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Abstract——The spot flexibility markets are before the real-
time energy exchange, allowing demand-side management to re‐
duce energy consumption during peak periods. In these mar‐
kets, demand aggregators must quickly choose the customers’ 
reduction bids that fulfill grid requirements. This clearing pro‐
cedure is challenging due to the computational complexity of se‐
lecting the optimal bids. Therefore, developing a clearing mech‐
anism that avoids searching the entire flexibility bid space 
while respecting grid constraints is essential for the smooth op‐
eration of the spot flexibility market. This paper presents a 
clearing mechanism with reduced computational complexity of 
the winner determination problem in spot flexibility market for 
demand aggregators carrying out reductions in energy con‐
sumption. The proposed approach transforms customers’ flexi‐
bility bids into a reward-based function. Afterward, the gradi‐
ent-based optimization solves the bid selection problem. This ap‐
proach helps demand aggregators achieve satisfactory energy re‐
ductions within an appropriate delay for spot flexibility mar‐
kets. A comparative study presents the effectiveness of the pro‐
posed approach against commonly used approaches: hybrid par‐
ticle swarm optimization genetic algorithm and combinatorial 
search.

Index Terms—Combinatorial auction, computational complex‐
ity, demand response, flexibility, spot flexibility market, transac‐
tive energy, clearing, gradient-based optimization.

I. INTRODUCTION

THE development of various congestion management 
(CM) strategies in the distribution network context aims 

to address situations where electricity demand exceeds the 
grid capacity [1]. These scenarios can overload crucial grid 
elements like transformers and distribution lines, potentially 
increasing costs, leading to power outages, and decreasing 
overall system efficiency [2]. In cold geographical regions, 
the increase in the electricity heating load consumption and 
the proliferation of electric vehicles (EVs) further intensify 
these situations [3]. CM approaches to tackle such issues 
can be grouped into direct-control, price-based, and market-
based ones [1], [4]. The direct-control approach enables the 
grid operator to have uninterrupted access to control custom‐
ers’  specific loads, which involves deliberately cutting off 
power, reducing power consumption, or rerouting power via 
alternate pathways [5]. Price-based approaches include dy‐
namic pricing strategies, such as time-of-use tariffs, encour‐
aging customers to modify their energy consumption pat‐
terns based on priced signals and reducing electricity de‐
mand during peak congestion periods [6]. The market-based 
approach uses economic incentives to minimize the differ‐
ence between electric supply and customers’  demand [7]. 
Moreover, establishing flexibility markets incentivizes con‐
sumers to reduce or shift their energy usage during peak pe‐
riods, thus alleviating congestion [8]. Traditional grid rein‐
forcement strategies are expensive and require extensive 
planning [9]. Distribution system operators (DSOs) are ex‐
ploring innovative solutions to address CM, including inte‐
grating information and communication technology (ICT) 
and establishing new markets for obtaining flexibility [10].

The transactive energy framework (TEF) empowers partic‐
ipants within their energy management systems and facili‐
tates bidirectional information exchange with grid operators 
for grid balancing using economic signals [11]. The TEF ap‐
plication in distribution networks can address challenges like 
voltage management, CM, and the establishment of new elec‐
tricity spot flexibility market (SFM) mechanisms to engage 
participants with flexible loads [12]. Furthermore, TEF en‐
ables demand aggregator agents to represent groups of cus‐
tomers capable of providing flexibility. In this paper, the fo‐
cus is on SFM, where residential customers participate to ob‐
tain immediate trades. Regarding the SFM structures, aggre‐
gator agents can use auctions, allowing residential customers 
to present flexibility bids [13]. The most common types of 
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electricity auctions are double-sided and single-sided. In the 
former, there are many electricity-providing agents and 
many consumers, whereas, in the latter, there is a single elec‐
tricity-providing company and many consumers [14]. In cer‐
tain geographic regions, a single utility company is responsi‐
ble for electricity generation, transmission, and distribution 
[15]. In this case, the option is to implement single-sided 
auctions, for consumers to interact with the utility compa‐
ny [16].

In single-sided auctions, combinatorial search is the con‐
ventional approach to clearing the market. It guarantees the 
best selection of bids that fulfill the flexibility request from 
the DSO. However, it has a high computational complexity 
because the search space increases drastically with the num‐
ber of participants. The aggregator agents must examine ev‐
ery potential combination to identify residential customers’  
bids that meet the grid requirements. The bid selection in a 
combinatorial single-sided auction (CSA) is known as the 
winner determination problem (WDP) [17]. WDP falls into 
an non-deterministic polynomial hard (NP-hard) problem 
[18], which is challenging for the aggregator to solve quick‐
ly. Therefore, most WDP algorithms are impractical for 
SFMs.

The relevant literature includes the research works employ‐
ing flexibility markets to manage congestion, along with 
studies that explore mixed-integer linear programming 
(MILP), machine-learning-based approaches, and meta-heu‐
ristic-based techniques for clearing the auction-based market.
1) Flexibility Market

Reference [19] proposes a transactive energy-based flexi‐
bility market between aggregators and the DSO for CM. Ag‐
gregators control consumer loads as a single virtual storage 
to maximize profits, which reduces consumer control. Refer‐
ence [7] proposes a distribution-level flexibility market to ad‐
dress contingencies resulting from day-ahead energy mar‐
kets. Nevertheless, unexpected real-time events can increase 
DSO costs. In real-time CM, a market-based scheduling 
framework is proposed to reduce computational costs [20]. 
Consumers submit their load curtailment ratios and EV 
charging tolerances to the aggregator. However, this schedul‐
ing may limit user flexibility in adjusting their charging 
plans. In [21], consumers with their energy management sys‐
tems employ backward induction within adaptive dynamic 

programming to submit flexibility bids based on locational 
price of DSO for CM. The DSO employs Taylor series ap‐
proximation to linearize problem constraints and conducts 
the optimal power flow for price and power dispatch.

The DSO collaborates with aggregators to implement a 
single-sided auction market negotiation framework for CM, 
using a uniform pricing mechanism for market clearing [22]. 
Aggregators directly control consumer loads to offer flexibili‐
ty services. However, the aggregators do not consider the ne‐
gotiation with consumers, who are the actual flexibility pro‐
viders. In real-time CM, the aggregator collaborates with the 
DSO to control user loads and coordinate load swaps with 
other aggregators [23]. The DSO compensates based on the 
number of swaps made, yet the aggregator overlooks custom‐
er willingness to provide flexibility in these swaps. Consum‐
ers control their loads in the real-time hourly market for flex‐
ibility services and submit bids for energy reduction [24]. 
The aggregator then aggregates and sorts these bids based 
on price. Only those bids below the market clearing price 
are selected and those above it are excluded, even though 
consumers are willing to offer flexibility. In [25], a transac‐
tive energy-enabled local flexibility market (LFM) is pro‐
posed. Consumers submit bids to an LFM aggregator. The 
LFM aggregator sends the bids to a central market aggrega‐
tor for clearing, which clears the market using a mixed-inte‐
ger program and distributes rewards. Accepted bids receive 
rewards based on the market clearing price. However, those 
with unaccepted bids receive no reward. Within a flexibility 
market, aggregators manage consumer load to submit flexi‐
bility bids to the local market operator for CM [26]. Never‐
theless, details are not provided regarding the specific mar‐
ket clearing algorithm the local market operator utilized for 
handling these flexibility bids of aggregator.
2) MILP Approaches

In [27], a game theoretical model for load shaving under‐
goes reformulation as a single-level MILP, aiming to opti‐
mize retailer profits by acquiring flexibility from consumers 
in a demand response market. Still in [27], involving more 
consumers increases the number of integer variables and as‐
sociated constraints, resulting in a substantial computational 
burden, and the approaches consider only three consumers. 
Table I shows the comparison of an auction-based market 
clearing framework.

TABLE I
COMPARISON OF AN AUCTION-BASED MARKET CLEARING FRAMEWORK

Ref.

[28]

[29]

[30]

[31]

[19]

[22]

This 
paper

Objective

Avoiding power outages

Providing capacity in 
energy storage

Reducing load by 
providing incentive

Minimizing energy 
trading cost

CM using EV flexibility

CM in distribution network

Providing flexibility to 
DSO

Auction between 
consumers and aggregator

√
√
√
√
´

´

√

Market 
clearing time

Spot market

Day ahead

Day ahead

Day ahead

Spot market

Spot market

Spot market

XOR bid

´

√
√
√
´

´

√

All consumers 
assigned

´

√
√
√
´

´

√

Avoid direct 
load control

√
√
√
√
´

´

√

Scalable larger 
than 50 consumers

√
´

´

´

√
√
√

Stability

´

´

´

´

√
√
√

651



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 2, March 2025

A stochastic MILP has been formulated in [32] to enable 
communities with electric heat pumps to provide demand-
side flexibility. The approach demonstrates robustness in 
managing congestion while ensuring consumer comfort does 
not fall below agreed-upon limits during these events. How‐
ever, the formulation is not suitable for SFM due to its com‐
putational complexity. Reference [33] proposes an MILP-
based optimization framework for a demand aggregator for 
flexibility provision by penalizing customers. However, the 
specific usage constraints of individual appliances and the 
uncertainties arising from consumer behavior are not consid‐
ered.
3) Machine-learning-based Approach

Reference [34] proposes a machine-learning-based ap‐
proach to help the aggregator profit maximization by choos‐
ing bids from residential consumers within a combinatorial 
auction, ultimately facilitating the market clearing process. 
Moreover, in [35], a multi-agent reinforcement learning (RL) 
framework is utilized for efficient local energy trading in a 
15 min continuous auction-based market. This approach of‐
fers quick training but requires careful hyperparameter tun‐
ing.

Reference [36] proposes a deep RL-based auction energy 
market, validated through simulations showcasing the profit‐
ability for all participants. However, the approach does not 
consider the solution within a continuous action space. A re‐
cent review paper summarizes the application of machine 
learning algorithms for addressing combinatorial auctions in 
the power system and suggests that there are still challenges 
related to scalability and accuracy in real implementation 
scenarios [37]. The machine-learning-based approaches aim 
to emulate the optimization problem offline. However, they 
encounter difficulties in re-training when the auction scenar‐
io or the number of participants changes.
4) Meta-heuristic-based Techniques

According to an in-depth review presented in [38], utiliz‐
ing computational intelligence techniques for optimization in 
local electricity markets primarily entails meta-heuristic-
based techniques, such as particle swarm optimization and 
genetic algorithms. These approaches effectively address 
complex optimization problems, but they require a high num‐
ber of iterations and the obtained solutions are frequently 
subject to variability due to the stochastic nature of the 
search process. A recent literature review in [39] has delved 
into market clearing mechanisms in local flexibility markets 
and emphasized the ongoing challenge of computational 
complexity as a critical limitation in the field.

Reference [40] proposes a multi-layer ant colony optimiza‐
tion algorithm for scheduling energy resources and minimiz‐
ing operation costs in standalone microgrids through single-
sided auctions within a local energy market. As reported in 
[41], with an extensive literature review, the computational 
complexity remains a significant obstacle to implementing 
these programs in real-world scenarios. According to [42], 
meta-heuristic-based techniques deal with computational 
complexity but jeopardize optimality. An algorithm for solv‐
ing combinatorial auctions using a constraint-guided evolu‐
tionary approach is presented in [43], specifically for the 

combinatorial reverse auction of power generation and trans‐
mission line assets. References [28] and [30] present closely 
related studies to the present work, addressing peak electrici‐
ty demand management through combinatorial reverse auc‐
tions. Reference [44] proposes an algorithm that utilizes Tay‐
lor series approximation to reduce the computational com‐
plexity for the aggregator to maximize its profit in a combi‐
natorial single-sided auction (CSA). In all these cases, meta-
heuristic-based techniques or approximation algorithms are 
employed to reduce the computational time from exponential 
to polynomial. Table I compares the present work with simi‐
lar literature. Some known limitations of these state-of-the-
art works are as follows.

1) With the meta-heuristic-based techniques, the iterations 
required to achieve the optimal solution increase as the num‐
ber of participants increases. This condition results in slow 
clearing mechanisms, which may exceed the short duration 
of SFM.

2) With each iteration, the WDP solution may have a sig‐
nificant variance due to the stochastic nature of the search in 
some meta-heuristic-based techniques.

Considering the state-of-the-art single-sided auctions in 
SFM, this paper presents a clearing mechanism to deal with 
existing limitations. In particular, the proposed approach re‐
duces computational complexity for demand aggregators to 
solve WDP and provides a deterministic solution. The main 
contributions of this paper are summarized as follows.

1) The proposed approach enables the spot flexibility mar‐
ket aggregator (SFMA) to reduce the computational complex‐
ity of a CSA and quickly respond to demand reduction re‐
quests from the DSO during peak periods.

2) The solution attains consistency by formulating the dis‐
crete bids to a continuous function and solving through a 
gradient-based interior-point optimization approach for the 
combinatorial auction process, eliminating solution variance.

3) The proposed approach aids the SFMA in maximizing 
its profit by choosing the customers’  bids that approximate 
the best payoff.

The subsequent sections are organized as follows. The 
SFM model is shown in Section II. The proposed WDP is 
presented in Section III, along with grid constraints. Section 
IV is dedicated to the simulation results. Finally, Section V 
presents the concluding remarks.

II. SFM MODEL

Reference [45] outlines various business models address‐
ing congestion issues through DSO-aggregator interaction. 
These models include isolated, tariff-based, iterative, and 
market-based models for distribution CM. This paper adopts 
a market-based model because it yields higher profits for the 
SFMA [45]. It is considered that the residential agents (RAs) 
control customers’  flexible loads and interact with the SF‐
MA in the market-based model, as shown in Fig. 1 [30]. In 
the planning procedures, the RAs report their forecasted en‐
ergy demand for a defined period. The forecast constitutes a 
consumption baseline for the DSO to plan grid operation. 
Then, during peak periods, the SFMA transmits the set of 
different reward points before the real-time energy exchange 
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starts, and the RAs generate energy reduction bids consider‐
ing each possible reward. As mentioned, this procedure is a 
CSA. Each RA transmits its bids using an XOR bid lan‐
guage, meaning the SFMA can choose only one option from 
the bid set. Here, the SFMA has two objectives: maximize 
its profit and fulfill the demand reduction request. Notably, 
the request comes from the DSO ahead of the market period.

A. DSO

The DSO manages the distribution network and guaran‐
tees its reliability, security, and adequacy. The DSO supplies 
energy to consumers and purchases flexibility from them 
through an aggregator agent. Additionally, it plays a vital 
role in monitoring and measuring the energy consumption 
within the distribution network. The DSO triggers a conges‐
tion event alarm whenever the peak power demand of the 
consumer overpasses the grid limits. Overloaded distribution 
lines are a barrier to reliable energy flow in low-voltage net‐
works. To solve this problem, the DSO sends a demand re‐
duction request to the SFMA serving the specific congested 
circuit. The DSO can encounter two types of costs: either op‐
erational or transactive. Operational costs for CM involve 
purchasing expensive energy from neighboring sources or 
running costly peak power plants, denoted by Co [46]. Trans‐
active costs include the monetary compensation of DSO ξk 
to the SFMA, derived from a portion of energy sale profits, 
where ξk < Co [46].

B. SFMA

The aggregator agent acts as a flexibility provider to the 
DSO and an intermediary for the RAs. The SFMA is respon‐
sible for a particular customer group in a defined geographi‐
cal area. Indeed, it behaves as the auctioneer in that local 
SFM. Once the SFMA receives the load reduction request 

from the DSO for the next time slot, it requests all participat‐
ing RAs to report their energy demand plan or consumption 
baseline, as illustrated in Fig. 1. This estimate gives the prob‐
able energy demand for the next time slot. Afterward, the 
SFMA initializes the single-sided auction to procure flexibili‐
ty from the RAs and attain the reference energy reduction re‐
quested in the next time slot. The most common approaches 
for price settlement among participants in auctions are pay-
as-clear (PAC) or pay-as-bid (PAB) [47]. In the former, all 
participants receive the market clearing price when supply 
and demand reach equilibrium, while in the latter, all partici‐
pants receive the price according to their offered bid [47]. In 
the context of the flexibility market, a suggested approach 
for managing congestion in distribution networks is PAB 
[48]. The non-homogeneous nature of flexibility bids leads 
to the high fragmentation of the flexibility product in mar‐
kets [48]. Clearing these bids through the PAC approach 
could increase the cost of flexibility for the DSO [49]. The 
PAB approach motivates participants by ensuring that they 
receive gains corresponding to their willingness to reduce 
consumption.

The auction process starts by sending the bidding request 
and the set of reward points to all the RAs. The SFMA, as 
auctioneer, sets the duration of the reduction bids. According 
to the literature, it is beneficial to use 5 min time slots [50]. 
Once the SFMA gathers all offers, it starts the WDP algo‐
rithm. The CSA-based winner determination results in a sin‐
gle bid selection for each participant. Next, the SFMA trans‐
mits the energy reduction outcomes to all participants for the 
next time slot and terminates the single-sided auction. The 
SFMA also sends auction results to the DSO to validate the 
demand reduction.

C. RA

Each RA participating in the SFM has an HEMS capable 
of controlling its flexible loads. The set of RAs is denoted 
as RAi (i = 12...N), with N being the total number of partici‐
pants. We consider that these customers have thermostatical‐
ly controlled loads (TCLs), which allow them to shift energy 
consumption in time. In the time slot k of the SFM, the state-
space model of the TCL relates indoor temperature T i

k with 
energy consumption ei

k, as shown in (1) [51]. This model al‐
so relates the outdoor temperature T outi

k . The coefficients βz, 
βe, and βo represent heat dissipation or absorption efficien‐
cies.

T i
k(ei

k ) = βzT
i
k - 1 + βee

i
k + βoT

outi
k (1)

Each RA in the SFM exhibits different preferences to‐
wards energy reduction [52]. The parameter P i

k expresses the 
preferences for maintaining comfort by remaining close to 
the set point T i

sp or earning the rewards by deviating from 
the set point. The benefit for each residential consumer Bi

k is 
quantified according to its preferences as:

Bi
k(ei

k ) =P i
k(T i

k(ei
k ) - T i

sp ) 2
(2)

During the peak period, the aggregator asks the residential 
consumer to report the forecasted energy demand eibase

k + 1  for 
the next 5 min time slot, considering a base price of λi

base. 

Aggregator

(SFMA)
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(RAs)
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Measure

Acknowledge
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HEMS 
optimization
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Notify winning

reduction bid
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Reduce
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DSO

House energy
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system (HEMS)

Optimi-
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planning

Obtain WDP
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zation

for
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Query flexible
load energy

demand against
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Notify energy
demand
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incentive point
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(incentive,
reduction)

Declare
winning bid

energy
Implement
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Flexibility

Inquire energy
demand
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Report energy
demand plan
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Energy reduction
incentive

(next 5 min)

Report reduction
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Obtain
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payment

Obtain
incentive
payment

Fig. 1.　SFM aggregator interaction with DSO and RAs in unified model‐
ing language.
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Thus, each residential consumer solves the optimization 
problem in (3) to maximize its utility.

ì

í

î

ï
ïï
ï

ï
ïï
ï

max
eibase

k

( )Bi
k( )eibase

k - λi
basee

ibase
k

s.t.  0 £ eibase
k £ ei

max

       T i
min £ T i

k( )eibase
k £ T i

max

(3)

where ei
max is the installed energy capacity; and T i

max and T i
min 

are the upper and lower indoor temperature bounds, respec‐
tively.

Afterward, the SFMA sets up the auction for purchasing 
flexibility from the RA. The SFMA transmits the set of in‐
centives λi

j and requests the RA to provide the corresponding 
reduction offers. This incentive set is represented by λi

j: =
{λi

jj = 12...M } including M incentive points. Then, the 
RAs recalculate by (4), considering each reward to estimate 
the corresponding energy reductions eired

kj . Consequently, the 
forecasted indoor temperature for the next time slot is also 
recalculated.

ì

í

î

ï
ïï
ï

ï
ïï
ï

max
eired

kj
( )Bi

k( )eibase
k - eired

kj + ( )λi
j + λ

i
base eired

kj - λi
basee

ibase
k

s.t.  eibase
k - eired

kj ³ 0
    eired

kj ³ 0

(4)

The consumers cannot provide an energy reduction eired
kj  

higher than the reported consumption eibase
k , which they earli‐

er transmitted considering the base price. Participation in 
these electricity auctions is generally categorized in atomic 
bids or combinatorial bids [53]. An atomic bid contains only 
information about a reward-reduction pair, whereas a combi‐
natorial bid has multiple atomic bids. Different relationships 
can be defined in the combinatorial case using AND, OR, or 
XOR operators among atomic bids. These operators express 
the acceptance conditions of the participant. When offers are 
transmitted using the AND operator, the RA accepts all WDP 
results and executes all the associated reward-reduction pairs 
in the subsequent time slot. Conversely, when bids are sent 
using the OR operator, the RA can choose to implement any 
allocated winning bid. This paper considers that the RA 
transmits the offer set using the XOR operator, meaning that 
the SFMA can choose only one reward-reduction pair from 
the transmitted offers. According to [53], the RA bid set 
RAi

bidset can be represented in a compact form for more than 
two atomic bids, as shown in (5).

RAi
bidset = ( λi

1e
ired
k1 ) XOR ( )λi

2e
ired
k2 XOR ... XOR ( λi

Me
ired
kM )(5)

D. Assumptions

The SFM model considered here relies on the following 
assumptions.

1) The RA has signed a contract with the SFMA before 
presenting the bidding offers, which results in an obligation 
for the RA to execute the energy reduction determined in the 
auction results.

2) A reliable communication channel exists between the 
SFMA, the RAs, and the DSO.

3) Each time slot of the SFM is of a 5 min duration, and 
the SFMA transmits 10 discrete reward points. Previous stud‐
ies have shown the convenience of using 10 reward 

points [54].
Without the first assumption, finding willing consumers 

for the SFM becomes time-consuming, particularly as the re‐
al-time event approaches. Disregarding the second assump‐
tion, which involves the lack of a reliable communication 
link between key agents, could undermine congestion reduc‐
tion efforts through the SFM. Neglecting the third assump‐
tion about short time slots would force RAs to wait until the 
end of long-duration time slots if winning bids cause con‐
sumer discomfort.

III. WDP

In a combinatorial auction, the WDP involves auctioneer 
agents evaluating all combinations of atomic bids to identify 
the feasible set that satisfies allocation rules and checking 
the corresponding profit [18]. The winning bids in the bid 
set of each participant are those that maximize the profit 
within the feasible set. The WDP in the SFM depends on the 
transmitted bids from the RAs, which are discrete reward-re‐
duction bid points. In each time slot of the SFM, the SFMA 
can receive an energy reduction request from the DSO to al‐
leviate grid congestion. The request must be inside a feasible 
reduction region, as shown in Fig. 2 [55]. The red curve rep‐
resents the maximum possible aggregated reduction, corre‐
sponding to the highest bids of each RA. Likewise, the blue 
curve represents the summation of the minimum energy re‐
duction bids. Notably, the minimum energy reduction cannot 
be zero since all participating RAs must be assigned, and 
void bids are not allowed.

The SFMA is interested in maximizing its profit as the dif‐
ference between the DSO payment and the RA rewards [56]. 
Thus, (6) represents the WDP for the SFM as a combinatori‐
al optimization problem.

ì

í

î

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

max
λi

j"iÎ I"jÎ J ( )ξk∑
i = 1

N∑
j = 1

M

bi
j e

ired
kj λ

i
j -∑

i = 1

N∑
j = 1

M

bi
j e

ired
kj λ

i
j

s.t.  ∑
i = 1

N∑
j = 1

M

bi
j e

ired
kj λ

i
j £E DSO

ref

    ∑
i = 1

N

min
j

eired
kj £E DSO

ref £∑
i = 1

N

max
j

eired
kj

        ∑
j = 1

M

bi
j = 1

     bi
jÎ { }01

(6)

where bi
j is the binary variable; I is the set of N participating 
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Fig. 2.　Aggregated reduction boundaries of RA bids in each slot of SFM.
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RAs; and J is the set of M reward points.
The SFMA receives a compensation ξk per kWh reduced 

from DSO during the peak period up to the requested total 
energy reduction E DSO

ref  [46], [30]. bi
j can only take value 0 or 

1. This ensures that only one bid from each RA bid set in 
(5) is selected.

In literature, the exhaustive combinatorial search is the na‐
ive approach to solve the WDP with XOR bids in a single-
sided auction.Meta-heuristic-based techniques can be used to 
diminish optimality. Besides, these techniques may suffer 
from variance in the outcomes due to stochastic-based 
search. The proposed approach in this paper overcomes 
these limitations by applying interior-point optimization with 
an approximate reward function to represent the RA bids. A 
similar previous approach, as discussed in [44], suggests an 
approximation for the cost function but does not consider 
constraints. The following subsections explain the complete 
WDP algorithm and the possible approximations of the XOR 
bid sets.

A. Approximation of XOR Bid Set

The RAs participating in the SFM must follow the auction 
rules. Accordingly, they shall present unique reduction bids 
against each reward point in a non-decreasing manner [54]. 
Once the SFMA receives the reduction bid set from each 
RA, the next step is to approximate the bids to a reward-
based function f i

sel. The considered functions here are linear, 
exponential, or fractional power raised due to the mentioned 
characteristics of the bid set. Minimizing the sum of squared 
residuals (SSR) tunes the function parameters, as presented 
in (7). The SFMA tests all three possible reward-based func‐
tions and chooses the one performing the lowest SSR for 
each RA.

min
θi

SSR =∑
j = 1

M ( )eired
kj - f i

sel( λi
jθi ) 2

(7)

where θi is the learned parameter for functions.
The SFMA can provide different reward rates during the 

peak period according to the reduction offered [57]. Before 
each real-time energy exchange, the aggregator receives the  
ξk and the requested reduction. Thus, it completes all the in‐
formation needed to solve the WDP. Interior-point solvers 
have been proven practical in solving comparable prob‐
lems [58].
1) Linear Reward-based Function

In this case, the reward-based function approximates RA 
bids according to (8). As an illustrative example, Fig. 3(a) 
shows the energy reduction bids transmitted by one RA as 
discrete points. The blue dotted line depicts the correspond‐
ing linear regression curve constructed by the SFMA us‐
ing (8).

f i
sel( λi[αlin

i β lin
i ] ) = αlin

i λ
i + β lin

i (8)

where αlin
i  and β lin

i  are the learned parameters for linear func‐
tions.
2) Exponential Reward-based Function

Due to the eired
kj  limits stated in (4), the linear residential 

bid set functions do not truly represent the bid points for 
some reduction sets. 

Thus, the SFMA may approximate the XOR bid set using 
an exponential reward-based function, as shown in (9). For 
example, the RA bid points presented in Fig. 3(b) get closer 
to an exponential regression. Again, minimizing SSR tunes 
the function parameters.

f i
sel( λi[αexp

i β exp
i γexp

i ] ) =-αexp
i e-β

exp
i ( )λi

+ γexp
i (9)

where αexp
i , β exp

i , and γexp
i  are the learned parameters for expo‐

nential function.

3) Fractional Power Raised Reward-based Function
For certain RA bid sets, the linear and exponential regres‐

sions do not indicate the best fit for f i
sel. Accordingly, the SF‐

MA can use a third option with a fractional power raised re‐
ward-based function, as presented in (10). Figure 3(c) shows 
an example of this case in green. Minimizing SSR finds the 
parameters αfrc

i , β frc
i , and γfrc

i .

f i
sel( λi[αfrc

i β frc
i γfrc

i ] ) = αfrc
i ( λi ) β frc

i + γfrc
i (10)

0 < β frc
i < 1 (11)

B. Winner Determination Algorithm

After approximating the discrete RA bid set (5) to a re‐
ward-based function (8), (9), or (10), the WDP presented in 
(6) can be reformulated as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

max
λi"iÎ I ( )ξk∑

i = 1

N

 f i
sel ( )λi -∑

i = 1

N

λi f i
sel( )λi

s.t.  ∑
i = 1

N

 f i
sel ( )λi £E DSO

ref

    ∑
i = 1

N

min
j

eired
kj £E DSO

ref £∑
i = 1

N

max
j

eired
kj

(12)
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Fig. 3.　Approximation of residential bid set. (a) Linear reward-based func‐
tion. (b) Exponential reward-based function. (c) Fractional power raised re‐
ward-based function.
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Approximating the XOR bid set to f i
sel of λi ensures the se‐

lection of a unique bid from each RA. Thus, f i
sel( λi ) » eired

kj  

for each reward point in J transmitted to each RA in I. 

∑
i = 1

N

λi ( )f i
sel( )λi  represents the payments from the SFMA to the 

RAs, which can take either an affine or convex form based 
on the function selected for each RA, as shown in Step 2 of 
Algorithm 1. Once the SFMA has obtained the solution λi* 
to the problem presented in (12), the optimal value of f i*

sel  
may not match any value in the discrete bid set of the 
RAi

bidset, where f i*
sel = f i

sel( λi* ). Therefore, the SFMA computes 

the difference of f i*
sel  with all the bid points and identifies the 

index of the closest bid, as presented in (13). Algorithm 1 
provides the complete procedure for finding the optimal bids 
in the CSA under the energy reduction constraint. For every 
time slot of SFM, the SFMA needs to update the approximat‐
ed function (Step 1 of Algorithm 1) based on the RA bid set 
for determining the winning bid.

RAi
index = arg min

jÎ J
( )| eired

k1 - f i*
sel |  || eired

k2 - f i*
sel ...| eired

kM - f i*
sel |
   (13)

where RAi
index is the index of optimal bid.

Algorithm 1: winner determination based on energy reduction request 
from DSO

Input: reference energy reduction request from DSO and bid set from all 
participating RAs

Output: winning bid combination
Begin

for i = 12...N do
Step 1: approximate each RA bid set to f i

sel using (8), (9), or (10)
Step 2: select f i

sel for each RA that gives the lowest SSR
end

Step 3: solve the WDP (12)
Step 4: find the index of optimal bid for each RA using (13)

end
Step 5: announce the winning bid from RAi

bidset (5) to RAs
Step 6: confirm the reduced energy allocation to DSO

Remark The literature proposes several solutions to non-
convex problems in combinatorial auctions, including graph 
neural networks (GNNs), meta-heuristic-based techniques, 
mixed-integer programming (MIP), and branch and cut ap‐
proaches. The integer condition in the WDP makes it non-
convex and NP-hard [59]. To address this issue, [59] sug‐
gests using GNNs to understand the underlying probability 
distribution and learn the mapping of flexibility market bids 
of local energy to optimal solutions within a supervised 
learning framework. Reference [60] introduces a meta-heuris‐
tic genetic search for non-convex optimization problems, us‐
ing randomized selection to improve the objective function. 
Without relying on gradient information, the solution can 
fall into local optima. Reference [61] presents a solution to 
the non-convex electricity day-ahead auction using a primal-
dual framework, benefiting from parallel routines with state-
of-the-art MILP solvers. Additionally, [62] proposes new val‐
id inequalities for the branch and cut algorithm to solve the 
WDP, offering approaches to reduce problem size before 
solving.

IV. SIMULATION RESULTS

This section elaborates on the performance of the pro‐
posed approach for the WDP under a given energy reduction 
request. The data used to tune the house thermal models of 
RAs correspond to actual energy demand and indoor temper‐
ature measures from houses in Quebec province, Canada, 
during 2018. The simulation runtime is measured on an Intel 
Core i7 (2.00 GHz) computer with 32 GB RAM. Due to 
computational resource limitations, the exhaustive combinato‐
rial search approach is possible only for up to 8 houses. The 
DSO sends E DSO

ref  and the value of ξk for the peak period. 
These values constrain the SFMA profit. Notably, λi

j < ξk "j, 
so the SFMA always has a profit margin. Table II shows the 
different energy reduction requests according to the number 
of RAs participating in the SFM.

The parameters utilized in the simulation analysis for both 
the proposed approach and hybrid particle swarm optimiza‐
tion-genetic algorithm (HybridPSOGA) are shown in Table 
III [29], [63], [64]. 

The HybridPSOGA is an iterative approach that begins by 
generating a swarm of particles, and each assigned a random 
position index. Each particle adjusts its position index X i

iter 
based on the distance to its best position pxi

best and the global 
best position g xi

best. This adjustment is determined by the ve‐
locity concept viter + 1 [63]. The new position of each particle 
is updated by (14), where the velocity update is defined by 
(15).

X i
iter + 1 =X i

iter + viter + 1 (14)

viter + 1 =wdampviter + c1r1( )pxi

best -X i
iter + c2r2( )g xi

best -X i
iter (15)

TABLE III
PARAMETERS USED IN SIMULATION ANALYSIS

Approach

Proposed
approach

Hybrid-
PSOGA

Parameter

max_nfev

c1, c2

wdamp

mutfac

Population

Iteration

Description

The maximum evaluation 
limit

Learning coefficient

Weight damping ratio

Population mutation 
percentage

Population size

The maximum iteration

Value

10000

2.05, 2.05

0.9

20

100

100

Ref.

[64]

[63], [29]

TABLE II
DEFERENT ENERGY REDUCTION REQUESTS

Number of RAs

3

4

5

6

7

8

10

E DSO
ref  (kWh)

10.5

12.0

13.0

15.2

26.0

25.2

32.5

ξk

1.40

1.50

1.56

1.57

1.58

1.70

1.50

Number of RAs

15

20

30

40

60

80

100

E DSO
ref  (kWh)

49.0

73.5

104.0

145.0

190.0

300.0

380.0

ξk

1.50

1.55

1.59

1.70

1.60

1.90

3.20
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where r1 and r2 are the random variables with values rang‐
ing from 0 to 1. A genetic algorithm further refines the parti‐
cles with the best positions, and a mutation factor mutfac mu‐
tates their positions [29].

The reward points for energy demand reductions are the 
same for all participating RAs and are transmitted, as shown 
in Table IV.

A. Energy Reduction Results

The result of the proposed approach for clearing the flexi‐
bility market based on a reference energy reduction scenario 
is presented, as shown in Table V.

Other results of the approaches are presented for compari‐
son: the exhaustive combinatorial search approach for CSA, 
the HybridPSOGA [65], the uniform reward auction (URA), 
and dynamic programming (DP). 

The uniform price auction [66] has been modified into 
URA, and instead of transmitting the price point, the SFMA 
sends reward points to allow for more flexible bidding. 
Thus, the market is cleared by assigning the same reward to 
all participants. The HybridPSOGA is based on [29] and 
[67]. CSA can be observed as the naive approach because it 
evaluates all the possible combinations before announcing 
winners. However, it suffers from the curse of dimensionali‐
ty when the number of RAs increases. Indeed, the CSA is 
unfeasible for SFM due to the short clearing time require‐
ments. Finally, DP is also a searching algorithm, but it 
avoids evaluating all possibilities when possible. Consequent‐
ly, DP is faster than CSA for the majority of scenarios.

The results show that CSA is the best approach since it 
gets closer to the reduction request. The HybridPSOGA pro‐
vides an average μ close to the combinatorial results but has 
a variance σ. On the other hand, the proposed approach 
achieves an energy reduction consistently close to the de‐

mand reduction request from DSO. The worst-performing ap‐
proach is URA since the achieved reductions are far from 
the DSO request. Certainly, choosing the same reward for all 
participants is an unfavorable strategy because it disregards 
the preferences and flexibility of individual RA.

In extension, Fig. 4 compares energy reduction achieved 
for the various approaches with up to 100 RAs participating. 
The CSA becomes unfeasible as the number of RAs grows. 
The purple shadow area represents the variance of HybridP‐
SOGA.
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Fig. 4.　Energy reduction under demand reduction request from DSO for 
up to 100 RAs.

B. Results of SFMA Profit

The SFMA profit using various approaches is compared in 
Table VI. The CSA achieves the highest possible profit by 
respecting constraints. The DP (the maximum profit) attains 
comparable profits. The HybridPSOGA also earns a profit 
but with some variance, as presented in Table VI. Since the 
energy reduction through the proposed approach is near the 
requested reference, it has an advantage over the URA and 
HybridPSOGA regarding profit level. The benefit of the pro‐
posed approach is more noticeable as the number of RAs in‐
creases. The XOR bid approximations impede achieving opti‐
mality but give an acceptable result compared with the CSA.

Figure 5 illustrates the evolution of SFMA profit with up 
to 100 RAs participating. The proposed approach consistent‐
ly outperforms HybridPSOGA and URA. HybridPSOGA 
variance changes in the tested scenarios, managing to ap‐
proach the optimal results occasionally. The profit results 
from URA are directly proportional to the difference be‐
tween its achieved energy reduction and the DSO request.

TABLE IV
REWARD POINTS SENT TO RAS

Reward point

λi
1

λi
2

λi
3

λi
4

λi
5

Value

0.40

0.50

0.60

0.70

0.80

Reward point

λi
6

λi
7

λi
8

λi
9

λi
10

Value

0.85

0.90

1.00

1.12

1.14

TABLE V
ENERGY REDUCTION UNDER E DSO

ref  RESTRICTION

Number of 
RAs

3

4

5

6

7

8

E DSO
ref

10.5

12.0

12.8

15.2

26.0

25.2

Energy reduction (kWh)

The maximum 
bid boundary

24.380

32.400

38.420

47.440

56.460

66.480

The minimum 
bid boundary

4.700

5.500

6.030

7.570

8.900

11.230

Proposed 
approach

7.270

9.550

12.160

14.590

23.670

24.890

CSA

10.360

11.960

12.300

14.730

25.880

25.010

DP

10.170

11.400

12.180

14.610

25.880

24.890

μ (Hybrid-
PSOGA)

10.100

11.660

12.430

14.300

25.970

24.730

σ (Hybrid-
PSOGA)

0.003

0.110

0.200

2.160

0.040

0.440

URA

6.35

8.66

6.03

7.57

17.82

21.25
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The energy reduction achieved through HybridPSOGA is 
near the reference request from the DSO. Thus, its higher 
profit variance is partly due to the existence of bid combina‐
tions with the same energy reduction at different costs.

C. Profit Loss Comparison

The efficiency of the proposed approach is assessed 
through various simulations involving 7 consumers randomly 
submitting bid set (5) in the flexible auction market. In each 
scenario, E DSO

ref  and ξk are set to be 25 kWh and $1.58, re‐
spectively. In Fig. 6(a), the CSA consistently respects the 
E DSO

ref . In Fig. 6(b), it is demonstrated that solving (12) in the 
continuous domain also maintains compliance with the flexi‐
bility purchase constraint. Figure 6(c) shows an adherence to 
E DSO

ref  when mapping the continuous solution obtained 
through (12) to a discrete bid set (5) using Algorithm 1, as 
shown in teal green. Approximately 48% of the values in 
overall random scenarios exceed E DSO

ref . The extent of exceed‐
ing values depends on the spacing of the bids in the RA bid 
set (5). The increased dispersion of bids in the bid set (5) 
leads to a higher loss in adhering to E DSO

ref . In contrast, when 
RAs submit closely spaced bids, it will lead to an aggregat‐
ed reduction, facilitating the compliance with E DSO

ref . The ad‐
justed Algorithm 1 is depicted in grey in Fig. 6(c). In adjust‐
ed Algorithm 1, the SFMA ensures adherence to constraint 
by adjusting E DSO

ref  as E DSO
refnew =E DSO

ref - κ, where κ is continuous‐
ly adjusted to ensure compliance when mapping from contin‐
uous to discrete bid set (5). The HybridPSOGA, depicted in 
purple in Fig. 6(c), satisfies E DSO

ref  in all scenarios. Note that 
UL and LL denote the upper and lower boundaries, respec‐
tively.

The profit obtained using the CSA for the WDP is illus‐
trated in olive green in Fig. 7. This approach serves as the 
benchmark for solving the WDP. The profit earned from the 
utilization of Algorithm 1 is depicted in teal green in Fig. 7. 
The profit obtained by adjusted Algorithm 1 is shown in 
grey in Fig. 7. 

The adjusted Algorithm 1 respects the constraint, which re‐
sults in a lower profit mean compared with Algorithm 1. 
The profit earned through HybridPSOGA is represented in 
purple.

The analysis focuses on evaluating the profit loss in per‐
centage compared with the solution provided by CSA. The 
histogram in Fig. 8 illustrates the profit loss results through 

TABLE VI
SFMA PROFIT UNDER E DSO

ref  RESTRICTION SHOWN IN TABLE V

Number 
of RAs

3

4

5

6

7

8

SFMA profit ($)

Proposed 
approach

6.12

9.31

12.93

15.66

23.90

28.63

CSA

8.78

10.90

13.24

15.96

25.83

29.29

DP

8.29

10.41

12.98

15.71

25.83

28.63

μ (Hybrid-
PSOGA)

10.10

11.66

12.43

14.30

25.97

24.73

σ (Hybrid-
PSOGA)

0.003

0.110

0.200

2.160

0.040

0.440

URA

5.72

8.66

7.00

8.85

19.26

25.50
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Fig. 6.　Energy reduction comparison of all approaches among seven RAs 
with randomized bid set and fixed demand reduction request from DSO. (a) 
With CSA. (b) With continuous solution. (c) With three approaches.
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Fig. 5.　 SFMA profit comparison under demand reduction request from 
DSO for up to 100 RAs.
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the Algorithm 1 (teal green), adjusted Algorithm 1 (gray), 
and HybridPSOGA (purple). The proposed approach helps 
the SFMA perform better than the adjusted Algorithm 1 and 
the HybridPSOGA. This is particularly important in the con‐
text of short-duration SFM because it gives a better trade-off 
between market clearing speed and financial efficiency.

D. Computational Complexity

Reducing computational complexity is essential for SF‐
MA, particularly when managing a substantial number of 
consumers. For instance, as presented in [68], aggregators of‐
ten interact with more than 1000 residential customers. In 
such scenarios, the market clearing time in the SFM is essen‐
tial for a continuous and reliable operation. The SFMA must 
quickly choose the optimal bids to maximize its profit while 
responding to DSO requests. Figure 9 shows the computa‐
tional time comparison of all approaches. The advantage of 
the proposed approach compared with CSA and DP is evi‐
dent as those approaches suffer from the curse of dimension‐
ality with large sets of RAs. Considering M as the 10 bids 
from each RA, the CSA has a time complexity of O (M N ), 
while the interior point solver used in the proposed approach 

has O ( N ln (N ω ) ) for an ω accuracy [69]. The proposed 

approach is also faster in computational speed than HybridP‐
SOGA in all considered scenarios.

In Fig. 10, the decision-making using various approaches 
is illustrated over the entire search space when 6 RAs partici‐
pate with SFMA in the presence of E DSO

ref .
In Fig. 10, all possible profit outcomes from CSA are de‐

picted as grey dots, with the optimal bid that maximizes 

profit highlighted in red. URA serves as a baseline approach 
without combination formation. Each aggregation is evaluat‐
ed against discrete incentive points, denoted by pink aster‐
isks, with the maximum profit respecting constraints marked 
by a large pink asterisk. URA expedites market clearing but 
yields only 10 possible profits, resulting in significant profit 
loss compared with CSA. DP starts with a URA solution, 
and its computational costs escalate beyond 25 houses. The 
HybridPSOGA respects constraints but exhibits varying prof‐
it levels due to bid combination variability. 

The proposed approach approximates RA bids to a reward-
based function, closely aligning with the global combinatori‐
al approach and ensuring consistent solutions across itera‐
tions.

E. Response Time

The response time is calculated using a co-simulation plat‐
form employing Raspberry Pi 4B+ devices as RA, as shown 
in Fig. 11. The SFMA interacts with RAs twice before run‐
ning Algorithm 1 to solve the WDP. Initially, RAs run 
thread 1 to optimize base energy demand reporting, with a 
maximum execution time of approximately 17.67 s per RA 
[70]. The aggregator then waits for all RA responses, taking 
a maximum of 21.69 s for up to 100 houses, totalling 39.36 
s for the first interaction.
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Subsequently, the aggregator sends incentive point sets to 
all RAs, followed by RA optimization processes to deter‐
mine energy reductions. The maximum execution and com‐
munication time remains similar, summing to another 39.36 
s. The aggregator then runs Algorithm 1 to solve the WDP, 
allowing flexibility for the DSO to manage congestion in the 
SFM. The approximate time for interactions and Algorithm 1 
is 80.24 s for up to 100 RAs, consuming about 26.75% of 
the 5 min SFM time slot. The remaining time leaves room 
for real-time market variability, delays, or increased RA num‐
bers.

V. CONCLUSION

SFMs permit DSOs to alleviate system congestion by fa‐
cilitating demand-side management. These markets comprise 
single-sided auctions where an SFMA intermediates to man‐
age a group of customers. The success of SFMA depends on 
fast clearing mechanisms that provide requested energy re‐
ductions at competitive prices. This paper presents a clearing 
mechanism that reduces computational complexity compared 
with state-of-the-art approaches. The effectiveness of the pro‐
posed approach in finding an acceptable profit of SFMA is 
validated, even for a large set of customers. It leverages re‐
ward-based function approximations and interior-point solv‐
ers. Reducing computational complexity is vital for imple‐
menting SFMs, so exploiting the presented approximations 
for discrete bid sets is advisable. Furthermore, the developed 
formulation of the WDP eases the use of commercial solv‐
ers. The achieved energy reductions show the feasibility of 
the proposed approach to meet DSO demands.
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