = clip (( )πϕ( )s + ε r min

dminr
min
dmax )     ε~N ( )0σ (57)

Y = rewardd + γ min
i = 12

Vθ'i( )stated + 1r
min
d + 1 (58)

θi¬ arg min
θi

N -1∑( )Y -Vθi( )statedr
min
d

2

(59)

ÑϕL ( )ϕ = |N -1∑ÑrVθ1( )statedr
min
d

r min
d = πϕ( )stated

Ñϕπϕ( )stated

(60)

ì
í
î

ïï

ïï

θ′i = ρθi + ( )1 - ρ θ′i
ϕ′= ρϕ i + ( )1 - ρ ϕ′

(61)

V. CASE STUDIES

Two case studies are conducted utilizing the IEEE 30-bus 
system: case-buyer and case-seller. Each case examines two 
scenarios: ① the “reference (REF)” scenario, in which the 
GenCo focuses solely on the EM strategy; and ② the “dou‐
ble-cross” (DC) scenario, in which the GenCo determines its 
bidding strategy while considering cross-time and cross-mar‐
ket profits. The model is solved using Gurobi 9.5.2 [46] and 
Python 3.9 [47] running on a computer equipped with a 3.9 
GHz CPU and 16 GB RAM.

A. Basic Data

In the power system, 20 generators are used with an ag‐
gregate installed capacity of 8000 MW and comprising two 
wind farms (900 MW), two solar plants (600 MW), and 16 
conventional units (6500 MW). The generation costs for the 
fuel-fired generators are randomly assigned in the range of 
20-60 $/MWh. For renewable energy, the generation costs 
are fixed in the range of 3.2-6.4 $/MWh [9]. The rules under 
the Chinese CM [48] establish the CEI benchmarks for vari‐
ous generators, whereas the CM bidding price is constrained 
in the range of 21-45 $/t [49]. The time period is defined as 
six units, and line congestion is omitted from the model for 
simplification. The EM and CM feature-bidding blocks are 
each set to be five. The strategic GenCo operates five con‐
ventional generators (three gas units of 240 MW capacity 
each, and two coal units of 600 and 330 MW capacities, re‐
spectively). Table I lists the actual CEI values of these gener‐

Algorithm 1: weekly continuous trading by TD3

Generate a replay buffer B by random generation
Initialize critic networks Vθ1

 and Vθ2
, and actor network πϕ

Initialize target network θ′i ¬ θi, ϕ′¬ ϕ
For episode in [1Nepisodes ] do
   For d in [17] do
       The strategic GenCo selects action r min

d  with exploration noise ε 
       Note that the action and noise should satisfy constraint (57) 
       Use the minimum trading action r min

d  on the daily trading model 
       Calculate the next state and reward by models described in Section 

III-E 
       Store transition (statedr

min
d rewarddstated + 1 ) in buffer B 

       Sample N transitions batched from B
       Calculate the target action r min

d + 1 and estimated value Y by (58) 
       Update critic network by (59) 
       If t%Nupdate = 0  then
          Update ϕ by (60) 
          Update critic and actor targets using soft-update method via (61) 
       End if
   End iteration d
End iteration episode
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ators in various scenarios.

In the B-S model, the CM price volatility rate ξ is set to be 
0.3 according to the daily carbon prices in the European emis‐
sion trading system [49]. The continuously compounded risk-
free rate r in the B-S model is 5.83% (equivalent to an annual 
interest rate of 6%). The best strike price for the carbon op‐
tions trading of GenCo can be achieved by scanning the pre-
determined strike-to-spot ratio β under different conditions.

B. Case-buyer Daily Trading: GenCo with Higher CEI

1)　Cross-market Trading Analysis
The cross-market trading is exerted by adjusting the bid‐

ding prices of GenCo in both the EM and CM, and the equi‐
librium in the two markets is analyzed in this section. Since 
cross-market trading analysis may affect the cross-time deci‐
sions of GenCo, the expectation and variance of the future 
CEA price are fixed at 34 $/t and 3 $/t, respectively. The ex‐
piration time of the carbon option is set to be 200 days, and 
the strike-to-spot price ratio is set to be 1.1.

Figure 3(a) and (b) illustrates the power supply curves in 
different scenarios. In the REF and DC scenarios, the gross 
generation capacity is separated into two parts with differing 
functions in the REF and DC scenarios. To ensure a mini‐
mum output level, the first segment bids at lower prices.

The strategic GenCo manipulates the second half to raise 
EM clearing prices. For comparison, Supplementary Material 
A Fig. SA1 shows the system marginal prices (SMPs) in dif‐
ferent scenarios, revealing that the SMPs in the DC scenario 
are occasionally higher than those in the REF scenario. 
Thus, after the CM is accounted for, the bidding strategy of 
GenCo aims to increase the EM price by coordinating con‐
taining generators and exercising market power, which pass‐
es on the CEA buying costs to customers.

Figure 3(c) and (d) shows the cumulative CEA buying 
curves in different scenarios. The bidding strategy of GenCo 
in the CM is conducted without plans in the REF scenar‐
io, and the uniform clearing price is 35 $/t. In the DC 
scenario, part of the demand (66.3 t) is balanced in the CM 
market at 34.4 $/t, whereas the rest is held and traded in the 
future. Fewer CEAs are currently required and the GenCo 
tries to lower CM prices by exerting market power; there‐
fore, the bidding strategy of GenCo decreases the CM 
price by 0.6 $/t.
2)　Cross-time Trading Analysis

Supported by the carbon options and B-S model, the Gen‐
Co may choose to trade or hold by assessing costs and earn‐
ings from the holding action. Different trading scenarios are 
tested by adjusting β, and the ratio with the highest total 
profit may be used for call option trading.

To hedge against holding risks, the option strike price 
should be set in the opposite direction of the current stock 
price (i.e., if the expected future price is less than the pres‐
ent price, the option strike price should be set higher). There‐
fore, β is set to be larger than 1.

TABLE I
ACTUAL CEI VALUES OF GENERATORS IN VARIOUS SCENARIOS

Capacity (MW)

600

330

240

Benchmark 
(g/kWh)

850

898

398

Case-buyer 
(g/kWh)

918

970

430

Case-seller 
(g/kWh)

784

826

366
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Fig. 3.　Multi-market bidding curves in case-buyer. (a) Accumulated power 
supply curves in EM in REF scenario. (b) Accumulated power supply curves 
in EM in DC scenario. (c) Accumulated CEA buying curves in CM in REF 
scenario. (d) Accumulated CEA buying curves in CM in DC scenario.
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Figure 4 shows both the CEA holding amount and CM 
prices in case-buyer under different price ratios. The first as‐
pect to note is the increase in holding amounts from 114.9 
to 282.2 t, followed by a precipitous drop to zero. When this 
ratio increases from 1 to 1.2, the option price decreases, 
making the holding more appealing. However, as the final 
strike price may be too close to or even surpass the upper 
limit of the expected range, the depreciation process gradual‐
ly invalidates the call option, resulting in a dramatic de‐
crease in holding amounts.

The CM price fluctuates more slowly and is inversely re‐
lated to holding levels, as the holding actions reduce CEA 
demand at current and lower CM prices. The effects of the 
option parameters on the overall earnings of GenCo are 
shown in Figs. 5-7.

The key motivation for holding actions is the prediction of a 
lower future price, as represented by the expected CEA price. 

Figure 5 shows that the total profit increases following a de‐
crease in the expected CEA price. However, the uncertainties 
derived from future price variance and the expiration time of 
options bring risks and in turn a desire for carbon options.

A comparison of the results presented in Figs. 5-7 under 
the same expectation value reveal that the carbon option can 
provide larger profits in a more uncertain environment (high‐
er variance and longer expiration time). The findings reveal 
that the expected value of the future price is critical in deter‐
mining the best return and that buying call options can effec‐
tively hedge the risks of time and variation.

C. Daily Trading in Case-seller: GenCo with Lower CEI

1) Cross-market Trading Analysis
In this case, the actual CEI of GenCo falls below the es‐

tablished benchmarks. The future CEA price is predeter‐
mined at 37 $/t with a variance of 3 $/t. The carbon option 
expires in 200 days with a strike price-to-stock price ratio 
of 0.9.
2) Cross-time Trading Analysis

To mitigate risk, the option strike price should be set low‐
er than the current price when the expected future price ex‐
ceeds it. Accordingly, the price ratio is adjusted to less 
than 1.

D. Weekly Trading Analysis

By selecting the forced transaction ratio r min
d  of the CM as 

the action, we can conduct weekly continuous trading cases. 
To simulate cross-week CEA holding behavior, the initial 
CEA amount transferred from the previous week for both 
the buyer and seller is set to be 500 t, which is also the re‐
maining limit of CEA trading demands at the end of the tar‐
geted week. According to the aforementioned daily power 
load curve, the weekly load curve is designed using the nor‐
malized expansion ratio, as shown in Fig. 8.

As Fig. 8 illustrates, CEA buyers prefer to buy a substan‐
tial amount of CEA at the beginning of the trading cycle to 
hedge against the invalidation of call options over time. 
From the buyer’s perspective, it is an economically sound 
strategy to minimize r min

d  to reduce the CEA holding amount 
at an early stage under a weekly timescale. This resonates 
with the conclusions drawn from Figs. 4-7, where the total 
buying costs are reduced from $0.408 million to $0.377 mil‐
lion, a decrease of 7.60%.
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1) Case-buyer
In the TD3 training optimization process, the buyer sets 

the action value of r min
d  as a continuous variable between 0 

and 1. This allows the buyer to explore different action states 
within a single day to obtain the β value that maximizes eco‐
nomic benefits in the DC scenario for that state. Through this 
process, the buyer can determine the optimal trading strate‐
gy, which includes both the option trading volume and the 
remaining CEA transferred to the next trading day.
2) Case-seller

The ratio β for the seller is set to be less than 1. During 
the TD3 training optimization process, the seller also sets 
the action value of r min

d  as a continuous variable from 0 to 1.
As given in Supplementary Material A, compared with 

case-buyer, the initial actions of seller are more conserva‐
tive, i.e., values of r min

d  are generally greater than 0.85, indi‐
cating a preference for holding a larger portion of the CEA 
demand for additional days. Although additional expendi‐
tures are incurred in buying put options, the overall profits 
of GenCo in the CM are in the range of $8.607-8.799 mil‐
lion (an increase of 2.23%), which is consistent with the con‐
clusions drawn from Supplementary Material A.

E. Market Power Analysis

A market power analysis is next conducted. As the widely 
adopted Herfindahl-Hirschman (H-H) index [50] is unsuit‐
able for measuring the market power of a firm (where the H-
H index instead measures the concentration of the entire mar‐
ket), the Lerner index (LI) [51] is used in this paper to ana‐
lyze the market power of strategic GenCo. The LI has a val‐
ue between 0 and 1 and can be calculated as the percentage 
markup of price P above the marginal cost MC:

LI = ( )P -MC P (61)

The LI values in the REF or DC scenarios and the EM and 
CM are calculated and compared. Figure 9 shows the LI indi‐
ces in EM in different cases. The CM power values under dif‐
ferent conditions are listed in Supplementary Material A.

In the case-buyer, as the GenCo exercises EM power, its 
LI value surpasses those of normal generators. Specifically, 
the LI value in EM in the DC scenario exceeds that in the 
REF scenario. Regarding carbon trading, the strategic Gen‐
Co observes a significant increase in its carbon LI value, in‐
creasing from 2.9% (REF) to 14.4% (DC).

By contrast, the findings diverge for CEA sellers. In the 
DC scenario, where less EM power is utilized, the strategic 
GenCo exhibits an LI value that is less than that of normal 
generators. Nevertheless, the GenCo still maintains a compet‐
itive edge in CM, with an LI value of 8.6% which surpasses 
that of normal generators by 7.3%.

The EM power exertion of strategic GenCo depends on its 
CM trading position. In the case-buyer, EM power is utilized 
to pass its carbon costs onto consumers, whereas the strate‐
gic GenCo in the case-seller prefers to reduce its EM bid‐
ding prices with the aim of accumulating more CEAs for 
sale. The EM power exertion is not sustained throughout the 
entire trading period and is more likely to be employed dur‐
ing peak load periods. Regardless of the case under CM 
power, cross-time and cross-market trading consistently le‐
verages market power in the CM.

F. Calculation Efficiency and Convergence

Binary expansion is an approximation method, so its accu‐
racy and solution speed are strongly related to the expansion 
coefficient Q. A higher value indicates a more precise solu‐
tion and a longer solution time. Figure 10 shows the results 
of a convergence analysis conducted to select the best expan‐
sion value. The results show that the models under the case-
seller and case-buyer converge with coefficients of 8 and 6, 
respectively. However, to maintain a certain margin, Q is set 
to be 10. Supplementary Material A shows the iterative pro‐
cesses and convergence curves of the TD3 technique, which 
validates its effectiveness in finding the optimal action.

VI. CONCLUSION

This paper proposes a multi-market trading strategy that 
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incorporates an option-jointed daily strategy and a reinforce‐
ment learning-jointed weekly strategy for cross-market and 
cross-time trading of generators in EMs and CMs. Case stud‐
ies on an IEEE 30-bus system are reconducted, and the fol‐
lowing three conclusions are drawn.

1) When the cross-market bidding curves are coordinated 
and a hold-and-see cross-time trading in CM is adopted, the 
portions of CEA demand and supply are traded in the future. 
Although an additional amount is paid in the carbon option 
to hedge against risks from price uncertainty, the strategic 
GenCo can still boost its overall profits by approximate‐
ly 3%.

2) The expected future price is crucial for evaluating the 
best return from buying a carbon option, which can be more 
valuable in an uncertain market with longer holding periods 
and larger prediction variance. With an increase of $1.5 in 
price forecasting variance, the integrated option strategy is 
projected to boost the annual profits of strategic GenCo by 
$73000-182500.

3) The utilization of EM power is contingent on the posi‐
tion of strategic GenCo in CM trading. Typically, this exer‐
tion is not sustained across the complete trading duration but 
is more aptly utilized during peak load intervals. By con‐
trast, the proposed trading strategy ensures consistent lever‐
aging of power in the CM.

Based on the proposed trading strategy, future work will 
develop a model that exhibits more intelligent trading behav‐
ior to simulate market equilibrium with numerous agents. 
However, the bidding information of other generators is diffi‐
cult to access; thus, a data-driven method capable of extract‐
ing valuable EM-CM data from the limited market disclo‐
sure data deserves an in-depth investigation.
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