Abstract:With the implementation of the integrated electricity and gas market (IEGM), the smart energy hubs (SEHs) tend to participate in the market clearing for the optimization of the energy purchase portfolio. Meanwhile, the renewable energy is mushrooming at different scales of energy systems, which can introduce utility-level and distribution-level uncertainties to the operation of the IEGM and SEHs, respectively. Considering the impacts of divergent uncertainties, there exist complicated interactions between the IEGM clearing and the robust bidding of SEHs. The lack of consideration of such interactions may lead to inaccurate modeling of the IEGM clearing and cause potential market inefficiency. To handle this, a bi-level robust clearing framework of the IEGM considering the robust bidding of SEHs is proposed, which simultaneously considers the impacts of utility-level and distribution-level uncertainties. The proposed framework is partitioned into two levels. The upper level is the robust clearing mechanism of the IEGM. At this level, the uncertainty locational marginal electricity and gas prices are derived considering the utility-level uncertainties and the uncertainty-based bidding of SEHs. Given the price signals deduced in the upper level, the lower-level robust bidding of the SEH seeks the optimal bidding strategies while hedging against distribution-level uncertainties. To address the proposed framework, an effective algorithm combining column-and-constraint generation (C&CG) algorithm with the best-response decomposition (BRD) algorithm is formulated. The devised algorithm can efficiently solve the individual robust optimization model and coordinate the interaction of two levels. Numerical experiments are carried out to verify the effectiveness of the proposed framework. Moreover, the impacts of uncertainties on the market clearing results along with the optimal biddings of SEHs are further demonstrated within the proposed framework.