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Multi-temporal Optimization of Virtual Power 
Plant in Energy-frequency Regulation Market 

Under Uncertainties
Wenping Qin, Xiaozhou Li, Xing Jing, Zhilong Zhu, Ruipeng Lu, and Xiaoqing Han

Abstract——The virtual power plant (VPP) facilitates the coor‐
dinated optimization of diverse forms of electrical energy 
through the aggregation and control of distributed energy re‐
sources (DERs), offering as a potential resource for frequency 
regulation to enhance the power system flexibility. To fully ex‐
ploit the flexibility of DER and enhance the revenue of VPP, 
this paper proposes a multi-temporal optimization strategy of 
VPP in the energy-frequency regulation (EFR) market under 
the uncertainties of wind power (WP), photovoltaic (PV), and 
market price. Firstly, all schedulable electric vehicles (EVs) are 
aggregated into an electric vehicle cluster (EVC), and the sched‐
ulable domain evaluation model of EVC is established. A day-
ahead energy bidding model based on Stackelberg game is also 
established for VPP and EVC. Secondly, on this basis, the multi-
temporal optimization model of VPP in the EFR market is pro‐
posed. To manage risks stemming from the uncertainties of WP, 
PV, and market price, the concept of conditional value at risk 
(CVaR) is integrated into the strategy, effectively balancing the 
bidding benefits and associated risks. Finally, the results based 
on operational data from a provincial electricity market demon‐
strate that the proposed strategy enhances comprehensive reve‐
nue by providing frequency regulation services and encouraging 
EV response scheduling.

Index Terms——Virtual power plant (VPP), electric vehicle, dis‐
tributed energy resource (DER), wind power (WP), photo volta‐
ic (PV), uncertainty, frequency regulation, electricity market, 
energy market, Stackelberg game, conditional value at risk.

NOMENCLATURE

Ω Dispatchable domain of electric vehicle clus‐
ter (EVC)

α Confidence level
β The maximum percentage of load allowed to 

be shifted

εi Charging/discharging cost factor
ηs Auxiliary variable indicating fraction of virtu‐

al power plant (VPP) revenue over φ for each 
scenario

ηESS
ic η

ESS
id Charging and discharging efficiencies of the ith 

energy storage system (ESS)
ηcηd Charging and discharging efficiencies of each 

electric vehicle (EV)
λDA

t λDA
ts Power purchase and sale prices of VPP in day-

ahead (DA) energy market at time t
λcap

t λmile
t Frequency regulation capacity and mileage 

compensation price in DA frequency regula‐
tion market at time t

λ1
t -λ

6
t Introduced binary variables at time t

μit Grid connection/disconnection status of each 
EV

μGT
it μ

su
itμ

sd
it Binary variables indicating operating, start, 

and stop states of the ith gas turbine (GT) at 
time t

μ1
t -μ

7
t Introduced dual variables at time t

π DAc
t π DAd

t EV charging and discharging prices in DA en‐
ergy market at time t

π cmin
t π cmax

t The minimum and maximum values of charg‐
ing price at time t set to be 0.8 and 1.2 by VPP

π dmin
t π dmax

t The minimum and maximum values of dis‐
charging price at time t set to be 0.8 and 1.3 
by VPP

π c
t π

d
t Time-of-use charging and discharging prices 

for EV users at time t
ρs Probability corresponding to scenario s

φ Value at risk (VaR) of VPP revenue

ω Frequency regulation deviation penalty factor 
taken as 1.8

ζ Risk aversion coefficient indicating degree 
of risk aversion of VPP that ranges from 0 
to 1

aibici Fixed, start, and stop costs of the ith GT
ct δ

sh
t Power sale price and subsidy from VPP to 

load customers
C EV Charging/discharging cost for EVs
C GTDA

t C ESSDA
t Operating costs of GT and ESS in DA energy 
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market at time t
CVaR Conditional value at risk (CVaR) of VPP reve‐

nue
E min

it , E max
it The minimum and maximum dispatchable 

power of the ith EV at time t
E ESS

i Battery capacity of the ith ESS
E a

i E
l
i Initial and final charges for the ith EV

E min
i E max

i The minimum and maximum battery capaci‐
ties of the ith EV

F DA Total revenue of VPP in DA energy market
f upf dn Upward and downward automatic generation 

control (AGC) frequency regulation com‐
mands

k Electricity sale coefficient (k = 0.9)
lij Operating slope of the j th segment cost of the 

ith GT
M A very big number
m Frequency regulation mileage factor
N Set of EVs in EVC
n Number of ESSs
P chr

tmaxP
dis
tmax The maximum charging and discharging pow‐

er of EVC at time t
P chr

imaxP
dis
imax The maximum charging and discharging pow‐

er of the ith EV
P sh

t L
s
tD

Power after controllable load transfer and load 
transferred during demand response period

P DA
t S DA

t Declared purchased and sold electrical ener‐
geis of VPP in DA energy market at time t

P chr
t P dis

t EV charging and discharging power at time t
P ESSc

it P ESSd
it Charging and discharging power of the ith ESS 

at time t
P GT

ijt The j th segment output of the ith GT at time t

PiminPimax The minimum and maximum outputs of the ith 
GT

P ESS
imax The maximum charging and discharging pow‐

er of the ith ESS
P cap

it P
mile
it Capacity and mileage of the ith ESS at time t

P cap
imax The maximum frequency regulation capacity 

allowed for the ith ESS
P wDA

t P pDA
t Predicted value of wind power (WP) and pho‐

tovoltaic (PV) in DA energy market at time t
P l

t Power of load demand at time t
P FMc

it P FMd
it Charging and discharging power of the ith ESS 

in response to AGC command at time t
RENDA

t RFRDA
t Revenues of VPP participating in DA energy 

market and frequency regulation market at 
time t

REV
t RLoad

t Payment costs from EVC and load to VPP at 
time t

r cap
t Declared frequency regulation capacity in fre‐

quency regulation market at time t
ri Climb rate of the ith GT
S1ST Battery power at initial moment and moment T
S EV

tminS
EV
tmax The minimum and maximum power of EVC 

at time t
Ss Typical set of scenarios and index of scenario
S DA

t VPP power sales in DA stage
SOCit State of charge (SOC) of the ith ESS at time t
SOCimin The minimum and maximum SOC allowed 
SOCimax for the ith ESS

TaTl Grid connection (EV arriving) time and grid 
disconnection (EV leaving) time

TTi EV dispatchable hour and dispatchable time 
slot for the ith EV

V The maximum power of VPP purchased and 
sold

z DA
t z ESS

it z EV
t Binary variables indicating purchasing and 

selling status of VPP in DA energy market, 
and charging/discharging statuses of ESS and 
EV at time t

I. INTRODUCTION

IN line with China’s goals of carbon peaking and carbon 
neutrality, the National Energy Administration published 

the “Blue Book of New Power System Development” in 
June, 2023 [1]. This significant publication emphasizes that 
China’s new power system is currently in an accelerated 
transition phase, underscoring the importance of efficient de‐
velopment and utilization of new energy sources to facilitate 
its construction. However, the direct involvement of distribut‐
ed energy resources (DERs) in power system operations fac‐
es challenges due to their limited individual capacities and 
extensive geographical dispersion [2], [3]. Furthermore, the 
regulatory potential of massive DERs needs to be tapped. In 
response to this challenge, virtual power plants (VPPs) uti‐
lize advanced communication technology to aggregate 
DERs, eliminating spatial and grid constraints. This enhanc‐
es the regulatory capabilities of the power system and ex‐
pands collective benefits. Therefore, VPPs have emerged as 
a pivotal option for the development of new power systems, 
particularly in dealing with the large-scale integration of 
DERs [4], [5].

The current focus of research in the field of VPP lies in 
three main areas: dynamic aggregation [6], [7], power mar‐
ket trading [8], [9], and economic dispatch [10], [11]. In 
[12], a distributed robust algorithm for VPP peer-to-peer 
(P2P) energy trading is proposed, considering the imbalance 
problem and communication failure in the distribution net‐
work. The algorithm improves the robustness to communica‐
tion failures such as network-layer packet loss and comput‐
ing node failure. Reference [13] comprehensively analyzes 
the uncertainties arising from renewable energy generation, 
market price, and load within VPP, and proposes correspond‐
ing optimization methods to address these challenges. Refer‐
ence [14] integrates waste gasification devices into the VPP, 
and establishes a waste to energy virtual power plant (WtE-
VPP) system. This study systematically analyzes the interre‐
lationship between power generation and hydrogen produc‐
tion in WtE-VPP, and proposes a dual-layer clearing model 
for WtE-VPP participation in combined electricity and hydro‐
gen markets. The model in [14] not only achieves environ‐
mentally sound waste utilization and enhances resource effi‐
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ciency, but also enables the VPP to participate in diverse 
coupled markets for expanded revenue. Relying on a diversi‐
fied energy portfolio, flexible energy supply modalities, and 
abundant energy storage systems, VPP possesses the capabili‐
ty to orchestrate the involvement of distributed generation, 
controllable loads, and energy storage units in electricity 
markets. Furthermore, VPPs have the potential to provide 
supplementary auxiliary services to the power system.

Amidst the ongoing evolution of electricity market re‐
forms, various regions in China have sequentially introduced 
the policies about VPP participation in the ancillary service 
market. These regulations are designed to incentivize VPPs 
to leverage their inherent flexibility, contributing auxiliary 
services including reserve capacity, peak shaving, and fre‐
quency regulation to the power system. A game-theoretic 
method is employed in [15] to establish a peaking bidding 
strategy for VPP equipped with controllable DERs and flexi‐
ble loads. This strategy effectively enhances the enthusiasm 
of internal VPP members and improves the peaking benefits. 
Reference [16] proposes an optimal day-ahead (DA) bidding 
strategy for VPP participating in energy and peak shaving 
considering the presence of uncertainties. Reference [17] de‐
signs a decentralized market clearing strategy to incentivize 
internal units of VPP to contribute frequency regulation ser‐
vices. This strategy effectively mitigates the reluctance of 
VPP internal units to adhere to scheduled directives, result‐
ing in a reduction of losses from approximately 80% to 
around 6%. However, current research predominantly concen‐
trates on individual electricity markets, including energy, 
peak shaving, and frequency regulation. When engaged in 
the energy market, VPP prioritizes DA planning, while the 
involvement in the frequency regulation market emphasizes 
real-time (RT) efficacy. The decision objectives of VPP are 
incongruent when participating in these two categories of 
combined markets, i.e., DA and RT. Therefore, it is of great 
significance to build a strategy of VPPs participating in the 
energy-frequency regulation (EFR) market to improve the 
economy and flexibility of VPP.

To enhance demand-side capacity and strengthen response 
capabilities, electric vehicles (EVs) have gained attention as 
unique electric loads with storage and load attributes, there‐
by emerging as a primary aggregation target for VPP [18]. 
In [19], a three-stage bidding model is established that incor‐
porates demand response from a single EV for VPP partici‐
pation in the DA, RT, and equilibrium markets. References 
[20] and [21] develop a two-stage optimal dispatching model 
to minimize EV charging costs, while [22] formulates a VPP 
participation model for frequency modulation of automatic 
generation control (AGC) that considers EV uncertainties 
and evaluates the EV compensation tariff based on the EV 
response deviation threshold. The VPP and EV operators be‐
long to different decision-making entities, and their decision-
making objectives exhibit certain conflicts. The purpose of 
the VPP operator is to maximize the operational benefits of 
the VPP, whereas that of the EV operator is to reduce the 
charging cost. Therefore, it has become vital to coordinate 
the relationship between the rest of VPPs and the EV charg‐
ing-discharging strategy, and maintain the interests of the 

two operators for keeping the stable operation of the VPP 
system.

The bidding behavior of VPP in the DA market can be lik‐
ened to portfolio behavior [23], which requires consideration 
of risks arising from uncertainties. Reference [24] uses the 
information gap decision theory (IGDT) to manage the risks 
caused by the uncertainties of wind power (WP) and market 
price. In [25], a risk stochastic optimization method based 
on conditional value at risk (CVaR) is proposed. Compared 
with IGDT, this method quantifies the benefits of risk-seek‐
ing and makes full use of the statistical characteristics of un‐
certain parameters to manage expected profits more accurate‐
ly and flexibly. In [26], CVaR is utilized to establish a two-
stage risk aversion model for VPP, leading to the develop‐
ment of optimal bidding strategies for VPP participating in 
the energy market. In [27], a P2P multi-VPP trading model 
has been developed that incorporates risk and resolves P2P 
trades through CVaR risk measurement. However, these stud‐
ies solely focus on addressing risk concerns in the energy 
market, necessitating further investigation into the risk man‐
agement of bidding for participation in the EFR market.

This paper proposes a multi-temporal optimization strate‐
gy of VPP in the EFR market under uncertainties, and estab‐
lishes a Stackelberg game model between VPP and EV to 
maintain the interests of both parties. The major contribu‐
tions of this paper are as follows.

1) This paper aggregates all EVs participating in VPP 
scheduling as an electric vehicle cluster (EVC). An evalua‐
tion model of EVC schedulable domain is established, and a 
Stackelberg game model between VPP and EV is proposed 
to maintain the interest relationship between them effectively.

2) This paper proposes a multi-temporal optimization strat‐
egy for VPP to coordinate internal entities participating in 
the EFR market. The proposed strategy comprehensively ad‐
dresses distinct decision objectives of VPP in these two mar‐
ket categories and enhances the overall revenue of VPP.

3) This paper introduces the concept of CVaR in the pro‐
posed strategy to manage the risks caused by the uncertain‐
ties of WP, photovoltaic (PV), and electricity prices when 
participating in the EFR market. This provides a reference 
for VPP operators to develop market strategies based on 
their risk aversion level.

II. VPP PARTICIPATING IN EFR MARKET

A. VPP Optimization Strategy

According to the “Virtual Power Plant Construction and 
Operation Management Code” of a specific province of Chi‐
na [28], this paper presents a comprehensive framework for 
the consolidation of DERs including WP, PV, gas turbines 
(GTs), EVs, energy storage system (ESS), and controllable 
loads, within a “source-grid-load-storage integrated” VPP. 
The VPP dispatch center actively participates in the EFR 
market while internally coordinating the operations of its 
member resources to facilitate market trade. The market co‐
ordinated optimization strategy of the VPP is illustrated in 
Fig. 1.
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B. Scenarios with Uncertainties of WP, PV, and Market Price

In this subsection, deterministic scenarios are employed to 
capture the uncertainties of WP, PV, and DA market prices. 
A multitude of scenarios are generated using a sampling 
method based on probability density functions derived from 
forecasting errors. To accurately capture the distribution 
range of forecasting errors, Latin hypercube sampling (LHS) 
is employed. It is necessary to generate many scenarios to 
accurately describe uncertainties, but this significantly in‐
creases the computational burden of the model. Therefore, it 
is necessary to reduce the number of generated scenarios 
while ensuring a certain level of computational accuracy, to 
obtain a set of typical scenarios along with their correspond‐
ing probabilities. In this paper, the K-means++ algorithm is 
utilized to reduce scenarios. It allows for updating centroids 
by traversing the dataset and overcomes the dependency on 
initial centroids compared with the K-means algorithm [29].

C. EVC Dispatchable Domain Assessment Model

The integration of EVs into the power system exhibits in‐
herent stochastic behavior, and their participation in VPP 
scheduling is contingent upon the preferences of individual 
user. To achieve effective scheduling of EVs, all EVs partici‐
pating in VPP scheduling are aggregated as an EVC in this 
paper, and an assessment model for the EVC scheduling do‐
main is established.

The dispatchable domain of EV is determined by factors 
such as its charging and discharging power limitations as 
well as the available power capacity. Thus, this paper de‐
fines the dispatchable domain of EV as encompassing both 
the dispatchable power domain and its dispatchable energy 
domain. The model for assessing the dispatchable domain of 
an individual EV is presented as:

ì

í

î

ïïïï

ï
ïï
ï

Ωi =[P chr
imaxP

dis
imaxE

max
it E min

it ]    tÎ[TaTl ]

E max
it =min{E a

i +P chr
imax (t - Ta )DtηcE max

i E l
i }

E min
it =max{E a

i +P dis
imax (t - Ta )Dt/ηdE min

i }

(1)

Due to variations in the connection time Ti of individual 
EVs to the power system, their dispatchable period intervals 
also differ. To ensure consistent dispatchable period inter‐
vals, a binary variable μit is introduced to represent the grid 
connection and disconnection status of each EV. The schedul‐
ing hours of all EVs are extended so that they maintain 
scheduling consistency. Subsequently, for the sake of simpli‐
fying the computational process, the MS method [30] is uti‐
lized to map the dispatchable domain of each EV onto a uni‐
fied domain. In this paper, the decision variables of individu‐
al EVs are converted into decision variables of EVCs by the 
MS method. The model for mapping the EVC dispatchable 
domain is presented in (2), and the EVC dispatchable do‐
main is established. An intuitive visualization of EVC dis‐
patchable domain mapping process is illustrated in Fig. 2, 
where the x-axis is the EVC dispatchable time, the y-axis is 
the EVC power, the z-axis is the individual EV number (EVi 
means the ith EV), and the shaded area is the dispatchable 
domain, of which different colors represent different EVs.

Uncertainty portrayal EVC dispatchable domain assessment

MS method

EVC dispatchable domains

Individual EV dispatchable domains

Scenario reduction

Typical scenario set

Scenario generation

Bids

 

Energy market power bids GT power schedules

Returns and CVaRs under uncertainty risk

Adjustment 

WP, PV, DA and market
price forecast data

EV on-grid and off-grid time,
on-grid power

VPP
(DA strategy)

EFR market
(DA market)

DA settlement

Maximizing
VPP profit

Stackelberg game Minimizing EVC
payment

Results of DA bidding 

WP and PV schedules

EVC charging and discharging
power and price

ESS schedules and frequency
modulation capacity

Load demand response
(DR) strategy

RT WP and PV outputs RT EVC dispatchable domain

VPP
(RT strategy)

EFR market
(RT market)

RT settlement

Minimizing deviation from DA bidding strategy and AGC command

Results of RT adjustments 

Trading energy with
EFR market

GT power output

WP and PV outputs
EVC charging and
discharging power

ESS output and result of response to AGC command

DA stage

RT stage

Objective

Objective

Fig. 1.　Market coordination optimization strategy of VPP.
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i
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Fig. 2.　Illustration of EVC dispatchable domain mapping process.
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P chr
tmax =∑

iÎN

μit P
chr
imax

P dis
tmax =∑

iÎN

μit P
dis
imax

S EV
tmax =∑

iÎN

μit E
max
it

S EV
tmin =∑

iÎN

μit E
min
it

(2)

The decision variables of individual EVs are transformed 
into the decision variables of the EVC using MS method, 
which simplifies the problem-solving process. Moreover, the 
instantaneous energy fluctuations within the EVC schedula‐
ble domain, induced by the connection and disconnection of 
an individual EV, can detrimentally influence the accuracy 
of the EVC dispatchable domain assessment model. To ad‐
dress this issue, this paper introduces the variable DS EV

t  serv‐
ing as a representation for the energy step changes during 
grid connection and off-grid moments of an EV, as shown 
in (3).

DS EV
t =∑

iÎN

(μ it - μit - 1 )(μ it E
a
i + μit - 1 E l

i ) (3)

According to (2) and (3), the EVC dispatchable domain 
can be expressed as Ω =[P chr

tmaxP
dis
tmaxS

EV
tmaxS

EV
tminDS EV

t ].
In the DA stage, the VPP initially collects historical data 

from EVs willing to participate in scheduling. This process 
yields the historical dispatchable domains of individual EVs. 
Subsequently, the dispatchable domain of EVC is assessed 
using the evaluation model, resulting in a dataset of histori‐
cal dispatchable domains of EVC. Finally, predictive algo‐
rithms are applied to process the dataset and determine the 
DA dispatchable domain. In the RT stage, the dispatchable 
domain of each time is calculated based on the rolling opti‐
mization idea by combining the RT data of EVs, enabling 
the recalculation of the dispatchable domain of EVC based 
on the latest information available.

III. STRATEGIC MODEL FOR VPP PARTICIPATION IN EFR 
MARKET

The strategic model of VPP can be categorized into two 
components: the DA joint bidding model and the RT adjust‐
ment model, based on its participation in the EFR market.

A. DA Joint Bidding Model

The DA joint bidding model is formulated as a bi-level op‐
timization framework based on Stackelberg game. The upper 
level comprises the VPP optimization model, which incorpo‐
rates CVaR to account for uncertainty and risk consider‐
ations. It establishes a multi-objective optimization model 
that aims to maximize revenue while minimizing risk. By co‐
ordinating the operation of internal units, the VPP devises an 
optimal joint bidding model and determines the charging and 
discharging prices for the EVC. The lower level consists of 
the EVC optimization model, which targets minimizing the 
payment cost while ensuring efficient energy utilization. 
Based on the VPP charging and discharging prices, this mod‐
el optimizes the charging and discharging power for each in‐

stance to incentivize EV users to participate in scheduling.
1) Upper-layer VPP Optimization Model

1) Objective function
The VPP aims to optimize its revenue by maximizing the 

difference between benefits and costs:

max F DA =

∑
t = 1

T

(RENDA
t +RFRDA

t +REV
t +RLoad

t -C GTDA
t -C ESSDA

t )Dt (4)

RENDA
t = kλDA

t S DA
t - λDA

t P DA
t (5)

RFRDA
t = (λcap

t +mλmile
t k i

p )r cap
t (6)

REV
t = π DAc

t P chr
t - π DAd

t P dis
t (7)

RLoad
t = ct P

sh
t - δsh

t Lsh
tD

    "tDÎ TD (8)

C GTDA
t = aiμ

GT
it +∑

j = 1

n

lij P
GT
ijt + biμ

su
it + ciμ

sd
it (9)

C ESSDA
t = εi (P

ESSc
it +P ESSd

it ) (10)

Equations (5) and (6) are the revenues for VPP participat‐
ing in the market; (7) and (8) are the internal revenues to 
VPP; and (9) and (10) are the operating costs of the VPP.

2) CVaR objective function considering uncertainty risk
To consider the uncertainty risk of WP, PV, and DA mar‐

ket price, this paper uses the CVaR [31] to trade off the risk 
and revenue of the VPP DA bidding model.

In the upper-layer VPP optimization model, firstly, the 
maximum revenue achievable through the DA bidding model 
in each scenario is calculated. Secondly, the maximum ex‐
pected revenue of the DA bidding model is determined by 
weighting the sum of scenario probabilities. Lastly, the objec‐
tive of risk minimization is incorporated by introducing a 
risk aversion coefficient, transforming the multi-objective 
problem of the upper-layer model into a single-objective 
problem. The final objective function can be expressed as:

ì
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î

ï
ïï
ï

ï
ïï
ï
ï
ï

max
ì
í
î

ü
ý
þ

(1 - ζ )∑
s = 1

S

ρs F DA
s - ζCVaR

CVaR = φ +
1
S

(1 - α)∑
s = 1

S

ρsηs

(11)

A larger ζ indicates a more conservative VPP and a higher 
risk aversion.

3) Constraints
To ensure the safe and stable operation of the power sys‐

tem, there exists a transmission power limit between the 
VPP and the main power:

ì
í
î

ïï0 £ S DA
t £Vz DA

t

0 £P DA
t £V (1 - z DA

t )
(12)

For the GT, the operational constraints are mainly the up‐
per and lower limits of the output power and climb rate.

Pimin μ
GT
it £P GT

ijt £Pimax μ
GT
it (13)

-ri £P GT
it -P GT

it - 1 £ ri (14)
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ì
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μGT
it - μ
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su
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μGT
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GT
it £ μ

sd
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(15)

For the energy storage equipment, the operational con‐
straints are mainly the upper and lower limits of the output 
power and the upper and lower limits of capacity, as shown 
in (16) and (17).
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it P ESS
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The constraints for frequency regulation capacity declara‐
tion mainly involve the remaining capacity constraint after 
ESS charging and discharging and the frequency regulation 
mileage constraints.
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it £mP cap
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Controllable load constraint needs to ensure that the load 
demand does not change during the day.

-βP l
t £P l

t -P sh
t £ βP l

t (22)

∑
t = 1

T

P l
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t = 1

T

P sh
t (23)

The power balance constraint is given as:

P DA
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To align the charging and discharging price formulated by 
the VPP with the prevailing market conditions, the VPP es‐
tablishes pricing based on the time-of-use electricity price of 
a specific province of China.
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2) Lower-level EVC Optimization Model
1) Objective function
The charging and discharging operations of EVC are car‐

ried out with the primary goal of minimizing the payment 
cost. This objective function is expressed as:

min C EV =∑
t = 1

T

(π DAc
t P chr

t - π DAd
t P dis

t ) (26)

2) Constraints
Based on the EVC dispatchable domain assessment model, 

the former EVC dispatchable domain is calculated and the 
EVC charging and discharging are constrained, as shown 
in (27).
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B. RT Adjustment Model

1)　Objective Function
In the RT stage, power output is fine-tuned within a range 

of ±10% of the deviation from the winning bid of the DA 
market, taking into account RT data. Meanwhile, the schedul‐
ing of ESS is optimized to respond to the AGC command. 
The objective of this stage is to minimize the deviation of 
RT output from the result of the winning bid and response 
to AGC commands, as shown in (28).
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2)　Constraints
In response to the AGC command, the ESS should not ex‐

ceed the declared frequency regulation capacity as:
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The constraints of ESS remain consistent with (16) - (18), 
with the addition of upward and downward response power 
due to frequency regulation signals affecting the charging 
and discharging power.

The remaining constraints in the RT stage are comparable 
to those in the DA stage. Please refer to (12)-(15) and (24) 
for detailed information of these constraints.

IV. MODEL TRANSFORMATION AND SOLUTION 

In the DA joint bidding model, the VPP and EVC are en‐
gaged in a Stackelberg game relationship due to conflicting 
interests. Since both the upper-layer VPP optimization model 
and lower-layer EVC optimization model are the first-order 
functions, the Stackelberg game model established in this pa‐
per possesses a unique equilibrium solution under the given 
constraint conditions. However, considering the presence of 
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non-continuous terms in the objective functions of both up‐
per and lower layers, a numerical optimization method based 
on the Karush-Kuhn-Tucker (KKT) condition [32], [33] is 
employed. This method effectively transforms the two-layer 
optimization problem into a mixed-integer linear program‐
ming (MILP) problem, allowing for an efficient solution pro‐
cess. The model derivation process is detailed in Supplemen‐
tary Material A.

Thus, the objective function of the single-level problem 
can be reformulated as:
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Equation (30) is subject to constraints (12)-(24) and (S6)-
(S12) in Supplementary Material A. Finally, the preceding 
nonlinear problem is transformed into an MILP problem.

V. CASE STUDY

A. Case Description

To validate the effectiveness of the proposed strategy, a 
case study is conducted using the electricity market of a spe‐
cific province of China. The time-of-use electricity price da‐
ta for the province are presented in Table I. The DA and RT 
market prices are derived from actual operational data for a 
selected day in the province, as shown in Fig. 3. The operat‐
ing parameters for the GT and ESS are presented in Table II 
and Table III, respectively.

In this paper, Monte Carlo simulation is utilized to gener‐
ate historical and RT EV data. It is assumed that all EVs ex‐
hibit uniformity in their battery capacity and maximum 
charging and discharging power. The EVs have a battery ca‐
pacity of 32 kWh and a maximum charging and discharging 
power of 6.6 kW. The SOC ranges from 0.15 to 0.95, with a 
charging and discharging efficiency of 90%. Two types of 
EVs are considered in the EVC: nighttime grid-connected 
EVs and daytime grid-connected EVs. The grid-connection 
behavior parameters of EVs are presented in Table IV.

B. Analysis of Uncertainty Scenarios and EVC Dispatchable 
Domain

1)　Description of Uncertainty Scenarios
To portray the uncertainties of WP, PV, and market price, 

LHS is used to generate 200 scenarios. These scenarios are 
then reduced to 5 using the K-means++ algorithm, as shown 
in Fig. 4. The probabilities of occurrence for each scenario 
are presented in Table V. The fluctuation of forecast error is 
assumed to be 10 % of the predicted value.
2)　Analysis of EVC Dispatchable Domain

Figure 5 illustrates the EVC dispatchable domains of the 
EVC during the DA and RT scheduling stages, including the 
dispatchable power domain and the dispatchable energy do‐
main.

As illustrated in Fig. 5, the EVC dispatchable domain 
demonstrates a notable consistency across the DA and RT 
stages, with the most significant deviations observed be‐
tween hour 17 and hour 19, exhibiting a deviation rate of 
9%. The remaining periods exhibit deviations within 5%. 
The notable variations in the dispatchable domain during 
this period can be attributed to the increase in the number of 
EVs connected in the RT stage, which surpasses the DA 
stage by 33 EVs, thus causing deviations in the dispatchable 
domains. The dispatchable domain areas gradually expand 
during the time frame of approximately hours 18-20 as EV 
users progressively connect their EVs to the grid and accept 
VPP dispatch, consequently increasing the dispatchable do‐
main areas during this period. During hours 5-8, EVs begin 
disconnecting from the grid, gradually reducing the areas of 
EVC dispatchable domain. The observed changes in the EVC 
dispatchable domain align with users’  travelling patterns.

TABLE I
TIME-OF-USE ELECTRICITY PRICE DATA

Time

Peak period (08:00-11:00, 17:00-23:00)

Normal period (07:00-08:00, 13:00-17:00, 23:00-24:00)

Valley period (00:00-07:00, 11:00-13:00)

Price (¥/MWh)

1004.53

676.53

375.87
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Fig. 3.　DA and RT market prices.

TABLE II
OPERATING PARAMETERS FOR GT

Number

1

2

ai

500

460

bi

400

300

ci

400

300

Pimax

5.0

3.2

Pimin

1.5

1.3

ri

2.0

1.5

TABLE III
OPERATING PARAMETERS FOR ESS

Number

1

2

P ESS
imax

5

7

SOCimin

0

0

SOCimax

10

15

ηESS
ic

0.95

0.90

ηESS
id

0.95

0.90

λcap
i

10

10

λmile
i

6

9

TABLE IV
GRID-CONNECTED BEHAVIOR PARAMETERS OF EVS

Type

Nighttime

Daytime

Ta

N(192)

N(81)

Tl

N(72)

N(181)

E a
i

U(0.30.5)

U(0.20.4)

Number

U(480520)

U(280320)

Note: N(xy) and U(xy) denote normal and uniform distributions, respectively.
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C. Analysis of Market Strategy Results of VPP

1) Revenue Analysis with Different Risk Aversion Coefficients
In [24] and [25], the impact of uncertain risks of WP, PV, 

and market prices on VPP revenue is analyzed, respectively.

Therefore, on this basis, this paper comprehensively con‐
siders the risks caused by the three uncertainties, and uses 
CVaR to comprehensively analyze the impact of uncertainty 
risks on VPP revenue based on uncertainty scenarios.

The outcomes of the analysis regarding the DA expected 
revenues of VPP considering various risk aversion coefficients 
ζ and their corresponding CVaR are presented in Table VI.

As can be seen from Table VI, as the risk aversion coeffi‐
cient ζ gradually increases, the attitude of VPP towards risk 
changes from aggressive to conservative, and the expected rev‐
enue of the DA bidding gradually decreases. The calculation 
outcomes presented in Table VI are used to construct the effec‐
tive frontier curve, illustrating the trade-off between the ex‐
pected revenue of DA bids and their corresponding CVaR 
within the DA bidding strategy of VPP, as shown in Fig. 6.

This paper categorizes the risk attitude of VPP into five clas‐
sifications: aggressive, more aggressive, neutral, more conser‐
vative, and conservative, based on their varying degrees of 
risk aversion. As depicted in Fig. 6, VPPs with an aggressive 
risk attitude demonstrate relatively stable expected revenue de‐
spite increasing the risk-taking levels. Conversely, VPPs with 

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5

0 6 12 18 24

0 6 12 18 24

600

1200

1800
P

ri
ce

 (
¥

/M
W

h
)

Time (hour)
(a)

0 6 12 18 24

400

800

1200

1600

P
ri

ce
 (

¥
/M

W
h

)

Time (hour)
(b)

Time (hour)
(c)

2

4

6

8

P
o

w
er

 (
M

W
)

0 6 12 18 24
Time (hour)

(d)

2

4

6

8

P
o

w
er

 (
M

W
)

Scenario 1; Scenario 2; Scenario 3
Scenario 4; Scenario 5

0 6 12 18 24
Time (hour)

(e)

2

4

6

8

P
o

w
er

 (
M

W
)

0 6 12 18 24
Time (hour)

(f)

2

4

6

8

P
o

w
er

 (
M

W
)

Fig. 4.　Generation and reduction of uncertainty scenarios. (a) Market pric‐
es for all scenarios. (b) Market prices for five scenarios. (c) PV power for 
all scenarios. (d) PV power for five scenarios. (e) WP for all scenarios. (f) 
WP for five scenarios.

TABLE V
PROBABILITIES OF OCCURENCE FOR EACH SCENARIO

Scenario

1

2

3

4

5

Probability

0.130

0.155

0.165

0.285

0.265
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Fig. 5.　Dispatchable domains of EVC. (a) Dispatchable power domain. (b) 
Dispatchable energy domain.

TABLE VI
DA EXPECTED REVENUES OF VPP CONSIDERING VARIOUS RISK AVERSION 

FACTORS ζ AND THEIR CORRESPONDING CVAR

ζ

0.0

0.2

0.4

0.6

0.8

1.0

DA expected revenue (¥)

152051

152039

151895

151652

150987

150224

CVaR (¥)

151986

151659

151467

151258

150785

149976
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a conservative risk attitude exhibit a smaller increase in ex‐
pected revenue as risk-taking escalates. For VPPs with a more 
conservative risk attitude, the relationship between expected 
revenue and risk-taking levels is linear, where higher risk-tak‐
ing levels correspond to larger expected returns.
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Fig. 6.　Efficient frontier curve of expected revenue concerning CVaR.

2) Analysis of Effectiveness of VPP Optimization Strategy
To validate the economic viability of the proposed strate‐

gy, three comparative cases are established, considering the 
uncertainty risk (ζ = 0.6) discussed above.

1) Case 1: the VPP solely participates in the energy mar‐
ket, with EVC undertaking orderly charging and discharging. 
The charging price follows the time-of-use price shown in 
Table I, while the discharging tariff is set to be 1.2 times the 
charging price.

2) Case 2: the VPP solely participates in the energy mar‐
ket, with EVC undertaking orderly charging and discharging. 
In this case, both the charging and discharging prices are set 
by the VPP through the Stackelberg game.

3) Case 3: the VPP participates in the EFR market, while 
EVC continues orderly charging and discharging. The charg‐
ing and discharging prices are set by the VPP through the 
Stackelberg game, which aligns with the proposed strategy.

To demonstrate the influence of distinct risk attitudes on 
VPP dispatch strategies, an additional three sets of compara‐
tive experiments are introduced. The cases are described as 
follows.

1) Case 4: the risk aversion coefficient ζ is 0.2, and the 
other conditions are the same as Case 3.

2) Case 5: the risk aversion coefficient ζ is 0.4, and the 
other conditions are the same as Case 3.

3) Case 6: the risk aversion coefficient ζ is 0.8, and the 
other conditions are the same as Case 3.

Upon conducting the optimization solution calculation, the 
comparison of revenues in each case is shown in Table VII.

As illustrated in Table VII, the initial three cases demon‐
strate a notable decline in revenue for Case 2, amounting to 
¥838 in comparison to Case 1. This is predominantly attribut‐
ed to the reduction in payment costs associated with EVC, 
which has been achieved through the implementation of 
Stackelberg game pricing. This reduction in payment costs 
indicates a heightened willingness among EV users to active‐
ly participate in VPP scheduling, thereby confirming the ef‐
fectiveness of the Stackelberg game model. Case 2 showcas‐
es a higher total revenue in the energy market, which is 
largely attributable to an increase in the involvement of EVs 
in scheduling. This enhanced participation contributes to the 
improved flexibility of the VPP, ultimately resulting in great‐
er revenue generation.

Compared with Case 2, the revenue in Case 3 increases 
by 7.4%. This notable improvement primarily stems from 
the simultaneous participation of VPP in both the energy and 

frequency regulation markets. Despite yielding relatively 
lower revenue in the energy market, the VPP achieves great‐
er benefits in the frequency regulation market. The distin‐
guishing factor between Cases 2 and 3 lies in the dispatch‐
ing of ESS for frequency regulation response. This distinc‐
tion underscores the capacity of VPP to attain higher reve‐
nue while incurring lower costs in the frequency regulation 
market.

By contrasting Cases 3-6, the process of transitioning 
from a risk aversion coefficient of 0.8 to 0.2 represents a 
shift from a conservative to an aggressive risk attitude, and 
the revenue of VPP in the energy market gradually increas‐
es. This suggests that aggressive VPP operators are more in‐
clined to participate in market transactions. The income of 
the frequency regulation market changes little, indicating 
that the uncertainty risk has a smaller impact on the frequen‐
cy regulation market. In the RT market, Cases 4 and 5 exhib‐

TABLE VII
COMPARISON OF REVENUES IN EACH CASE

Case

1

2

3

4

5

6

DA market (¥)

Energy market 
revenue

55163

57134

55874

56274

55988

54936

Frequency 
regulation 

market revenue

0

0

13559

13376

13328

13464

VPP operating 
cost

33950

34399

34589

34393

34316

34367

VPP 
internal 
revenue

119700

116840

116808

116794

116895

116954

Total 
market 
revenue

140913

139575

151652

152051

151895

150987

EVC 
payment cost

8817

5957

5923

5912

5923

5933

RT market (¥)

Energy 
market revenue

4962

6219

5155

5065

5031

5134

Frequency 
regulation 

market revenue

0

0

-937

-923

-945

-934

Total 
revenue 

(¥)

145375

145794

156622

156193

155981

155187
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it lower returns, attributable to significant deviations be‐
tween the RT and DA outputs of WP and PV, resulting in 
substantial market deviation costs. In the analysis of the ulti‐
mate revenue outcomes, it is evident that aggressive VPP op‐
erators stand to gain higher returns, but are also exposed to 
uncertainty risks, leading to increased deviation costs and a 
subsequent reduction in the overall revenue.
3) Analysis of Optimization Results of VPP

1) VPP participation in DA EFR market
The optimization of ESS output in the joint bidding deci‐

sion process is illustrated in Fig. 7. The charging and dis‐
charging prices developed by VPP and the scheduling strate‐
gy of EVC are shown in Fig. 8.

Figure 7 illustrates that the utilization of ESS in the ener‐
gy market is constrained. The majority of charging occurs 
between hours 3 and 5 in the morning and between hours 11 
and 14 in the afternoon. Conversely, discharging is concen‐
trated between hours 8 and 10 in the morning, and between 
hours 17 and 22 in the evening. Furthermore, only a single 
charging or discharging activity takes place during these 
time slots. Engaging in the frequency regulation market of‐
fers benefits beyond revenue generation; it enhances ESS uti‐
lization, leveraging its rapid charging and discharging capa‐
bilities, and improving dispatch flexibility.

According to Fig. 8, the pricing structure in place for EV 

charging and discharging incentivizes users to discharge when 
needed, resulting in higher discharging prices compared with 
charging prices. EV users, considering their charging require‐
ments, opt to charge during low-price periods and discharge 
during high-price periods. The pricing set by the VPP fluctu‐
ates within a range determined by the time-of-use electricity 
price, but with smaller variations. This is primarily attributed 
to the strategic game played between the VPP and EV users, as 
they seek to maximize their respective interests.

Reference [34] proposes a data-driven two-stage distribut‐
ed robust optimization model for VPP considering the re‐
sponsiveness of EVs and the stepped carbon trading mecha‐
nism, and employs column and constraint generation 
(C&CG) to solve the model. Comparing the optimization 
strategy in [34] with the proposed strategy in this paper, the 
results in Fig. 9 are obtained.

As shown in Fig. 9(a), a distributed robust optimization 
strategy is adopted in [34] to optimize VPPs in the worst 
scenarios of WP, PV, and market price. Therefore, the strate‐
gy in [34] is conservative and will try to dispatch internal 
unit output as much as possible. Compared with the pro‐
posed strategy, the participation in the DA market is not 
high, and the total market revenue decreases by ¥16972 on 
the previous day [34]. As shown in Fig. 9(b), [34] considers 
EV responsiveness for scheduling. Although it improves the 
enthusiasm for EV response scheduling, compared with the 
proposed strategy, [34] does not consider EV benefits. There 
is still room for improvement in the enthusiasm for EV re‐
sponse scheduling. In summary, the proposed strategy has 
achieved good results compared with that in [34].

2) VPP participation in RT EFR market
Figure 10 presents the analysis results of power purchased 

and sold in the RT energy market. Figure 11 presents the re‐
sults of VPP’s RT response to AGC commands. Figure 12 
presents a detailed comparison of the charging/discharging 
strategy for EVC in the DA and RT stages. As can be ob‐
served from Fig. 10, the results of RT market deviate from 
the winning bid results of DA market due to uncertainties, 
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Fig. 7.　Optimization of ESS output in joint bidding decision process.
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resulting in a reduction in the amount of electricity sold and 
a decrease in revenue. However, the availability of internal 
generation reduces the cost of purchasing electricity from 
the electricity market.

As can be observed in Fig. 11, the ESS effectively pro‐
vides frequency regulation services by employing rapid 
charging and discharging techniques. It demonstrates the abil‐
ity to promptly respond to AGC commands with a maximum 
deviation of 0.45 WM. The VPP showcases successful fre‐
quency regulation capabilities through the utilization of ESS, 
where the internal members collaborate synergistically to ful‐
fill the power requirements of the ESS. This collaborative 
method markedly diminishes the necessity for external pow‐
er acquisitions, thereby enhancing the flexibility, cost-effec‐
tiveness, and overall efficiency of the ESS in comparison to 
individual frequency regulation performed solely by the ESS.

As shown in Fig. 12, there is a minimal deviation be‐

tween the DA and RT stages of EVC charging/discharging, 
indicating that EVC can effectively track the charging and 
discharging strategy during the DA stage after adjustments 
are made during the RT stage. However, during hours 17-22, 
there is a larger deviation between DA and RT discharging 
power. This can be attributed to two factors. Firstly, the RT 
dispatchable domain is lower than the predicted DA dispatch‐
able domain within this period. Secondly, the VPP possesses 
ample internal discharging resources while the demand for 
EV discharging is relatively low. The smaller difference be‐
tween the DA and RT dispatchable domains of EVs enables 
them to closely adhere to the DA dispatching plan during 
the RT stage without requiring the re-prediction of EV be‐
havior. This reduction in EV randomness significantly en‐
hances the stability of VPP operations.

VI. CONCLUSION 

This paper proposes a multi-temporal optimization strate‐
gy for VPP participating in the EFR market, considering the 
uncertainties of WP, PV, and market prices. Through simula‐
tion analysis, the following conclusions have been drawn.

1) The established EVC dispatchable domain assessment 
model exhibits a deviation rate of merely 5% when assess‐
ing the disparities between DA and RT dispatchable domains 
for EVC. This reduction in deviations between DA and RT 
dispatchable domains is advantageous for enhancing the cen‐
tralized management of EVs by VPP.

2) The Stackelberg game model established between VPP 
and EVC results in a 32% reduction in user costs for EVC. 
This demonstrates a positive impact on incentivizing the ac‐
tive participation of EV users in scheduling activities, effec‐
tively addressing the issue of balancing interests between 
VPPs and EVs. Notably, the charging and discharging prices 
set by VPP for EV dispatching serve as a reference for in‐
centivizing EV users’  participation in scheduling.

3) The incorporation of the CVaR theory allows for a bal‐
anced consideration of the risk-revenue relationship associat‐
ed with uncertainties in WP, PV, and market price. This 
method guides VPP operators in formulating a bidding strate‐
gy based on their risk aversion levels.

4) The proposed strategy enables the coordinated opera‐
tion of EVs and other members for electricity market trades. 
It effectively harnesses the flexible potential of DERs and 
achieves the synergy of various forms of DERs.

5) The simulation results indicate that the VPP effectively 
dispatches the ESS in collaboration with other members to 
fulfill the frequency regulation response and provide frequen‐
cy regulation services to the power system. The collabora‐
tive behavior has increased VPP revenue by 7.4%, while giv‐
ing full play to the fast charging and discharging capabilities 
of ESS.
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