Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Effects of centralized and local PV plant control for voltage regulation in LV feeder based on cyber-physical simulations
Author:
Affiliation:

1.Center for Electric Power and Energy, Technical University of Denmark, Kgs. Lyngby, Denmark; 2.School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

Fund Project:

This work is supported by Danmarks Tekniske Universitet.

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In the modern power system, both local and centralized reactive power control strategies for photovoltaic (PV) plants, are proposed and compared. While local control improves the network security, it lacks the optimization benefits from centralized control strategies. Therefore, this paper considers the coordination of the two control strategies, depending on external impact from the weather system and consumer behavior, in a low voltage (LV) distribution feeder. Through modeling and simulation in an established real-time cyber-physical simulation platform, the LV network is evaluated with both local and centralized control. A set of boundaries for coordinating between the two strategies are identified, which can help network operators in deciding suitable control in different operating situations. Furthermore, the cyber-physical simulation platform, is used to study the impact of physical perturbations, i.e. changes in irradiance and consumption, and cyber disturbances, in form of communication channel noise, is evaluated for the control strategies. Results show how small and large disturbances in the cyber system affects the centralized control strategy optimizer performance.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 22,2018
  • Published: