Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Transient Stability Analysis and Improved Control Strategy of PMSG-based Grid-forming Wind Energy Conversion System Under Symmetrical Grid Fault
Author:
Affiliation:

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (No. 51977019).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The transient synchronization characteristics and instability mechanism of the permanent magnet synchronous generator (PMSG)-based grid-forming wind energy conversion system (GFM-WECS) under symmetrical grid fault have received little attention to date. In this paper, considering the dynamics of DC-link voltage, the transient stability and an improved control strategy of PMSG-based GFM-WECS are studied in detail. Firstly, considering the dynamic interactions between the machine-side converter and the grid-side converter, the large-signal equivalent model of GFM-WECS is established. Furthermore, a novel Lyapunov function is derived to evaluate the transient stability margin and instability boundary of GFM-WECS during grid voltage sag. Additionally, the impacts of current-limitation control on the transient stability of GFM-WECS are revealed. Then, a stability evaluation index is proposed to evaluate the transient stability margin of GFM-WECS. Moreover, an improved control strategy is proposed to enhance the transient response characteristics and low voltage ride-through (LVRT) capability of GFM-WECS under symmetrical grid fault. Finally, simulations and experimental results are conducted to verify the effectiveness of the proposed control strategy.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 22,2024
  • Revised:October 13,2024
  • Adopted:
  • Online: January 24,2025
  • Published: