Abstract:With the gradually widely usage of the air conditioning (AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade. Especially in China, the AC load has accounted for over 30% of the maximum load in many cities during summer. This paper proposes a scheme of constructing a virtual peaking unit (VPU) by public buildings’ cool storage central AC (CSCAC) systems and non-CSCAC (NCSCAC) systems for the day-ahead power network dispatching (DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC (CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for 7.78% of total electricity consumption of the VPU before regulation.