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Abstract——Plug-in electric vehicle (PEV) load modeling is very
important in the operation and planning studies of modern
power system nowadays. Several parameters and considerations
should be taken into account in PEV load modeling, making it
a complex problem that should be solved using appropriate
techniques. Different techniques have been introduced for PEV
load modeling and each of them has individual specifications
and features. In this paper, the most popular techniques for
PEV load modeling are reviewed and their capabilities are
evaluated. Both deterministic and probabilistic methods are
investigated and some practical and theoretical hints are pre‐
sented. Moreover, the characteristics of all techniques are com‐
pared with each other and suitable methods for unique applica‐
tions are proposed. Finally, some potential research areas are
presented for future works.

Index Terms——Plug-in electric vehicles, load modeling, deter‐
ministic and probabilistic techniques, distribution networks.

I. INTRODUCTION

INDUSTRY, transportation, residence, and commerce are
the four important sectors of energy consumption in the

world. The amount of each sector for the United States (U.
S.) in 2017, for example, is as follows: 32% industrial, 29%
transportation, 20% residential, 18% commercial, and 1%
others [1]. The concerns about fossil fuel depletion and its
impact on greenhouse warming have motivated the govern‐
ments to find the alternative resources. As the transportation
sector has a considerable amount of energy consumption
(about 30%), it has gained more attention to replace the gas‐
oline vehicles with other types of vehicles such as electric,

hydrogen, etc. Currently, most of transportation vehicles con‐
sume fossil fuels. The transportation energy resources in the
U. S. in 2017, for example, include 55% gasoline (petro‐
leum), 22% distillate (petroleum), 12% jet fuel (petroleum),
5% biofuel, 3% natural gas, and 1% others [2]. It is obvious
that about 90% of transportation energy is produced by pe‐
troleum. Therefore, the transportation electrification can sig‐
nificantly reduce the dependency of fossil fuels.

Currently, there are several types of electric vehicles
(EVs) in the market. Hybrid electric vehicles (HEVs), plug-
in hybrid electric vehicles (PHEVs), plug-in electric vehicles
(PEVs), and battery electric vehicles (BEVs) are the main
types of EVs.

In HEVs, the batteries cannot be charged by power grid.
There are two energy resources for battery charging that in‐
clude gasoline and regenerative braking. The energy of brak‐
ing system is converted to heat in combustion engine vehi‐
cles to charge the battery of HEVs. Also, the gasoline can
be converted directly to electric energy to charge the battery
using an electricity generator. Under the light load and low-
speed conditions, the electric motor is used to drive the
wheels, while both electric and gasoline motors are used un‐
der the heavy load and high-speed conditions.

The PHEVs can be powered by both gasoline and electric
energies. The battery of PHEVs can be charged by regenera‐
tive braking system, similar to HEVs, and the external pow‐
er grid. The PHEVs can be plugged into the power grid and
charged completely. The use of both energy resources ex‐
tends the driving range of PHEVs.

The PEVs or BEVs are powered fully by the electricity.
They can be plugged into an external power grid to charge
the batteries. This type of EVs can drive about 200 km us‐
ing one or more electric motors.

The financial perspective of EVs is important for people
who are interested in purchasing an EV. A comprehensive
study is carried out in [3], where the fuel and maintenance
costs of electric and gas vehicles are compared. It is conclud‐
ed in this paper that about 71% of fuel and maintenance
costs of Canadian household will be saved by EV utilization.
Therefore, the operation cost of EVs will be less than that of
gas vehicles. However, the purchasing price of EVs is usual‐
ly higher. The comparison of an EV and a gas vehicle with
similar characteristics, for instance, Nissan Leaf as an EV
and Honda Civic as a gas vehicle, shows that the price of
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EV (about $29000) is much higher than that of the gas vehi‐
cle (about $19000). Therefore, the governments should give
interesting incentives to EV buyers if they want to increase
the penetration of EVs in their countries. Many countries
have designed several incentives and subsidies to encourage
people to buy the EVs. In the U.S., for example, the federal
government grants a tax credit up to $7500 depending on
EV battery capacity. Moreover, the citizens of the U.S. give
another subside from their particular state as well [4]. The
residents in Canada, for instance, in Ontario province, can re‐
ceive up to C $14000 to buy an EV based on vehicle type

and battery capacity [5]. Other countries such as France,
UK, Sweden, Japan, etc., have also designed incentives to
encourage their citizens. Due to the government incentives
and technological improvement of EVs specially in batteries,
it is forecasted that the penetration of EVs will increase in
the future. Reference [6] has predicted considerable growth
of the penetration of EVs in Canada in the future. There are
many types of the EVs in the market and each of them has
individual specifics. The main attributes of the most popular
EVs in the market are presented in Table I [7]-[9].

EVs are high-power consumers that should be supplied by
power grid. The battery capacity of Nissan Leaf, for in‐
stance, is 30 kWh [7] that is equal to 3-5 times the daily
electricity demand of a household. The power grid will be
faced with challenges and stresses if the high penetration of
EVs are plugged into the grid. Therefore, the load demand
of EVs should be modeled in order to study their impact on
power systems. Several techniques are introduced by re‐
searchers to model the load demand of EVs, and each of
them has individual characteristics. In this paper, the most
popular methods for EV load modeling are presented and
their characteristics are reviewed. Some tips and hint are al‐
so proposed for the better simulation of techniques. More‐
over, the charging strategies including non-smart and smart
charging are investigated, and the advantages and disadvan‐
tages of each strategy are presented.

II. PEV CHARGING STRATEGIES

The overall classification of PEV charging strategies is
shown in Fig. 1. Generally, PEVs can be charged using two

main charging strategies, e.g., non-smart and smart charging.
For non-smart charging, which is also called uncoordinated
charging, the PEVs start to charge right after the arrival
home or at the charging station. The charging power rate is
fixed in this strategy that can be one of the three standard
charge levels. The standard charging levels based on SAE
J1772 standard [10] are presented in Table II.

PEV charging
strategies 

Smart charging Non-smart charging 

Coordinated
charging 

Smart V2G
charging

Charging power rate
and time are optimized 

Uncoordinated
charging 

Charging power rate
and time are fixed

Charging/discharging
 power rate and time 

are optimized 

Fig. 1. PEV charging strategies.

The current rate of charging level III is very high (up to
80 A). Therefore, the domestic power grid cannot supply

this type of charging station. It might be used for public
charging station. Charging levels I and II are suitable for do‐

TABLE I
MAIN ATTRIBUTES OF MOST POPULAR EVS IN MARKET

No.

1

2

3

4

5

6

7

8

9

10

Brand

Nissan Leaf

BMW i3

Jaguar i-Pace

Tesla Model S-75

Renault Zoe

Hyundai Ioniq Electric

Tesla Model X-75

VW e-Golf

Kia Soul EV

Smart Fortwo Electric Drive

Price ($)

30000

46500

85900

75000

52000

32000

77000

46000

33700

25500

Travel range (mile)

107

114

234

249

250

124

238

120

111

65

Battery capacity (kWh)

30.0

33.0

90.0

75.0

41.0

28.0

75.0

35.0

30.5

17.6

Battery type

Lithium-ion

Lithium-ion

Lithium-ion

Lithium-ion

Lithium-ion

Lithium-polymer

Lithium-ion

Lithium-ion

Lithium-polymer

Lithium-ion

Efficiency (kWh/mile)

0.28

0.27

0.36

0.33

0.26

0.23

0.34

0.26

0.27

0.25

TABLE II
PEV STANDARD CHARGING LEVELS BASED ON SAE J1772 STANDARD

Charging level

AC level I

AC level II

DC level III (fast charging)

Voltage (V)

120 (single phase)

240 (single or three phase)

200-450 (direct current)

Current (A)

12-16

Up to 80

Up to 80

Power (kW)

1.44-1.92

Up to 19.20

Up to 36.00

Charging time (hour)

7.0-17.0

3.0-7.0

0.5-1.5
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mestic charging stations. However, the power rate of charg‐
ing level I is very low. Using this charge level, the PEVs
batteries cannot be fully charged, especially if the battery is
already fully discharged or the battery capacity is high.
Moreover, in smart charging strategies where the battery
charging throughput is high, this charging level will be less
efficient. Therefore, the charging level II is suitable for both
smart and non-smart charging strategies, which can be sup‐
plied by the electric grid.

The smart charging can be categorized into sub-strategies
that are named coordinated charging and smart vehicle-to-
grid (V2G) charging. In coordinated charging strategy, the
time and power rate of PEV charging are determined opti‐
mally using an optimization algorithm. In this strategy, an
objective function should be defined and the decision vari‐
ables (time and power rate) should be determined subject to
technical constraints. The technical constraints include both
power grid and PEV battery constraints. The objective func‐
tion can be the minimization of charging power cost, power
loss, or voltage regulation enhancement, etc.

In the smart V2G charging, the time and power rate of
charging and/or discharging of PEVs are determined optimal‐
ly. In this strategy, not only the charging scheduling of PEVs
are optimized, but also the PEVs can support the power grid
by power injection into the grid.

Each of the mentioned charging strategies has individual
advantages and disadvantages. Several aspects should be con‐
sidered to select a proper charging strategy. Figure 2 shows
the main aspects of each charging strategy. According to this
figure, four main perspectives are important in PEV charg‐
ing strategies. These perspectives have several technical and
economic considerations. Therefore, a comprehensive cost-
benefit analysis is needed to determine the best charging
strategies for each case study.

From the perspective of PEV owners, there are four con‐
siderations that should be taken into account as presented in
Table III. The charging cost in uncoordinated charging is
very high. The reason is that the PEV arrival time has a
high correlation with peak load hours of power grid [11].
Therefore, the PEVs are charged with high electricity price
that results in high charging cost. The charging cost may be
the only disadvantages of uncoordinated charging from the
perspectives of PEV owners. As the batteries are charged us‐
ing the standard charging stations, their lifetime will be
long. Moreover, the owners can use the warranty if the bat‐
teries are damaged in this charging station. In addition, the
owners ensure that their vehicles will be fully charged until

the departure time. Their welfare will be good as well.
Therefore, the overall preference of PEV owners is the unco‐
ordinated charging strategy.

From the perspectives of PEV manufacturers, the main
consideration is the battery degradation. The manufacturers
guarantee the batteries for normal usage under the normal
condition. The smart V2G charging of PEVs damages the
batteries as the charge throughput and power rate of batter‐
ies are increased in this charging strategy [12], [13]. Refer‐
ence [14] has claimed that in the coordinated charging, not
only the PEV is undamaged, but also the lifetime of batter‐
ies is increased. The reason is that the impacts of standing
time and state of charge (SOC) on battery degradation are
decreased in coordinated charging. Therefore, the overall
preference of PEV manufactures is the uncoordinated charg‐
ing strategy.

From the environmental perspective, PEVs will be more
beneficial if they are charged using renewable energies. The
integration of PEVs with renewable energies is not very in‐
teresting in uncoordinated domestic charging. The reason is
that the correlation of solar energy availabile time (between
sunrise and sunset) and PEV available time (between arrival
time and departure time) is very low. It can be modified if
the PEVs are charged during daytime at the workspaces
such as commercial or official regions, etc. In [15], PEVs
are integrated with renewable energies in parking lots. How‐
ever, as the space price is very high in these regions, the
penetration of solar energy at these regions is low. The wind
energy has also the same condition. If renewable energies
are combined with stationary energy storage, their integra‐
tion with PEVs would be interested, especially in the smart
charging strategy. Several researches in the literature have in‐
vestigated the integration of PEVs and renewable energies in
both smart charging [16]-[18] and non-smart charging strate‐
gies [19] - [21]. Therefore, from the environmental perspec‐
tive, the overall preference is the smart charging strategy.

The most important perspective in charging strategies is
the power grid. Several considerations should be taken into
account to evaluate this perspective. The most important con‐
siderations are presented in Table IV. PEVs are huge con‐
sumption components in power grid. Therefore, their load de‐
mand should be modelled using an appropriate methodology.
The impact of uncoordinated charging strategy on several
grid parameters is investigated in the literature such as load
profile [22] - [24], charging cost [25], [26], power loss [27],
[28], power grid component lifetime [29], voltage profile
[30], grid component loading [31], etc.

Impact of PEV charging
strategies

Power grid
operator PEV owners PEV

manufacturers Environment

According to
Table II

According to
Table III

Battery
degradation 

Integration with
renewable energies

Fig. 2. Different perspectives of PEV charging strategies.

TABLE III
PERSPECTIVE OF PEV OWNERS IN CHARGING STRATEGIES

Perspective

Charging cost

PEV lifetime

Owner welfare

Full charging insurance

Uncoordinated
charging

High

Long

Good

Good

Coordinated
charging

Low

Long

Poor

Medium

Smart V2G
charging

Low

Short

Poor

Poor
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The uncoordinated charging strategy has negative impact
on most of the mentioned factors. This charging strategy can
increase the peak load and power loss considerably, violate
the grid voltage and current constraints, and decrease the
lifetime of electric grid components. However, the infrastruc‐
ture cost of this charging strategy is low as the charge sta‐
tions provide the fixed rate power without the control of
time or power rate. Therefore, the smart charging strategies
should be provided to overcome the mentioned challenges.

The coordinated charging strategy is utilized to prepare
several services such as power loss reduction [32]-[34], peak
load reduction [35]-[39], frequency regulation [40]-[42], volt‐
age regulation [43] - [45], charging cost reduction [46] - [49],
component loading improvement [50], renewable energy inte‐
gration [51], [52], etc.

Similarly, the smart V2G charging strategy is utilized to
prepare several services such as charging cost reduction [53]-
[55], voltage regulation [56]-[58], frequency regulation [59]-
[61], peak load reduction [62] - [64], reliability enhancement
[65], renewable energy dispatching [66] - [68], maximization

of PEVs number in charging station [69], [70], participation
in demand response program [71], grid balancing [72], par‐
ticipation in ancillary service market [73], reactive power
compensation [74]-[76], etc.

The comparison of the provided services shows that the
smart V2G charging strategy is more beneficial than the co‐
ordinated charging strategy. The reason is that in smart V2G
charging, the PEV load demand is more flexible and the PE‐
Vs can be charged/discharged optimally. The charging infra‐
structure cost in smart charging strategies is more than that
in uncoordinated charging, as the charging time and power
rate should be controlled in this strategy.

Due to the fact that the distribution network has a limited
capacity, only a few PEVs can be charged simultaneously.
On the other hand, according to the PEV dataset analysis,
most PEVs arrive home in the evening together. Further‐
more, if the PEVs are charged by the non-smart charging
strategy, the electric grid constraints will be violated, and the
grid cannot charge all of them together. However, in smart
charging strategy (in both coordinated charging and V2G),
the PEV charging rate and time are optimized so that all PE‐
Vs will be charged until their departure time. Therefore, the
main preference of electric grid operator is the smart charg‐
ing strategies. Of course, the smart V2G needs more ad‐
vanced infrastructure and consequently more time to be prac‐
tical. However, the coordinated charging is currently practi‐
cal and may be the best strategy from all aspects.

III. CENTRALIZED AND DECENTRALIZED CHARGING

CONTROL METHODS

The PEV charging management is categorized into two
groups namely centralized and decentralized charging con‐
trol. The advantages and disadvantages of the centralized
and decentralized charging control are presented in Table V.

In the centralized charging control, the power grid opera‐
tor manages the PEV charging demand considering the elec‐
tric grid conditions and parameters such as power loss, volt‐
age and current constraints. In some cases, a third part,
namely aggregator, needs to coordinate the charge demand
between the grid operator and vehicle owners. Based on the

objective functions, the aggregators manage the PEV de‐
mand considering both the constraints of grid operator and
vehicle owners. In addition to charging control, the aggrega‐
tors can also participate in electricity markets such as day-
ahead energy market and ancillary service market. The mini‐
mization of total charging cost [77], [78], minimization of

TABLE IV
PERSPECTIVE OF ELECTRIC GRID OPERATOR IN CHARGING STRATEGIES

Perspective

Peak load reduction

Power loss cost

Voltage regulation

Power grid reliability

Component lifetime

Component capacity

Power grid operation cost

Infrastructure cost

Uncoordinated
charging

Poor

High

Poor

Low

Short

Low

High

Low

Coordinated
charging

Good

Low

Good

Medium

Long

High

Low

Medium

Smart V2G
charging

Good

Low

Good

High

Long

High

Low

High

TABLE V
COMPARISON OF CENTRALIZED AND DECENTRALIZED CHARGING CONTROL

Control mode

Centralized charging
control

Decentralized charging
control

Advantage

- Provision of considerable capacity in comparison with grid
capacity

- Including demand response programs using direct load
control

- Provision of better ancillary services
- Compatible communication protocols
- Better security on smart metering infrastructures

- Need of small communication bandwidth
- Low infrastructure cost
- Simpler implementation
- Provision of several charging options for the user
- Higher user welfare

Disadvantage

- Need of a large communication bandwidth
- Need of a high-tech control center
- Need of high-speed computation machines
- Complex management of large numbers of PEVs

- Limited control of power network
- Availability and utilization of several communication protocols
- Provision of less capacity in comparison with grid capacity
- Limited ancillary services provision
- Less cyber security and low capability against attacks
- Availability and utilization of various metering infrastructures
- High uncertainty of charging behaviors of users
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grid power loss [79], [80], enhancement of grid reliability
[81], [82], frequency regulation [83], [84], voltage regulation
[85], [86], and maximization of the aggregator benefits [87],
[88], can be considered as the objective functions in the cen‐
tralized charging control. Overall, in the centralized meth‐
ods, the grid operator or PEV aggregator manages the charg‐
ing demand directly so that the PEV load demands are con‐
siderable in comparison with power. In the decentralized
methods, the PEV charging demands are managed by the
PEV owners individually. In other words, the PEV charging
is controlled locally. In this method, each PEV owner auton‐
omously optimizes the charging demand considering the pref‐
erences of the PEV driver. As the capacity of one vehicle is
much less than the whole grid capacity, the participation of
PEVs in electricity market such as ancillary services is a
challenge in the decentralized method. The objective func‐
tion of decentralized charging control is the minimization of
charging cost in most works [89]-[92]. However, other objec‐
tives have also been investigated in literature such as fre‐
quency regulation [93], valley filling [94], voltage regulation
[95], and renewable energy integration [96].

IV. PEV DATASETS

In order to model the PEV load demand, the data of vehi‐
cles should be collected. The data should include home arriv‐
al/departure time, daily travelling distance, vehicle types,
and battery capacity. The study will be more accurate if the
EV data of studied region is available. However, if the data
are not available, it is possible to use a typical dataset. An
example dataset is presented in the supporting materials of

this paper. This dataset contains the parameters of 500 EVs.
The battery capacity of all EVs is 20 kWh and it consumes
0.25 kWh electric energy per kilometer. Another dataset con‐
tains the data of National Household Travel Survey (NHTS)
that can be found in [97]. This dataset contains the data of 1
million vehicles including their home arrival/departure times,
daily travelling distance, and percentage of each type of ve‐
hicles. Tables VI, VII and Figs. 3-5 show the related datas‐
ets. The nominal mileages of PEV30, PEV40, and PEV60
are 30, 40, and 60 miles, respectively.

TABLE VI
BATTERY CAPACITY FOR DIFFERENT VEHICLES IN NHTS 2009

Type

1

2

3

4

Vehicle

Compact Sedan

Medium-size Sedan

Medium-size SUV

Full-size SUV

Battery capacity (kWh)

PEV30

7.8

9.0

11.4

13.8

PEV40

10.4

12.0

15.2

18.4

PEV60

15.6

18.0

22.8

27.6

TABLE VII
PERCENTAGE OF VARIOUS VEHICLES IN NHTS 2009 AND THEIR ENERGY

CONSUMPTION PER MILE (ECPM)

Type

1

2

3

4

Vehicle

Compact Sedan

Medium-size Sedan

Medium-size SUV

Full-size SUV

Percentage (%)

50

5

25

20

ECPM (kWh/mile)

0.26

0.30

0.38

0.46

00:00 05:00 10:00 15:00 20:00 24:00

100
0

200
300
400
500
600
700
800
900

Departure time
(a)

N
um

be
r o

f v
eh

ic
le

s 

100
200
300
400
500
600
700
800
900

1000

Departure time 
(c)

N
um

be
r o

f v
eh

ic
le

s 

00:00 05:00 10:00 15:00 20:00 24:00

100
0

200
300
400
500
600
700
800
900

Departure time 
(b)

N
um

be
r o

f v
eh

ic
le

s 

00:00 05:00 10:00 15:00 20:00 24:00

100
0 0

200
300
400
500
600
700
800
900

Departure time 
(d)

N
um

be
r o

f v
eh

ic
le

s 

00:00 05:00 10:00 15:00 20:00 24:00

Fig. 3. Patterns of home departure time. (a) Spring. (b) Summer. (c) Fall. (d) Winter.
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V. PEV LOAD MODELING TECHNIQUES

A. Deterministic Load Modeling of PEVs

In the deterministic PEV load modeling, it is assumed that
the parameters of PEVs are already known. In other words,
the PEVs are scheduled as the stationary energy storages

that their available period is predetermined. For example, the
arrival and departure times of vehicles are already known by
the power grid operator. Therefore, the operator can sched‐
ule the PEVs similar to energy storage system. The daily
travelling distance is the other simplification parameter so
that it is assumed that the travelling distance of PEVs is
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Fig. 4. Patterns of home arrival time. (a) Spring. (b) Summer. (c) Fall. (d) Winter.
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fixed. Therefore, the required energy for PEV charging can
be calculated easily. Other simplification assumptions in‐
clude starting charging at fixed time, fixed energy required
for all PEVs, known departure time, and the same battery ca‐
pacity for all vehicles. In some cases such as in [98], the
stored PEV driving database is utilized for load demand ex‐
traction directly.

B. Scenario Reduction Method

In this method, some predefined scenarios are used for
PEV load modeling in which the impact of each scenario is
considered in the objective function. In [99], for example,
the NHTS data are concentrated in some scenarios that repre‐
sent PEV behaviors. In the discrete probabilistic scenarios
method, some scenarios of PEV load demand are considered
where each has individual probability or weight. The values
of probabilities or weights can be found based on the histori‐
cal data or the experience of the researcher. In this method,
the objective function for each scenario is calculated individ‐
ually and the final objective function can be represented as:

min OF =∑
i = 1

n

pi Fi (1)

where OF, pi, Fi, and n are the objective function, the proba‐
bility of the ith scenario, objective function value of the ith

scenario, and number of all scenarios, respectively. In (1),
the summation of probabilities of all scenarios should be
equal to 1, which can be written as below.

∑
i = 1

n

pi = 1 (2)

Figure 6 shows the mean of PEV load demand for 6 sce‐
narios. In this figure, 6 different scenarios are considered
where the PEVs can be operated in both grid-to-vehicle
(G2V) and V2G modes. The negative values represent the
V2G power demand, while the positive values are the G2V
power demand. The numerical values of these scenarios are
presented in the supporting materials of this paper [100].

C. Monte Carlo Simulation (MCS)

In the MCS method, the PEV load estimation procedure is
conducted for a large number of samples generated using the
probability density functions (PDFs) of the input data. To
this end, various PEV parameters including home arrival/de‐
parture time, daily travelling distance, PEV type, PEV bat‐
tery capacity, etc., are considered as the input data of MCS.

Since these input data are inherently uncertain, they exhibit
stochastic behaviors. Therefore, it is possible to use samples
of these input data to perform the MSC method. Figure 7
shows the flowchart of MCS for PEV load extraction.

The MCS method needs a large number of input samples.
Therefore, if the number of the input data is not large
enough, a PDF can be fitted on the collected data so that a
desired number of samples could be generated from the fit‐
ted PDFs. The correlations between the PEV data are not
considered in the MCS method. Therefore, if the samples
from each dataset (home arrival and departure time and trav‐
elling distance) are selected consequently, the selected data
from three datasets may not be rational. For example, consid‐
er that the selected samples in MCS for home arrival time,
departure time, and travelling distance are equal to 09:00 a.
m., 10:00 a.m., and 60 miles, respectively, which are not ra‐
tional and realistic. Although the probability of these sam‐
ples is low, it may occur in MCS procedures. To avoid this
problem, it is suggested to generate a sample from only one
dataset (e.g. home arrival time), and the corresponding data
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Fig. 6. Mean of PEV load demand for 6 different scenarios.
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Fig. 7. Flowchart of MCS for PEV load demand extraction.
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are selected with the generated samples from other datasets
(departure time and travelling distance). For this purpose,
the original sorting of the datasets should be kept during the
simulation.

Figure 7 illustrates the overall flowchart of the employed
MCS method. In this figure, at, dt, and trd are the home arriv‐
al time, home departure time and travelling distance of the
PEVs, respectively; at,n , dt,n , and trd,n are the nth samples of
MCS for home arrival time, home departure time, and travel‐
ling distance of PEVs, respectively; tavi,n , tfull,n , and tch,n are
the available time, the required time for full charging, and
charging time of the nth PEV, respectively; and IN is the
maximum sample number of MCS. More details about this
method can be found in [11].

The initial SOC of PEV batteries should be calculated in
this method. Equation (3) can be used for initial SOC calcu‐
lation.

SOCinitn = 100-
trdn

Ceff ×Capbat

´ 100 (3)

where SOCint,n is the initial SOC of the nth PEV; trdn is the
daily travelling distance of the nth PEV; Ceff is the efficiency
coefficient of PEVs during driving; and Capbat is the battery
capacity.

The available charging time tavin for the nth PEV can be de‐
fined as the time span between the home arrival time at and
the departure time the next day dt, as expressed below:

tavin = dtn - atn (4)

The charging time is determined based on tavin. Moreover,
the hourly drawn power and SOC of PEVs are calculated
taking into account the PEV battery power rating, PEV bat‐
tery capacity, and the efficiency of chargers.

The hourly PEV demand calculation procedure is per‐
formed many times to simulate the PEV charging demand
within the distribution network. The estimation of the aggre‐
gated power demand of PEVs is completed when MCS is
converged to a stochastic demand profile with hourly PDFs.

Figure 8 shows an example of extracted PEV load, where
the load demand of each hour is presented in boxplot form.
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Fig. 8. Extracted probabilistic load demand of PEVs for 24 hours using
MCS method.

D. Fuzzy Method

In this method, triangular fuzzy numbers are used to mod‐
el the uncertainty of PEVs. This model does not require pre‐
cise information regarding the power profile of the fleet over
a long time interval, which makes it suitable for optimal

planning of distribution network components. Therefore, a
series of approximately estimated scenarios can be used to
dedicate fuzzy numbers to PEV power profiles in 24-hour
time period.

Let at1, at2 and at3 denote the minimum, average and maxi‐
mum values of the estimated scenarios for the PEV power at
tth hour, respectively. Then, the PEV power can be represent‐
ed by a fuzzy number illustrated in Fig. 9. In this figure, the
negative number denoted by at1 represents V2G operation
model of PEVs. A triangular fuzzy number can be expressed
by a͂t = (at1at2at3). The membership function in fuzzy sets
represents the degree of reality. It has been used to general‐
ize the indicator function in classic sets. More details can be
found in [73]. The largest membership value is assigned to
at2 (i.e. average power) because it is the most possible state.
In the same vein, the values at1 and at3 denote the possible
power interval. Also, the mean value can be obtained by con‐
sidering all the scenarios.

After load modeling by fuzzy method, the fuzzy numbers
can be used in load flow analysis with fuzzy equations and
operators. More details of this method can be found in [100].

Moreover, as mentioned in [101], using the fuzzy tech‐
nique, the important factors in PEV load modeling can be
classified into some groups. For examples, the SOC of PEVs
can be clustered to three classes (low, medium, and high)
and the PEV parking duration can be clustered to three class‐
es (short, average, and long). Therefore, the PEV load de‐
mand and charging time can be calculated using fuzzy logic.
In addition, the charging probability can be modeled as a
possibilistic problem by categorizing it into some classes
such as very low, low, medium, high, and very high.

E. Hybrid Fuzzy-MCS Method

In this hybrid method, as other probabilistic methods,
PDFs or datasets of PEV input parameters are required for
load extraction. As explained earlier, most of these datasets
are uncertain by nature, thus, they should be handled by
proper methods. In the hybrid fuzzy-MCS method, the pa‐
rameters are modelled in either probabilistic or possibilistic
forms, based on their nature. This method can be implement‐
ed for both smart and non-smart charging strategies.

The hybrid fuzzy-MCS method makes an opportunity to
model both spatial and temporal uncertainties of PEVs. In
the most of the methods, only temporal uncertainty of PEVs
can be modeled and the PEV charging locations are assumed
to be the same. In other words, the PEV loads are assumed
to be similar across the distribution network. This assump‐
tion results in inaccurate decisions for distribution network
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Membership value

at1 at2 at3

Fig. 9. PEV load demand as a fuzzy number.
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studies mainly in component planning.
To model the spatial uncertainty of PEV load, the studied

case can be clustered into some groups. In this method, the
travelling distance is modeled using fuzzy triangular, while
the arrival and departure times are modeled using MCS. Ob‐
serving both spatial and temporal characteristics of the PEV
loads leads to unique load profiles for every region of the
distribution network, and results in more accurate PEV load
extraction. By using this method, the domestic loads in the
distribution network can be estimated for every region. This
spatial classification of load profiles is of greater importance
in component planning than in operation applications.

Traditionally, the uncertain characteristics of the PEV fleet
such as home arrival time, daily travelling distance, and
home departure time are modelled using their PDFs fitted to
standard distributions, e.g., normal, Weibull and generalized
expected value (GEV). Typically, in most distribution net‐
works, the medium voltage feeders are passed through differ‐
ent regions with specific types of consumers (e. g., residen‐
tial, commercial, fleet). In residential areas, PEVs are mainly
used for commute to work on weekdays. However, it is not
valid for all PEVs.

The travelling distance across the studied distribution net‐
work can be clustered in three or five classes as shown in
Figs. 10 and 11, respectively. The three classes are N (near),
M (medium), and F (far), and the five classes are VF (very
far), F (far), M (medium), N (near), and VN (very near).

Travelling 
distance

Min Max

1

0

VN N M F VF

Membership
function

Fig. 11. Fuzzy model of five clusters of travelling distance considering lo‐
cation of parking lots.

The main challenge of this method is the integration of
fuzzy values in the MCS algorithm. In this method, the ini‐
tial SOC for the nth PEV can be calculated using (5).

~
SOC initn = 100-

t͂d

Ceff ×Capbat

´ 100 (5)

where t͂d is a fuzzy value of PEV travelling distance. Conse‐
quently, the linked parameters such as

~
SOC initn are fuzzy val‐

ues as well. Therefore, the fuzzy operators are required to

derive the output profile.
Since dt and at are stochastic variables with known PDFs,

while
~
SOC t is a fuzzy value, the final estimated 24-hour pro‐

files will be in possibilistic-probabilistic form. In essence,
the load profile of PEVs in each hour is a triangular fuzzy
value whose characteristics are stochastic variables. The pos‐
sibilistic-probabilistic load demand model is shown in Fig.
12, where li1, li2 and li3 are the stochastic variables with
known PDFs. The overall flowchart of the proposed hybrid
fuzzy-MCS method is shown in Fig. 13, where fdt

and fat
are

PDFs of PEV home departure and arrival times, respectively.
More details about this method can be found in [102].
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Fig. 10. Fuzzy model of three clusters of travelling distance considering
location of parking lots.
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Fig. 12. Typical possibilistic-probabilistic load demand model of PEVs
extracted by MCS.
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Using this technique, not only the temporal uncertainty is
modeled, but also the spatial uncertainty is taken into ac‐
count. The temporal-spatial uncertainty modeling of PEVs is
investigated in some literatures such as [103]. As presented
in [103], a hybrid MCS and Markov chain technique is uti‐
lized for spatial-temporal uncertainty modeling of PEVs.
More details about Markov chain is presented in Section
V-G.

F. Artificial Neural Network (ANN) Method

A large number of data should be handled in PEV load
modeling. Therefore, the ANN and machine learning meth‐
ods will be useful for PEV load modeling. In modeling by
ANNs, firstly, the parameters that influence the target should
be identified. These parameters are given as inputs to the
ANNs and the network predicts the target using them. The
accuracy of this method can be verified after the training
stage.

The structure of ANN is designed according to the com‐
plexity of behavior of the studied phenomena. Many parame‐
ters such as arrival time, departure time, and average speed
are effective on the travelling distance. The behavior of the
drivers are also very different, and the forecasting problem
is highly complex. Deep ANNs should be used to model the
behavior of PEV. The ANN acts like a black box. Once the
network is fully trained and tested, it receives input data in
the new situation and predicts the value of the target vari‐
able. To train the ANN, the back-propagation method based
on gradient descent strategy can be applied. The main goal
in training ANNs is to minimize the loss function. The over‐
all structure of ANNs for PEV modeling is shown in Fig. 14.

Arrival time 

Departure time 

Mean speed 

Travelling
distanceInput data ANN{ Output data{

Fig. 14. Overall structure of ANNs for PEV modeling.

The significant feature of this method is that it can coordi‐
nate the travelling distance with the arrival time and depar‐
ture time of the PEVs that can increase the accuracy of the
results.

It should be noted that the ANNs in this section are deep
ANNs and the conventional networks do not have the ability
to model PEV. Furthermore, special methods such as restrict‐
ed Boltzmann machines and metaheuristic algorithms are
needed for network pre-training.

G. Markov Chain Theory

In the Markov method, with the historical data, the future
state of the system is investigated. Markov chain has many
applications in anticipating different phenomena. The main
feature of the Markov chain method is its efficiency in both
statistical and temporal appearances of the datasets. The pro‐
cedure for PEV modeling using the Markov chain method is
comparatively clear. Primarily, all the values of the studied
phenomena are dispersed into several states. Next, consider‐

ing that the series of states are lined by a homogeneous Mar‐
kov chain, a transition probability matrix of these states is
determined. Then, this matrix is applied to create a new
chain of states. Finally, each state in this new chain is trans‐
formed into a PEV parameter value with a firm random gen‐
erator. In fact, in the Markov method, the predicted values
are based on the probabilities obtained from the historical da‐
ta of the PEVs. In this method, the parameters such as arriv‐
al time, departure time and travelling distance are predicted
independently by specific Markov chain models. The states
categorization for each variable is unique and these states
are determined with regard to the training data set.

It is important to note that the optimal selection of state
interval has a significant impact on the computation time
and the accuracy of the results. Since the Markov chain
method has a strong memory and examines the problem
space carefully, it is an appropriate method for modeling the
behavior of PEV.

H. Stochastic Modeling Using PDFs

Due to the fact that all PEVs do not start to charge simul‐
taneously, the charging starting time for the PEVs can be
modelled using a PDF that can be determined by several fac‐
tors such as electricity tariff and PEV driving patterns [104].
In this method, the PDFs can be applied on several parame‐
ters of PEVs such as initial SOC, travelling distance, starting
time of charging, etc. The main issue that should be consid‐
ered in this method is the selection of the proper PDFs. Un‐
suitable PDFs result in unreliable output. In addition, the cor‐
relation between the PEV data is not considered in this meth‐
od, which is its main drawback.

I. Copula Method

In this technique, the correlations between the PEV param‐
eters are firstly modeled using Student’s copula distribution.
Then, the MCS is utilized to extract the PEV load demand.
The copula utilization before MCS makes the extracted load
more reliable and more accurate. Some researches are car‐
ried out to model the PEV load demand [105]-[107].

In some cases without enough available data, a distribu‐
tion function is applied on the data. Generally, a normal dis‐
tribution function is fitted to the data, while it may not pres‐
ent the PEV behavior properly. Therefore, a multi-variate sto‐
chastic model should be applied on the available data so that
the correlations between the data are taken into account. For
this purpose, the copula function can be used that character‐
izes the dependencies between the variables and creates the
unique distribution for correlated multi-variate data model‐
ing. More details about copula method can be found in [108].

J. Comparison of Methods

Each of the investigated methods have unique specifica‐
tions that make them sufficient for individual applications.
Table VIII represents the advantages and disadvantages of
each method. The modeling complexity, output accuracy,
time computation cost, uncertainty modeling of PEV data
and their correlations are the main features that are investi‐
gated in this section.
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VI. POTENTIAL RESEARCH AREAS

In this section, some interesting and important research ar‐
eas, that can be considered in the future works, are listed as
follows.

1) Modeling a linear equation for PEV battery degradation
As mentioned in Section II, the battery degradation cost

should be included in the objective function of smart charg‐
ing. However, most of the proposed models for battery deg‐
radation are nonlinear or empirical-based. These models re‐
sult in nonlinearity of optimal charging methods, which
makes the optimization a sophisticated problem. The linear
model for battery degradation causes the optimal charging of
PEVs to be simpler and more accurate. Moreover, the bat‐
tery type of several vehicles is different and has its own indi‐
vidual characteristics. Extracting a linear model that can be

applied to all battery types will be very helpful.
2) Assessing PEV charging impact on power quality
The PEV charging may has the potential impact on total

harmonic distortion (THD) within the power grid. It is neces‐
sary to evaluate the impact of all charging levels, especially
charging level III, on the power quality indexes such as volt‐
age sag and swell, unbalancing and THD. The power quality
index may be a constraint for penetration limitation of PEVs
in the power grid.

3) Modeling temporal and spatial uncertainties
Although the temporal and spatial uncertainties are mod‐

eled in some works such as [102], [103], a developed proba‐
bilistic method is necessary to model both of these uncertain‐
ties properly.

4) Investigating social benefits of smart charging
As indicated in Section II, the smart charging of PEVs

TABLE VIII
LIST OF ADVANTAGES AND DISADVANTAGES OF ALL METHODS

Method

Deterministic
method

Scenario
reduction
method

MCS

Fuzzy method

Hybrid fuzzy-
MCS method

ANN method

Markov chain
method

PDF fitting
method

Copula method

Advantage

- It is very simple
- The historical data are not needed
- The computation cost is very low

- It is simple
- It can be modeled without historical

data
- The computation cost is low

- The accuracy of the output is high
- The data uncertainty is modeled

properly

- It can be modeled without historical
data

- The load uncertainty is modeled
- It can be combined with other

methods (e.g., MCS) to reach
more accurate results

- In addition of temporal, the spatial
uncertainty can be modeled

- The accuracy of the output is
excellent

- The uncertainty of input data with
rough structure neurons can be
handled

- The behavior of under-study
phenomenon is learned with high
accuracy

- The correlation of forecasted data
with observed data is considered

- All of the events in the transition
matrix with high precision memo‐
ry are considered

- The accuracy of the output is very
high

- For any case with high denoising
data, it has good performance

- It is simple
- The load uncertainty is modeled

approximately

- The output results are very accurate
- The correlation between data can be

modelled accurately

Disadvantage

- The output is not accurate
- The PEV data uncertainty is not considered

- The output is not accurate
- The data uncertainty is modeled approxi-

mately

- The correlation between the data is not
considered

- Its accuracy depends on the historical data
accuracy and sample number

- The accuracy of the results depends on
fuzzy logic setting that is based on the re‐
searcher experience

- The combined possibilistic and probabilistic
modeling make it more complex

- The computation cost is high

- It highly depends on the input data fluctua-
tions

- It has weak performance for the phenome-
non with low dimension of previous data

- In deep learning mode, it will be faced
with convergence challenges

- It highly depends on the number of states
and states interval

- It highly depends on initial state
- It has high computation cost for a case with

a large number of states in the transition
matrix

- It has low performance in a case with low
input data dimension

- The output is not accurate

- The complexity of the method is very high
- The computation cost of the procedure is

high

Specification and application

- It is suitable for the studies that intend to in-
vestigate the PEV impact approximately

- If the historical data are available the results
will be more accurate

- For any applications that the MCS should be
carried out many times (e.g., metaheuristic
based optimization), the computation cost
will be very high

- For any studies that the historical data are not
available, this method is very sufficient

- Both spatial and temporal uncertainties can be
modeled

- This method acts like a black box and fore-
casts the phenomenon just with previous da‐
ta and without any background knowledge

- The main features of input data in deep learn-
ing mode can be extracted

- In any case that needs the PEV model as
time series, it will have a good performance

- The sequence of the events in PEV forecasting
procedure can be modeled in this method

- It is suitable for any case that requires model-
ing of load uncertainty with least complexity

- It is suitable for any study where the accuracy
of output is very essential and the computa‐
tion cost and complexity of the problem are
not important
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has several benefits from different points of view. However,
the social benefits of smart charging such as environmental
profits need to be further investigated.

5) Considering unbalanced load flow
Even though the distribution networks are inherently un‐

balanced, they are often considered as the balance in power
systems in the literature. The PEV load demand, especially
in high penetration, increases the unbalance of power grid.
The consideration of this unbalance will increase the accura‐
cy of load flow analysis.

6) Forecasting PEV load
In most works, it is assumed that the penetration of PEVs

increases with a fixed rate every year. If the PEV load de‐
mand is forecasted for the coming years, similar to conven‐
tional load, it will be very useful especially for component
planning studies.

7) Evaluating DC fast charging in distribution networks
techno-economically

The charging period of PEV is one of the main challenges
for PEV owners. The DC fast charging can decrease the
charging period properly. However, this charging method
should be further evaluated from both technical and econom‐
ic points of view.

VII. CONCLUSION

In this paper, firstly, the introduction of EVs and their
challenges in nowadays power and energy systems are pre‐
sented. Then, all EV charging strategies are classified and
their characteristics are presented. It is shown that the prefer‐
ence of PEV owners and PEV manufacturers is the uncoordi‐
nated charging strategy, while the preference of power grid
operator and environment is the smart charging strategies.
The perspectives of EV owners, power grid operator, EV
manufacturers, and environment are evaluated. Moreover,
the most popular methodologies are investigated for EV load
modeling, including deterministic method, scenario reduction
method, MCS, fuzzy method, fuzzy-MCS method, ANN,
Markov chain method, and copula method. The advantages
and disadvantages of each method and some hints and tips
for better simulation are presented. Finally, some potential re‐
search areas are presented for the future works.
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