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Abstract——Phasor measurement units (PMUs) can provide re‐
al-time measurement data to construct the ubiquitous electric
of the Internet of Things. However, due to complex factors on
site, PMU data can be easily compromised by interference or
synchronization jitter. It will lead to various levels of PMU data
quality issues, which can directly affect the PMU-based applica‐
tion and even threaten the safety of power systems. In order to
improve the PMU data quality, a data-driven PMU bad data de‐
tection algorithm based on spectral clustering using single PMU
data is proposed in this paper. The proposed algorithm does not
require the system topology and parameters. Firstly, a data
identification method based on a decision tree is proposed to
distinguish event data and bad data by using the slope feature
of each data. Then, a bad data detection method based on spec‐
tral clustering is developed. By analyzing the weighted relation‐
ships among all the data, this method can detect the bad data
with a small deviation. Simulations and results of field record‐
ing data test illustrate that this data-driven method can achieve
bad data identification and detection effectively. This technique
can improve PMU data quality to guarantee its applications in
the power systems.

Index Terms——Phasor measurement units (PMUs), bad data
detection, event data identification, decision tree, spectral clus‐
tering.

I. INTRODUCTION

PHASOR measurement units (PMUs) have become an
important mechanism used in the ubiquitous electric of

the Internet of Things to achieve state perception, due to
their rapidity, synchronism, and accuracy [1]. Furthermore,
PMUs can provide real-time phasor time data for critical
power system applications such as remedial action schemes,
oscillation detection, and state estimation [2] - [6]. Up to
2018, approximately 3000 PMUs have been installed and
put into operation in China, covering the majority of 220 kV
and above substations, power plants, and grid-connected re‐
newable energy collections [7]. In addition, according to the

statistics in 2017, it is reported that around 2500 commercial
PMUs have been installed in North America [8].

However, in view of the complex factors, PMU data is
vulnerable to many factors [9]. For example, a jitter of glo‐
ble positioning system (GPS) signal can cause phase angle
deviation. It is also possible that PMU data may have a
spike due to an interferent, or a mistake of data transmis‐
sion. Such issues lead to various degrees of data quality is‐
sues in PMU data. According to the 2011 Five-Year Plan is‐
sued by the California Independent System Operator (ISO),
around 10% to 17% of PMU data in North America experi‐
ence problems [10]. As discussed in [11], around 20%-30%
of PMU data in China experience data quality problems. Da‐
ta quality issues make the system less observable, affect the
performance of state estimation and parameter identification
based on PMUs, and even threaten the safe and stable opera‐
tion of power systems. The detection of PMU bad data has
become a critical issue and plays an important role in im‐
proving data quality and ensuring accurate state perception.

Various methods have been proposed to detect bad data in
the power systems. In [12], a new approach for identifying
measurement errors in DC power flow is presented by ex‐
ploiting the singularity of the impedance matrix and the spar‐
sity of the error vector. It leverages the structure of the pow‐
er system and can compute the measurement errors accurate‐
ly. In [13], a bad data detection method is presented based
on state estimation. The phasor-measurement-based state esti‐
mator improves data consistency by identifying angle biases
and current scaling errors. A time-series prediction model
combined with Kalman filter and smoothing algorithm to
clean the bad data is introduced in [14]. Reference [15] pro‐
poses a method based on the unscented Kalman filter in con‐
junction with a state estimation algorithm to detect bad data
in real-time. According to [16], bad data from faulty current
transformers can be detected by a linear weighted least
square-based state estimation algorithm. Reference [17] pro‐
poses a robust generalized estimator to detect bad data by ex‐
ploiting the temporal correlation and the statistical consisten‐
cy of measurements. Both state estimator and Kalman filter
method require system topology and line parameters with
multiple PMU measurements. Therefore, the results of both
methods will be affected in cases where an error exists in
the topology or parameter of the system.

Some data-driven methods have been proposed to detect
data anomaly. Traditional methods for bad data detection are
based on the format of the sent data in the protocol. In [18],
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a selection of detection criteria based on logical judgments
is developed. If the data exceeds the set threshold, it is con‐
sidered to be bad data. However, if there is a large distur‐
bance in the power system, the specific threshold set in ad‐
vance makes no sense. Measurement information in multiple
PMUs is used in [19], where an online data-driven approach
is introduced for the detection of low-quality phasor mea‐
surements based on spatiotemporal similarities among multi‐
ple-time-instant synchrophasor measurements. Similarly, the
low-rank property of the matrix and the sparsity of the anom‐
alies are used to detect bad data in [20]. In [21], a method
based on principal component analysis is proposed to sepa‐
rate signals into low-dimensional feature components and
high-dimensional noise components for bad data detection.
These methods utilize the information of multiple PMU mea‐
surements to achieve bad data detection.

In some areas, only a small number of PMUs are present
and the information of multiple PMU measurements is diffi‐
cult to obtain and single PMU measurement can only be
used to achieve the detection. Reference [22] develops an en‐
semble learning algorithm based on a single PMU with three
simple models to detect anomaly data. An alternative density-
based clustering method is proposed to cluster the phasor da‐
ta to detect bad data for classification in [23]. Reference
[24] presents machine learning techniques based on the sup‐
port vector machine for bad detection. These methods are
based on a single PMU, and when the data such as step data
is presented during the events, the methods may not be suit‐
able.

In this paper, a data-driven PMU bad data detection algo‐
rithm by a single PMU measurement is proposed which is
based on spectral clustering. In order to distinguish event da‐
ta from bad data, a bad data and event data identification
method based on a decision tree is first developed which uti‐
lizes the slope feature of each data. Then a subsequent bad
data detection method based on spectral clustering is pro‐
posed, which can detect bad data with small deviation values
by the weight among the data. The proposed algorithm does
not require the system topology of parameters. It can avoid
the misjudgment of event data. The feasibility and accuracy
of the proposed method are verified through simulations and
field recorded data. The results show that this data-driven
method can achieve bad data identification and detection ef‐
fectively. It can guarantee better application of PMU data.

The remaining sections of this paper are organized as fol‐
lows. In Section II, a bad data and event data identification
method based on the decision tree is proposed. Section III
details a detection method for bad data based on spectral
clustering. The results of the numerical experiments on simu‐
lation and field PMU data are documented in Section IV. Fi‐
nally, Section V concludes the paper.

II. IDENTIFICATION METHOD OF BAD DATA AND EVENT

DATA

A. Features of Bad Data and Event Data

This paper mainly studies the PMU bad data which is af‐
fected by interference or jitter. These bad data deviate from

the normal values. By analyzing a large amount of field da‐
ta, most of the bad data exists alone and the number of con‐
tiguous bad data is no more than three. It is also pointed
that the outliers are all isolated and not in sequence in [22],
[25]. Meanwhile, the amplitude is taken as an example to in‐
troduce this method. It can be applied to amplitude, frequen‐
cy, and rate of change of frequency, where the amplitude in‐
cludes voltage amplitude and current amplitude. But it is not
suitable for the phase angle, because when the frequency is
offset, the phase angle changes from -180° to 180°.

The schematic in Fig. 1 includes some bad data in the
steady state. The grey circle represents normal data. The
blue circles show anomaly data with higher amplitude and
the red circles show anomaly data with a smaller amplitude.
The number of contiguous bad data may be one, two, or
three as shown in Fig. 1(a), (b), and (c), respectively. Taking
Fig. 1(a) as an example, two possibilities of bad data can be
seen in which the amplitude may be larger or smaller than
normal value. Similarly, the possibilities in Fig. 1(b) and
Fig. 1(c) are four and eight, respectively.

For the purpose of avoiding misjudgment of event data, a
comparison is carried out between event data, bad data, and
normal data, as illustrated in Fig. 2. In Fig. 2, |Xi| is the am‐
plitude of each data. As shown in Fig. 2(a), when t = ti + 1 , the
amplitude step occurs and the yellow circle represents the
step data. The data Xi is defined as a step point, in which
the data before Xi and the data after Xi+1 can be both consid‐
ered as normal data. Figure 2(b) represents the possibility of
three contiguous bad data events. The blue circle represents
bad data whose amplitudes are higher than the normal value
and close to each other. Additionally, Fig. 2(c) represents the
normal data. According to the comparison, the difference be‐
tween event data and bad data is the number of contiguous
data points with close amplitudes. In this case, the number
of event data is more than three, and the number of contigu‐
ous bad data is three or less. Thus, the method is able to dis‐
tinguish them based on the features of four contiguous data.

The slope of each data ki is calculated by (1).

(a)

(b)

(c)

1st 2nd 3rd t

1st 2nd t

1st
t

Fig. 1. Schematic of possible bad data. (a) One bad data. (b) Two bad da‐
ta. (c) Three bad data.
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ki = | ||Xi + 1 - ||Xi

ti + 1 - ti | (1)

When the power system is in normal operation, the data is
ambient with a small slope. However, when there is event
data or bad data, the amplitude changes and the slopes be‐
come larger. A comparison of the slopes of event data and
bad data in Fig. 2 is provided in Table I.

Table I shows that the slopes are large, small, small, and
small when starting from the step point Xi. The contiguous
four-point slope of normal data or bad data does not change
in this manner. Therefore, the slopes of four contiguous data
from the step point have a unique feature that can be used to
detect when the step occurs.

When the amplitude step occurs, it is difficult to calculate
the value of the amplitude step without the parameter of
lines. This means it is difficult to determine the threshold of
the slope value of the step point. It is hard to detect the step
point by using the threshold judgment method. Therefore,
this paper proposes an identification method based on deci‐
sion tree first, which avoids the subjectivity of artificially
setting thresholds through the training of a large amount of
field data. On this basis, the bad data is further detected.
When the system oscillates, the identification method is still
applicable, and this process is verified in Section IV.

B. Construction of Decision Tree

The identification of the event data and non-event data
can be equivalent to a binary classification issue. A machine
learning method based on the C4.5 decision tree is an effec‐
tive tool to solve this problem [26]. This tool works well as
it uses the information gain ratio to select features rather

than the information gain in the ID3 algorithm, avoiding the
preference for features with more values. Also, there are
many other similar machine learning algorithms like the ran‐
dom forest, pre-pruning decision tree and classification, and
regression tree, etc. The random forest consists of multiple
decision trees. It has obvious advantages when dealing with
large sample or high-dimensional feature data. In this paper,
the sample data in the identification problem is small. There
is no need to use the random forest algorithm. The pre-prun‐
ing decision tree can reduce the training time and test time.
However, the branches of the tree constructed by C4.5 are
only 4. Therefore, it does not need pre-pruning which might
cause under-fitting. The classification and regression tree
(CART) selects the best features by the Gini index, which is
better for large sample data. The CART method is not neces‐
sary. Furthermore, a large number of simulations and field
tests have proved that the C4.5 method has enough high ac‐
curacy, which can be seen in Section IV.

As shown in Fig. 2(a), the label of step point is l = 1,
while the others are l = 0. The features of each data point are
the slope values of the contiguous four data points including
itself such as (ki, ki+1, ki+2, ki+3). Thus, there are a total of four
features of each data point, recorded as (a = ki, b = ki + 1, c =
ki + 2, d = ki + 3). The construction of decision tree is then per‐
formed using a large amount of field data. In this method,
80% of all the data is randomly selected as the training set
D including the event data and non-event data. 20% of the
data is the test set D′. The training data is used to construct
a decision tree. The test data is used to verify its accuracy.
The detailed steps are as followed.

The total information entropy of the training data D is cal‐
culated by:

Z(D)=-∑
i = 1

2

zi log2 zi (2)

where z1 is the proportion of step point in D; z2 is the propor‐
tion of non-step point in D; and Z(D) is the uncertainty of the
data label. The information entropy is one of the most com‐
monly used indicators for measuring the purity of a sample.

Assume that the feature b is first selected to partition D
and is discretized by dichotomy. Meanwhile, there are j dif‐
ferent values in the feature b. Divide these values from
small to large to form a collection {b1, b2, ..., bj}. Set the me‐
dian point of each interval [bi, bi+1) as the split point si. A
split point collection S can be obtained by (3).

S = { }si =
|

|
||

bi + bi + 1

2
1£ i £ j - 1 (3)

Each split point can divide the training data D into sub‐
sets D-

s and D+
s . D-

s represents the collection of training data
where bi £ si, and D+

s represents the collection of the training
data where bi > si. The information gain of si is calculated:

O(Dbsi)= Z(D)-
|
|

|
|D

-
si

||D
Z(D-

si
)-

|
|

|
|D

+
si

||D
Z(D+

si
) (4)

where |D| is the number of data; |D-
si
| |D| is the weight of

the data whose feature bi £ si; and |D+
si
| |D| is the weight of

t

Xi−1 Xi

Xi+1 Xi+2 Xi+4Xi+3

Xi−1 Xi

Xi+1 Xi+2

Xi+4

Xi+3
t

(a)

(b)

(c)
Xi−1 Xi Xi+4Xi+1 Xi+2 Xi+3

t

Fig. 2. Comparison between event data, bad data, and normal data. (a)
Event data. (b) Bad data. (c) Normal data.

TABLE I
COMPARISON OF SLOPE VALUES OF EVENT DATA, BAD DATA, AND

NORMAL DATA

Data type

Event data

Bad data

Normal data

ki

Large

Large

Small

ki+1

Small

Small

Small

ki+2

Small

Small

Small

ki+3

Small

Large

Small
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the data whose feature bi > si. The larger the information
gain O is, the better effect the split point si has. The ID3 al‐
gorithm selects the maximum information gain, which has a
preference for the features with more values. The C4.5 deci‐
sion tree defines the gain ratio to select the optimal feature.
The definition is as follows:

o(Dbsi)=
O(Dbsi)

I(b)
(5)

I(b)=- ∑
βÎ{ }-+

|
|

|
|D

β
si

||D
log2

|
|

|
|D

β
si

||D
(6)

where I(b) is the intrinsic value.
Select the maximum of gain ratio o(D,b,si) as the gain ra‐

tio of the feature b. Therefore, select the split point sb with
the largest gain ratio o(D,b,sb) as the first branch node of the
decision tree. The structure of the decision tree is shown as
follows.

Figure 3 shows the detailed process of the decision tree.
Set the decision tree depth p and the threshold of the infor‐

mation gain ratio ε, which determines the identification accu‐
racy. The depth p represents the times of the recursive calcu‐
lation. There are three situations where the decision tree
ends. The first is that if the maximum time of calculations
reaches p, the division is stopped. The second is that if all
the information gain ratios of each feature are less than ε, it
is not divided either. The third is that if all labels of one leaf
nodes are the same, there is no more division. First, all the
data Xi is input. The gain ratios of features (a, b, c, d) are
calculated separately. Then, select the largest gain ratio to
compare with ε. If the gain ratio is greater than ε, the corre‐
sponding feature is used as the feature of the first division.
Suppose b as the selected feature. The split point sb is called
the branch node. The data Xi whose feature bi £ sb is in one
collection and that whose feature bi > sb is in another collec‐
tion. If the gain ratio is less than ε, the label of the data is
the same and the tree is a single node tree. Repeat the above
steps recursively until the labels of the data in one collection
are the same. The last layer node is called the leaf node.

A decision function is used to indicate whether the test da‐
ta D' contains the step point. The test data is put into the de‐
cision tree which is suitably trained to judge its correspond‐
ing label li. The decision function is described as follows:

f (X ′i )= {0
1

i = 12, k (7)

where X 'i represents the data in D′. Equation (7) indicates
that if there is any step point in D′, the corresponding label
should be 1 through the decision tree. The remaining non-

step data labels are 0. It is like the step data Xm in Fig. 3.
Following this, the data before and after the step point are

tested for bad data, so as to achieve the purpose of correctly
distinguishing between bad data and event data.

C. Parameter Setting

In order to get better results, a threshold ε of the informa‐
tion gain ratio and the depth of the decision tree p should be
set at the beginning. The optimal parameters as follows are
obtained by traversing.

Input data: Xi

Start

1 n, ,…,l1=0 …1 m, ,,lm+1=0

End

1 n, ,…,ln=0

Recursion

…………

max
o(D, c, sc), o(D, d, sd)
o(D, a, sa), o(D, b, sb) > ?ε

max
o(D, c, sc), o(D, d, sd)
o(D, a, sa), o(D, b, sb) > ?ε

1 1

1 1 max
o(D, c, sc ), o(D, d, sd)
o(D, a, sa), o(D, b, sb) > ?ε

2 2

2 2

{ }|iX i bb s≤ { }|iX i bb s>

bi≤ sb?

N

Y

YY

NY

NY NY

N N

1
i cc s≤ ? 2

i dd s≤ ?

{ }|iX i cc s≤ 1 { }|iX i dd s≤ 2{ }|iX i cc s> 1 { }|iX i dd s> 2

lm=1 2 m,, ,…

Fig. 3. Flow chart of a decision tree.
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Figure 4(a) shows that when ε gradually increases to
0.0038, the accuracy of identification result obtained from
the test data is up to 98.7% and then remains constant.
Therefore, the threshold ε should be set to 0.0038. Figure
4(b) demonstrates that if the depth is greater than 3, the ac‐
curacy of the test data will decrease. The greater the depth
of the decision tree is, the more complex the decision tree
will be, which results in overfitting and reducing the test da‐
ta accuracy. Thus, the depth of the decision tree p should be
set as 3.

III. BAD DATA DETECTION METHOD

Event data can be successfully distinguished using the de‐
tailed process above. As PMU field data obeys a Gaussian
distribution, the amplitudes of the data before the step oc‐
curs are shown in Fig. 2(a) with grey circles. The amplitudes
of the data after the step occurs are filtered separately by the
3σ rule [27], as shown in Fig. 2(a) with yellow circles.

P ( )|| ||Xi - μ £ 3σ £ 99.73% (8)

where μ is the mean value of the amplitudes; and σ is the
standard deviation of the amplitudes. If there is bad data, the
bad data might be outside the range (μ- 3σ, μ+ 3σ) in Fig. 5.

In Fig. 5, the data distributed between (μ- σ, μ+ σ) is con‐
sidered as normal data. The data out of μ- 3σ and μ+ 3σ is

confirmed as bad data. But for the data between
(μ- 3σ, μ- σ) and (μ+ σ, μ+ 3σ), they can be good data or
bad data, which cannot be detected by the 3σ rule. When the
amplitude of the bad data is close to the mean value of the
data set, they cannot be detected by this rule. Thus, a detec‐
tion method based on spectral clustering is still needed.

A. Spectral Clustering Theory

After the initial filtering of bad data by the 3σ rule, a
spectral clustering method is developed to detect bad data.
Unlike the density-based spatial clustering of applications
with noise (DBSCAN) method in [23], a spectral clustering
method is uniquely graph-based and transforms the cluster‐
ing problem into a graph segmentation problem. For the pur‐
pose of minimizing the cost of segmentation, the undirected
weighted graph composed of a single sample is divided into
multiple subgraphs in order to implement the clustering of
bad and normal data, as shown in Fig. 6.

Figure 6 shows a graph G in which the vertices vi repre‐
sent each data Xi in the sample. The blue vertices represent
the normal data, the yellow vertices represent the bad data,
and the edge represents the relationship between the two ver‐
tices. The relationship is the weight ω ij which indicates the
degree of similarity between vi and vj. As it is an undirected
graph, ω ij =ω ji . The subgraph composed of normal data is
called A, and that composed of bad data is B.

The purpose of spectral clustering is to cut the graph G to
obtain two clusters: one with normal data, and the other
with bad data. This requires the greatest similarity within the
subgraph and the smallest similarity between sub-graphs,
which is similar to the segmentation result of the blue line
in Fig. 6. The total normal data is in subgraph A, and the to‐
tal bad data is in subgraph B. The weights of the cut be‐
tween A and B are defined as:

Cut(AB)= ∑
iÎAjÎB

ω ij (9)

v1

A B

v2

v
ω
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ω
ω

ω

ω

ω

ω

3
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46

Segmentation line

Fig. 6. Segmentation of graphs in spectral clustering.
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Meanwhile, to maximize the number of vertices contained
in each subgraph, the expression in (8) is improved as follows:

RCut(AB)=
1
2 ( )Cut(AB)

||A
+

Cut(AB)

||B
(10)

where ||A , ||B are the numbers of vertices in subgraph A and
|subgraph B, respectively. Extending the equation to m sub‐
graphs, the objective function becomes:

RCut(A1A2Am)=
1
2∑i = 1

m Cut(AiĀi)

||Ai

(11)

Therefore, the objective function of spectral clustering is
to solve the minimum value of (10), which is an NP-hard
problem. It is transformed into the spectral decomposition
problem of the similarity matrix. The suitable eigenvectors
obtained by spectral decomposition are used to describe the
low-dimensional structure of the data. The results are then
obtained by using classical methods such as K-means.

First, the data in the sample is pre-processed, and the devi‐
ation ri between the amplitude and the mean value is taken
as the clustering feature of each data Xi by (12).

ri = | |Xi |- 1
N∑i = 1

n

||Xi | (12)

The similarity matrix W is established according to the
similarity between any two data, and the similarity of any
two data is defined as follows:

ω ij =

ì

í

î

ï
ï
ï
ï

exp ( )-
 ri - rj

2

δ2
i ¹ j

0 i = j

(13)

where δ is the scale parameter, which is set by the local scal‐
ing idea [28].

The degree matrix Dd is a diagonal matrix shown in (14).

Dd =

é

ë

ê

ê
ê
êê
ê

ù

û

ú

ú
ú
úú
ú

d1 0  0
0 d2  0

   
0 0  dn

(14)

where di =∑
j = 1

n

ω ij.

Let L be the Laplacian matrix:

L=Dd -W (15)

Thus, L is a symmetric positive semidefinite matrix and
its eigenvalues are λ i. The eigenvalues arrange as follows:

0= λ1 £ λ2 ££ λn (16)

For any vector f = ( f1, f2, ..., fi), there is:

f T Lf =
1
2∑i = 1

n∑
j = 1

n

ω ij ( fi - fj)
2 (17)

The indication vector is defined as hj:

h j = [ ]h1j h2j ... hnj

T

(18)

hij =

ì

í

î

ïï
ïï

1

||Aj

viÎAji = 12n; j = 12m

0 viÏAj

(19)

Let H ÎRn´m be a matrix containing m indicator vectors
as column vectors. The column vectors of H are orthogonal
to each other, i.e., H T H = I.

hT
i Lh i =

1
2∑u
∑

n

ωun (hiu - hin)2=

1
2

é

ë

ê
ê
êê

ù

û

ú
ú
úú∑

uÎAinÏAi

ωun ( )1

Ai

- 0

2

+ ∑
uÎAinÏAi

ωun ( )0-
1

Ai

2

=

1
2

é

ë

ê
ê

ù

û

ú
ú

Cut (AiĀi)
1

||Ai

+Cut (ĀiAi)
1

|| Āi

=
Cut (AiĀi)

||Ai

(20)

Equation (20) shows that for a subgraph Ai, its cut corre‐
sponds to hT

i Lh i. For m subgraphs, we can obtain:

RCut (A1A2Am)=∑
i = 1

m

hT
i Lh i =∑

i = 1

m

(H T LH) ii = Tr(H T LH)

(21)

The objective function is converted to:

{ min
H ÎRn´ k

Tr(H T LH)

s.t. H T H = I
(22)

According to the Rayleigh quotient property [29], the min‐
imum value of (22) is equal to the sum of the m smallest ei‐
genvalues of L. Finally, K-means clustering is performed on
the matrix F composed of the eigenvectors corresponding to
the minimum m eigenvalues of L. Thereby, the clustering of
normal data and bad data is realized, as shown in Fig. 6,
and the normal data and bad data are completely separated.
The flowchart and algorithm are shown in Fig. 7.

According to the above process, the clustering features are
first calculated as input by using the amplitude data, and
then the similarity, diagonal and Laplacian matrices are con‐
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structed. Then decompose the eigenvalues of the matrix L to
find the smallest m eigenvectors. The matrix F is composed
of m eigenvectors. Clusters C1 and C2 can be obtained by K-
means. C1 contains normal data, and C2 contains bad data.
Hence, the bad data detection is realized.

B. Bad Data Detection Algorithm

The overall flow of the proposed algorithm is illustrated
in Fig. 8. The algorithm has two parts. The first part is the
event data and bad data identification method based on the
decision tree. The details of the decision tree can be viewed
in Fig. 3. The second part is the bad data detection method
based on spectral clustering.

IV. CASE STUDIES

The algorithms presented in this paper are tested by simu‐
lation. In addition, field recorded PMU data is used to verify
the method. The results are then compared with ensemble
method (EM) [22] and the DBSCAN method [23].

A. Simulation

1) Simulation of Data Identification Method
When the power system is under the condition of normal

operation, the data is ambient and has no external interfer‐
ence. The general expression of its signal is as follows:

x (t)= 2 Xm cos(2πf0t + φ0)+ n (t) (23)

where Xm is the phasor amplitude, Xm = 57.73V; f0 is power
frequency, f0 = 50 Hz; φ0 is the initial phases, φ0 = 0; and the
signal-noise ratio of n(t) is 60 dB.

Different values of amplitude step (1 V, 1.5 V, 2 V, 3 V)
are set with different durations (0.1 s, 0.5 s, 1 s, 2 s) to test
the validity of the proposed method. The experiments are re‐
peated 20 times. Also, many experiments with multiple pa‐
rameters for the support vector machine (SVM) and the
back-propagation algorithm (BP) have been conducted, and

the best accuracy is used for comparison. The kernel func‐
tion of SVM is on radial basis, where the gamma is 0.25,
and the penalty factor is 10. The BP neural network has 3-
layer, where the input layer has 4 nodes, the hidden layer
has 12 nodes, and the output layer has 2 nodes. The number
of iterations is 100. It is found that the EM and DBSCAN
method cannot identify the step point and the average results
of different methods are provided in Fig. 9.

In Fig. 9, the horizontal axis represents the values of the
amplitude step, and the vertical axis represents the average
identification accuracy with different durations. As illustrated
in the bar chart, the proposed method is more accurate than
SVM and BP neural networks in different tests. When the
amplitude increases, the identification accuracy increases, be‐
cause the greater the step value is, the more obvious the fea‐
tures are.

The signal with amplitude and phase angle modulation is
used to express the oscillation with low oscillation frequen‐
cy, which can be expressed as:

x (t)= 2 (Xm +Xd cos (2πfat + φa))×

cos(2πf0t +Xk cos (2πfat + φa)+ φ0)+ n (t)
(24)

where Xd is amplitude modulation depth, Xd = 0.5%; Xk is
phase angle modulation depth, Xk = 5.7°; fa is modulation
frequency, fa = 5 Hz; and φa is the initial phase angle of
modulation part.

The identification accuracy of the event data and the oscil‐
lation data is then tested through the above steps. The results
are provided in Fig. 10.
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structed. Then decompose the eigenvalues of the matrix L to
find the smallest m eigenvectors. The matrix F is composed
of m eigenvectors. Clusters C1 and C2 can be obtained by K-
means. C1 contains normal data, and C2 contains bad data.
Hence, the bad data detection is realized.

B. Bad Data Detection Algorithm

The overall flow of the proposed algorithm is illustrated
in Fig. 8. The algorithm has two parts. The first part is the
event data and bad data identification method based on the
decision tree. The details of the decision tree can be viewed
in Fig. 3. The second part is the bad data detection method
based on spectral clustering.

IV. CASE STUDIES

The algorithms presented in this paper are tested by simu‐
lation. In addition, field recorded PMU data is used to verify
the method. The results are then compared with ensemble
method (EM) [22] and the DBSCAN method [23].

A. Simulation

1) Simulation of Data Identification Method
When the power system is under the condition of normal

operation, the data is ambient and has no external interfer‐
ence. The general expression of its signal is as follows:

x (t)= 2 Xm cos(2πf0t + φ0)+ n (t) (23)

where Xm is the phasor amplitude, Xm = 57.73V; f0 is power
frequency, f0 = 50 Hz; φ0 is the initial phases, φ0 = 0; and the
signal-noise ratio of n(t) is 60 dB.

Different values of amplitude step (1 V, 1.5 V, 2 V, 3 V)
are set with different durations (0.1 s, 0.5 s, 1 s, 2 s) to test
the validity of the proposed method. The experiments are re‐
peated 20 times. Also, many experiments with multiple pa‐
rameters for the support vector machine (SVM) and the
back-propagation algorithm (BP) have been conducted, and

the best accuracy is used for comparison. The kernel func‐
tion of SVM is on radial basis, where the gamma is 0.25,
and the penalty factor is 10. The BP neural network has 3-
layer, where the input layer has 4 nodes, the hidden layer
has 12 nodes, and the output layer has 2 nodes. The number
of iterations is 100. It is found that the EM and DBSCAN
method cannot identify the step point and the average results
of different methods are provided in Fig. 9.

In Fig. 9, the horizontal axis represents the values of the
amplitude step, and the vertical axis represents the average
identification accuracy with different durations. As illustrated
in the bar chart, the proposed method is more accurate than
SVM and BP neural networks in different tests. When the
amplitude increases, the identification accuracy increases, be‐
cause the greater the step value is, the more obvious the fea‐
tures are.

The signal with amplitude and phase angle modulation is
used to express the oscillation with low oscillation frequen‐
cy, which can be expressed as:

x (t)= 2 (Xm +Xd cos (2πfat + φa))×

cos(2πf0t +Xk cos (2πfat + φa)+ φ0)+ n (t)
(24)

where Xd is amplitude modulation depth, Xd = 0.5%; Xk is
phase angle modulation depth, Xk = 5.7°; fa is modulation
frequency, fa = 5 Hz; and φa is the initial phase angle of
modulation part.

The identification accuracy of the event data and the oscil‐
lation data is then tested through the above steps. The results
are provided in Fig. 10.
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Figure 10 shows that during the oscillation, event data can
also be identified by the proposed method. The average accu‐
racy of the proposed method is 98.5%, higher than the other
two methods. The results of SVM are better than those of
the BP neural network. In this paper, the sample data is
small, thus BP neural network has no advantages. The accu‐
racy of SVM is related to kernel function and other parame‐
ters [30]. Thus, the proposed method is more suitable.
2) Simulation of Data Detection Method

For the signal in (23), a number of single or contiguous
bad data are artificially set, and the deviation range is from
0.3% to 5%. The detection results of the bad data with three
methods is shown in Fig. 11.

Figure 11 shows the ambient data with some bad data,
which is marked by grey. In this figure, SC refers to the
method proposed in this paper, EM is presented in detail in
[22], and DBSCAN is the method proposed in [23]. It can
be observed that the EM and DBSCAN method can effec‐
tively identify bad data when the amplitude changes greatly.
However, the DBSCAN method cannot identify bad data
with an amplitude that is close to normal value. When the
deviation of bad data is small, it is closely related to the nor‐
mal data. The bad data can easily be considered normal
based on the strong density relationship. The EM also strug‐
gles to identify contiguous bad data as it is based on the pre‐
requisite that the amplitudes of continuous bad data contrast
dramatically. The proposed method can detect both single
and contiguous bad data.

Using the signal in (23), the detection range of three meth‐
ods by changing the deviation value of single bad data is
compared. The results are provided in Fig. 12.

Figure 12 illustrates that when the deviation value of bad
data is lower than 1%, the EM cannot detect it. When the de‐
viation value of bad data is lower than 5%, the DBSACN
method cannot detect it. The proposed method can detect
bad data with a deviation value from 0.5% to 20%.

Moreover, the ratio and position of bad data in Fig. 11 are
randomly changed. The comparison of the detection ability
of the three methods is as follows.

Table II shows that when the ratio of bad data is higher
than 10%, the EM and DBSCAN method cannot detect them
completely, while the proposed method can detect the ratio
from 1% to 15%.

The signal in (24) represents the disturbance occurring in
the system in which bad data is randomly set. The results of
the three detection methods are provided in Fig. 13.

Figure 13 indicates that when there is the data during a
disturbance, the data divergent from the normal value can be
detected by the three methods. However, the data with an
amplitude close to the normal value cannot be detected by
the DBSCAN method. Due to the close value, the density re‐
lationship is strong and can easily be classified into one clus‐
ter. EM cannot detect contiguous bad data because if the da‐
ta in the middle is not much different from before and after,
it is considered as normal. The proposed method can detect
both single and contiguous bad data.

B. Field Data Verification

A PMU device suitable for a distribution network has
been successfully developed in the laboratory. The PMU can
measure the related parameters of the fundamental frequen‐
cy, harmonics, and inter-harmonics in a distribution network

TABLE II
DETECTION CAPABILITY COMPARISON OF THREE METHODS WITH

DIFFERENT RATIOS OF BAD DATA

Method

SC

EM

DBSCAN

Detection capability

1.0%

√
√
√

2.5%

√
√
√

5.0%

√
√
√

10%

√
×

×

15%

√
×

×

0.5%1.0% 5% 20% Value
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Method

Fig. 12. Detection range of three methods with different deviation values.
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in real time. Due to the synchronization signal loss on June
17th, 2019, the phase angle measurement jumps, which leads
to the fluctuation of frequency and the change rate of fre‐
quency. Since the amplitude is corrected according to the fre‐
quency, the amplitude also jumps.
1) Field Data Verification of Data Identification Method

Aiming to verify the rationality of the parameter selection,
the measurement of six other independent PMUs is validated
to test the identification method. The results are provided in
Fig. 14.

As seen in Fig. 14, the selected parameters of the decision
tree are appropriate to the field data from other PMUs, and
the accuracy of the event data identification method is high‐
er than 98.6%.
2) Field Data Verification of Data Detection Method

Field data in the distribution network with event data and
bad data is used to verify the algorithm. The comparison re‐
sults are shown in Fig. 15.

Figure 15 shows that the proposed method can identify
the step point while the other two methods may decipher it
as bad data. When the amplitude of bad data changes dramat‐
ically, all three methods can detect it. If the amplitude of
bad data is close to the normal value, the DBSCAN method
cannot detect it as the density relationship between bad data
and normal data is strong. The EM cannot detect bad data
with an amplitude that is near normal as the deviation does

not exceed the set threshold. The proposed method can de‐
tect contiguous bad data regardless of the size of the devia‐
tion.

In addition, the bad data is artificially set for field data
from a certain sub-synchronous oscillation in areas with re‐
newable energy sources in western China. The filed data is
in Fig. 16. The detection results are compared in Fig. 17.

It can be seen from Fig. 16 that there is a single PMU
measurement and the reporting rate is 100 Hz. The sub-syn‐
chronous oscillation lasts for about 33 s. Figure 17 shows
that when there are contiguous bad data, the detection result
of the proposed method is better than the other two meth‐
ods. The detection range of the EM is larger than that of the
DBSCAN method. Therefore, the proposed method can be
practically applied to detect all the bad data in Fig. 17.
3) Performance Comparison of Different Methods

The running time of three detection methods is compared
with different time windows. It should be pointed out that
the running time of the proposed method in this paper does
not include the bad data or event data identification process.
When the time window contains 200 data points, the run‐
ning time of the identification method is about 0.002 s. The
calculation speed of the identification method is fast. The re‐
sults of the running time of three detection methods are
shown in Table Ⅲ . It reports that the running time of the
three methods increases as the time window expands. The
EM runs longer than the other two methods because this
method is more complicated. The running time of the DB‐
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SCAN method is close to that of the proposed method, as
they are relatively simple and both belong to clustering meth‐
ods.

When the ration of bad data is constant, the accuracy of
the three methods is compared by changing the deviation
range of bad data.

Table IV shows that the proposed method has higher accu‐
racy than the other two methods in different scenarios. As
the ratio of bad data increases, the detection accuracy of the
three methods decreases. The accuracy increases as the devi‐
ation range of bad data increases. The DBSCAN method is
more affected by the ratio and range.

V. CONCLUSION

This paper proposes a data-driven PMU bad data detec‐
tion algorithm. It only relies on a single PMU and does not
need the system topology or parameters. It can improve the
quality of PMU data, and lay a foundation for better applica‐
tion of PMU data to power systems. The main conclusions
are as follows:

1) A data identification method based on a decision tree is
proposed. Compared with the existing methods, it avoids
mistaking event data for bad data by learning the slopes of

each data.
2) A bad data detection method based on spectral cluster‐

ing is developed. It can use the degree of association to clus‐
ter bad data. It detects bad data with small deviation values
which is not easy to detect with the existing methods .

3) The simulation and field data tests prove that the pro‐
posed algorithm has effectiveness on bad data identification
and detection. It can provide PMU data with high quality for
the power systems.

This paper does not consider the bad data caused by PMU
algorithms, which may cause long-term detection of bad da‐
ta. Future works will focus on this problem.
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