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Coordinating EV Charging via Blockchain
Jian Ping, Zheng Yan, Sijie Chen, Liangzhong Yao, and Minhui Qian

Abstract——The increasing electric vehicle (EV) penetration in
a distribution network triggers the need for EV charging coor‐
dination. This paper firstly proposes a hierarchical EV charging
coordination model and an algorithm based on Lagrangian re‐
laxation. A barrier to the implementation of the coordination al‐
gorithm is that there usually does not exist a reliable coordina‐
tor of charging stations. This paper shows that an unreliable co‐
ordinator may collude with some charging stations and behave
dishonestly by disobeying the coordination algorithm. Thus, the
collusion coalition can gain more profits while lowering the
profits of others and the total social welfare. To provide reliable
coordination of charging stations, a novel blockchain-based co‐
ordination platform via Ethereum is established, including a co‐
ordination structure and a smart contract. A mathematical anal‐
ysis is given to show that the proposed platform can mitigate
the collusion behaviors in the coordination. Simulation results
show the consequence of collusion and how blockchain can pre‐
vent the collusion.

Index Terms——Electric vehicle (EV) charging coordination,
collusion, blockchain, smart contract.

I. INTRODUCTION

THE increasing electric vehicle (EV) penetration brings
overload risks to distribution system facilities, necessi‐

tating EV charging coordination [1]. Due to the huge num‐
ber of EVs, a hierarchical approach is usually appropriate
for charging coordination because it protects user privacy
and ensures satisfactory convergence. In existing studies on
hierarchical charging coordination, a common assumption is
that there exists an honest and reliable coordinator so that
the coordination process is fair [2]. However, this assump‐
tion may not hold in practice. In a distribution network,
there is not always a mature and reliable coordinator of
charging stations. A utility company may potentially be a re‐
liable coordinator, but it may bring the utility an extra bur‐
den to manage all charging stations in its territory, and charg‐

ing power allocation is beyond its duty. A third-party coordi‐
nator, on the other hand, may not behave fairly and honestly.

With the absence of an honest coordinator, the problem of
how to provide reliable coordination for EV charging sta‐
tions is addressed in this paper.

Hierarchical EV charging coordination methods have been
extensively studied. The optimal charging schedule is de‐
rived through iterations between a central coordinator and lo‐
cal controllers. In [3], a central controller forecasts the load
curve of conventional loads, and local controllers optimize
local charging schedules while omitting system security con‐
straints. Reference [2] considers the maximum total available
power of all charging stations, and uses the alternating direc‐
tion method of multipliers (ADMM) to solve the coordina‐
tion problem. Reference [4] formulates an EV charging coor‐
dination problem as an extended day-ahead security-con‐
strained unit commitment problem and proposes a partial de‐
composition method based on Lagrangian relaxation. Refer‐
ence [5] minimizes the total energy losses of a distribution
network considering the charging of EVs based on ADMM.
These studies rely on a three-layer structure, including a cen‐
tral coordinator, a local aggregator, and EVs. In [6], [7], sig‐
nals are directly transmitted between a central coordinator
and individual EVs, which performs better on privacy protec‐
tion. The approaches in the above studies protect EVs’ priva‐
cy and ensure satisfactory convergence. However, these stud‐
ies assume that the central coordinator is mature and reli‐
able, i.e., it would not collude with local controllers and dis‐
obey the coordination algorithm. The case where a mature
and reliable central coordinator is absent is rarely concerned
in these studies.

Recently, the blockchain, a novel cryptography technology
deemed as capable of ensuring trust and transparency, is
gaining increasing attention [8]. Since an energy technology
company, LO3 Energy, establishes a blockchain-based peer-
to-peer (P2P) energy market in a Brooklyn microgrid [9], en‐
ergy blockchain applications have been preliminarily studied,
especially in P2P energy trading. In [10], blockchain is uti‐
lized as a trusted and secure settlement tool of electricity
trading among prosumers. Reference [11] implements P2P
energy trading on blockchain. Reference [12] proposes a
credit-based payment scheme to accelerate P2P energy trad‐
ing on blockchain. Reference [13] proposes an energy loss
allocation mechanism in blockchain-based P2P energy trad‐
ing in a microgrid. Reference [14] performs security and pri‐
vacy analysis of the blockchain-based P2P energy trading.
These studies give demonstrations about how to ensure fair
and transparent P2P energy trading in a decentralized man‐
ner via blockchain.
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In the area of blockchain-based EV charging coordination,
multiple electricity trading mechanisms of EVs on block‐
chain are implemented. Reference [15] utilizes blockchain as
a P2P electricity trading platform for EVs within the same
charging station. Reference [16] introduces an Iceberg order
execution algorithm to schedule EV charging and develops a
transaction scheme. Reference [17] presents a consensus
mechanism of energy blockchain and a transaction scheme
that captures EVs’ individual energy preferences. In general,
existing studies utilize blockchain as an electricity trading
platform for individual EVs. Few studies focus on the poten‐
tial of utilizing blockchain as a coordinator of charging sta‐
tions in a hierarchical coordination algorithm.

This paper makes the following contributions.
1) This paper proposes an EV charging coordination mod‐

el and a hierarchical EV charging coordination algorithm.
Then it shows that in a hierarchical EV charging coordina‐
tion approach, a coordinator may behave dishonestly by dis‐
obeying the proposed coordination algorithm and colluding
with some charging stations. The collusion coalition (consist‐
ing of the dishonest coordinator and the charging stations
which collude with the coordinator) can gain illegal profits
while lowering the profits of others and the total social wel‐
fare. Both theoretical analysis and simulation are given to
demonstrate the motivation and the harmfulness of the collu‐
sion.

2) This paper uses the blockchain to provide reliable coor‐
dination for EV charging stations. The proposed coordina‐
tion algorithm is implemented on Ethereum blockchain by
proposing a coordination structure and deploying a smart
contract. The blockchain-based EV charging coordination
platform is robust against single-point failures and potential
collusion behaviors. A mathematical analysis is conducted to
show that the blockchain-based platform can mitigate the col‐
lusion so long as the proportion of total computational pow‐
er of malicious charging stations is less than 50%.

3) This paper tests the performance of the platform by de‐
ploying it on an Ethereum private chain. The simulation re‐
sults show that the platform can ensure satisfactory conver‐
gence and coordination reliability. We state the general mer‐
its of blockchain in EV coordination and quantify the value
of blockchain via mathematical analysis and simulation.

The rest of the paper is organized as follows. Section II
presents the EV charging coordination model. Section III
gives the coordination algorithm and analyzes potential collu‐
sion behaviors. Section IV presents how to utilize block‐
chain to mitigate the collusion. Section V demonstrates the
merits of the blockchain-based EV charging coordination
platform via the simulation. Section VI concludes the paper.

II. MODEL OF EV CHARGING COORDINATION

A. Modeling Features and Assumptions

1) Security risks exist when plenty of EVs are charged at
the same time, i.e., the transformer at the transformation and
distribution (T-D) station might be overloaded [1]. To protect
the transformer at the T-D station, the permissible total
charging load of charging stations in each period is pre-deter‐

mined at the beginning of the period according to the histori‐
cal conventional load curve and capacities of facilities.

P chmax
t =Pcap -P CL

t tÎ[1T] (1)

where P chmax
t is the permissible total charging load in period

t; Pcap is the capacity of the transformer at the T-D station;
P CL

t is the forecasting of the conventional load in period t;
and T is the number of periods in a day.

2) EVs only arrive and leave at the beginning or the end
of each period. If an EV parks in a charging station at the
beginning of period t, its charging process starts from period
t. And EV charging power is constant during a period.

3) A charging station is an agent of on-site EVs, which al‐
ways seeks the optimal charging power of on-site EVs. The
revenue of a charging station is determined by the electricity
consumption of on-site EVs. A charging station only has the
real-time states of charge (SOCs), battery constraints and the
departure time of parked EVs. The information of the real-
time electricity price and the amount of EVs in the future
are unpredictable by a charging station. In this paper, a
charging station always makes “here-and-now” decisions at
the beginning of each period. It determines the charging
power in this period based on the status of parked EVs in‐
cluding EVs that arrived in past periods and EVs that ar‐
rived at the beginning of the current period.

B. Objective Function

The objective of the EV charging coordination problem is
to maximize the total social welfare of EVs in the current pe‐
riod.

max ∑
iÎΩCS
∑
jÎΩEV

it

( )Ujt -Cjt (2)

where ΩCS is the set of charging stations; ΩEV
it is the set of

EVs at the charging station i in period t; and Ujt and Cjt are
the utility and the cost of EV j in period t, respectively.

The charging cost of EV j in period t is given as:

Cjt = π t PjtDt (3)

where π t is the basic real-time charging price in period t; Dt
is the duration of a period; and Pjt is the charging power of
EV j in period t.

In order to model EV’s utility, concave and non-decreas‐
ing functions such as quadratic functions [18] - [21] have
been extensively accepted. Inspired by the above studies, an
EV’s utility is indicated by a quadratic function.

Ujt = α j
é
ë
ê1- ( )1- qjt qmax

j

2ù
û
ú τ jt (4)

where α j is the coefficient for charging willingness of EV j;
qjt is the SOC of EV j at the end of period t; qmax

j is the de‐
sired SOC of EV j at departure; and τ jt is the number of pe‐
riods from period t to the departure time of EV j.

According to (4), the utility of an EV is associated with
its current SOC, desired SOC, and departure time. The func‐
tion has the following properties:

1) When being charged, the utility of an EV increases where‐
as the marginal utility dUjt /dqjt = 2α j (1/qmax

j - qjt /(q
max
j )2)/τ jt

decreases.
2) For two EVs with the same percentage of SOC, the EV
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which will shortly depart and has higher charging utility.
These two properties mimic the EV’s preference in reality

that an EV which has lower SOC and departs earlier is more
willing to be charged. Note that the proposed mechanism al‐
so applies other utility function forms.

C. Constraints

1) Facility Constraint
From the perspective of a distribution network, the total

charging power cannot exceed the permissible total charging
load to protect the transformer at the T-D station.

∑
iÎΩCS
∑
jÎΩEV

it

Pjt£P chmax
t (5)

From the perspective of a charging station, the total charg‐
ing power of on-site EVs can not exceed the maximum
charging power of the charging station, as shown in (6).

∑
jÎΩEV

it

Pjt £P CSmax
i iÎΩCS

(6)

where P CSmax
i is the maximum total charging power of charg‐

ing station i.
2) EV Constraints

An EV has the following constraints as for its battery.

0£Pjt £P EVmax
j jÎΩEV

it iÎΩCS (7)

0£ qjt £ qmax
j jÎΩEV

it iÎΩCS (8)

qjt = qjt - 1 + η j Pjt /E
max
j jÎΩEV

it iÎΩCS (9)

where P EVmax
j is the maximum charging power of EV j; and

η j is the charging efficiency of EV j.
Constraint (7) represents the charging power limit of an

EV. Constraint (8) shows the lower and upper limit of SOC
of an EV, respectively. Constraint (9) indicates the change of
SOC during the charging process. qj,0 is the SOC of EV j at
the beginning of the first period in a day. The optimization
problem is to maximize an objective function (2) with con‐
straints (3)-(9).

III. EV CHARGING COORDINATION ALGORITHM AND

POTENTIAL COLLUSION RISK

A. Decomposition and Coordination

A hierarchical coordination algorithm is given in this sub-
section.

In the optimization problem indicated by (2) - (9), con‐
straint (5) is the coupling constraint. By relaxing constraint
(5) with Lagrangian relaxation method [22], the Lagrangian
function for the original problem is defined as follows.

Lt (Piμ t)=∑
iÎΩCS
∑
jÎΩEV

it

(Ujt -Cjt)- μ t ( )∑
iÎΩCS
∑
jÎΩEV

it

Pjt-P chmax
t =

∑
iÎΩCS

Lit (piμ t)+Kt (μ t) (10)

Lit (piμ t)=∑
jÎΩEV

it

(Ujt -Cjt)- μ t∑
jÎΩEV

it

Pjt (11)

Kt (μ t)= μ t P
chmax
t (12)

where Pi is the set of Pjt for all EVs in all charging stations;

pi is the set of Pjt for all EVs in charging station i; and μ t is
the Lagrangian multiplier of constraint (5) in period t, which
also indicates the congestion price in period t.

Maximizing (11) with constraints (6)-(9) is an independent
sub-problem for each charging station. The sub-problem also
indicates maximizing the total welfare of EVs parked at the
charging station while considering the congestion price. By
decomposing the original problem into the independent sub-
problems, each charging station can efficiently optimize its
charging demand with a given congestion price μ t. And the
value of μ t is updated according to the feedback of charging
stations. According to the duality theorem [22], the global
optimal charging schedule can be derived in such a hierarchi‐
cal way because the original optimization problem is convex.

Based on the proposed coordination model, an EV charg‐
ing coordination algorithm is proposed as follows.

Step 1: initialization. The coordinator sets the permissible
total charging load P chmax

t and the current round of iteration
υ= 0, and initializes the Lagrangian multiplier μ(0)

t = 0.
Step 2: solving sub-problems. According to the given mul‐

tiplier, each charging station optimizes its charging schedule
by solving sub-problems indicated by (6) - (9), (11). It then
submits its total power demand ∑

jÎΩEV
it

Pjt to the coordinator.

Step 3: multiplier update. The coordinator collects the
power demand from all charging stations. It can update the
multiplier using multiple methods such as the sub-gradient
method, the cutting plane method, and the trust region meth‐
od. In this work, the sub-gradient method is applied for up‐
dating the multiplier ((13)-(15)), because it is simple to im‐
plement and has small computation burden [22].

DPt =∑
iÎΩCS
∑
jÎΩEV

it

Pjt-P chmax
t (13)

Dμ t = {0 μ(υ)
t = 0 and constraint (5) is met

DP otherwise
(14)

μ(υ+ 1)
t = μ(υ)

t +Dμ t /(a+ bυ) (15)

where DPt is the amount of facility overload; Dμ t is the dif‐
ference of μ t; a, b are scalar parameters in the sub-gradient
method [22]; and μ(υ)

t is the Lagrangian multiplier at iteration
υ in period t.

Step 4: convergence check. If |μ(υ+ 1)
t - μ(υ)

t |£ ε (ε is a small
positive number), the charging demand is deemed as con‐
verging to the optimum. The coordinator stops updating μ t.
Otherwise, the coordinator sets υ= υ+ 1, and returns to
Step 2.

In practice, if an EV arrives just after the coordination pro‐
cess in a period, there are two possible situations. ① If con‐
straint (5) is not binding, i.e., μ t = 0, the EV is allowed to be
charged immediately. ② If constraint (5) is binding, i. e.,
μ t ¹ 0, the EV has to wait for the coordination process in the
next period.

The pros and cons of the proposed algorithm are as fol‐
lows.

1) Limited information exposure. Only little information
of EVs is submitted to the coordinator. The privacy of indi‐
viduals such as qjt, qmax

j and τ jt, can be protected in the algo‐
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rithm.
2) Low computational burden. In period t, the coordinator

needs to optimize ∑
iÎΩCS

N EV
it in the primary problem while it

only needs to optimize one variable (the Lagrangian multipli‐
er) in the coordination algorithm, where N EV

it is the number
of EVs at charging station i in period t. Compared to the
centralized optimization, in the proposed algorithm, the coor‐
dination model is decomposed and solved in a hierarchical
way, which significantly reduces the computational burden
for the coordinator.

3) Satisfactory convergence. The proposed hierarchical al‐
gorithm has satisfactory convergence, as shown in Section
V-B.

4) Vulnerability to single-point failures. The coordinator
in the proposed algorithm is vulnerable to single-point fail‐
ures [23]. A cyber-attack on the coordinator will result in the
failure of coordination.

5) Vulnerability to dishonest coordinator behaviors. This
will be detailed in Section III-B.

B. Potential Collusion with a Dishonest Coordinator

In the proposed algorithm, a basic assumption is that the
coordinator is honest, i.e., the coordinator updates and broad‐
casts multipliers correctly according to the proposed algo‐
rithm. However, to gain profits, the coordinator might be‐
have dishonestly and be in the collusion with a part of charg‐
ing stations. Here is a demonstration to show how collusion
may affect the social welfare and individual profits.

In iteration υ, the coordinator calculates the multiplier by
(13), (14), and (16) but broadcasts the multiplier dishonestly
in iteration υ+ 1, as shown in (17) and (18).

μ̄(υ+ 1)
t = μ̄(υ)

t +Dμ̄ t /(a+ bυ) (16)

μ̄(υ+ 1)
it = {ωμ̄(υ+ 1)

t iÏΩcol

μ̄(υ+ 1)
t iÎΩcol (17)

ω> 1 (18)

where Ωcol is the set of charging stations in the collusion co‐
alition; ω is a parameter which represents the degree of con‐
gestion price distortion; and μ̄(υ+ 1)

it is the multiplier which ac‐
tually sent to charging station i at iteration υ+ 1 in period t.
In the rest of this paper, variables influenced by a dishonest
coordinator will have an overline.

According to (17) and (18), the coordinator sends differ‐
ent multipliers to charging stations depending on whether
they are affiliated with the collusion coalition. Charging sta‐
tions affiliated with the collusion coalition receive the true
congestion price, whereas charging stations unaffiliated with
the collusion coalition receive a higher congestion price.

Theorem 1 The total social welfare derived by a dishon‐
est coordinator is different from the optimal total social wel‐
fare when constraint (5) is binding, i.e., μ̄ tμ t ¹ 0.

Proof For a charging station far from the collusion coali‐
tion, the Karush-Kuhn-Tucker (KKT) condition of its sub-
problem should be met.

¶Lit

¶P̄jt

=
¶ ( )Ujt -Cjt

¶P̄jt

- μ̄ it = 0 jÎΩEV
it iÏΩcol (19)

Combined with μ̄ t < μ̄ it, this implies that P̄jt cannot meet
the KKT condition for the original problem.

¶Lt

¶P̄jt

=
¶ ( )Ujt -Cjt

¶P̄jt

- μ̄ t >
¶Lit

¶P̄jt

= 0 jÎΩEV
it iÏΩcol (20)

The charging power of EV j derived by a dishonest coor‐
dinator P̄jt is different from its charging power in the opti‐
mal solution P *

jt. The iteration influenced by the collusion
converges to a non-optimal solution. The collusion decreases
the efficiency of welfare allocation.

Theorem 2 Influenced by the collusion, EVs (whose in‐
terests are represented by charging stations) in/not in the col‐
lusion coalition gain more/less welfare.

Proof Assume that EV j is parked at charging station i. If
there is not a collusion coalition, the welfare of EV j is giv‐
en as:

W *
jt = α j{1-[1- (qjt - 1 + η j P

*
jt /E

max
j )/qmax

j ]2}/τ jt-π t P
*
jtDt - μ t P

*
jt

(21)

If there is a collusion coalition, and charging station i is
not in the collusion coalition, the welfare of EV j is given as:

W̄jt = α j{1-[1- (qjt - 1 + η j P̄jt /E
max
j )/qmax

j ]2}/τ jt-π t P̄jtDt - μ̄ it P̄jt

(22)

By putting ¶Lit /¶P *
jt = 0 and ¶Lit /¶P̄jt = 0 into (21) and

(22), respectively, (23)-(26) can be obtained.

W *
jt = cj1 ( )P *

jt

2

+ cj2 (23)

W̄jt = cj1 P̄ 2
jt + cj2 (24)

cj1 =
α j

τ jt
( )η j

E max
j qmax

j

2

> 0 (25)

cj2 =
α j

τ jt

é

ë

ê
ê

ù

û

ú
ú

2qjt - 1

qmax
j

- ( )qjt - 1

qmax
j

2

(26)

The values of W *
jt and W̄jt are determined by P *

jt and P̄jt,
respectively. According to the second derivative of the La‐
grangian function given by (27) and a natural corollary of
(20) as shown in (28), P *

jt > P̄jt can be obtained. Hence, W *
jt >

W̄jt. For charging stations which are not affiliated with the
collusion coalition, the welfare of on-site EVs is decreased.

¶2 Lt

¶P 2
jt

=-
2α j

τ jt
( )η j

E max
j qmax

j

2

< 0 (27)

¶Lt

¶P̄jt

> 0=
¶Lt

¶P *
jt

(28)

Similarly, it can be proved that when constraint (5) is
binding, EVs parked in charging stations which are in the
collusion coalition can gain more profits. For EVs parked in
charging stations which are affiliated with the collusion co‐
alition, a part of their profits would be given to the coordina‐
tor as its income. Such profits can motivate charging stations
and the coordinator to form a collusion coalition. The rule of
income distribution in the collusion coalition is out of the
scope of this paper.

The influence of the collusion is visualized in Fig. 1. For
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simplicity, only two charging stations are considered. Station
1 colludes with the coordinator whereas Station 2 does not.
The blue areas in quadrant I and quadrant II represent the in‐
crease and decrease of the total welfare of EVs parked in
Station 1 and Station 2, respectively. The green area and the
red dashed area represent the social welfare with/without the
influence of the collusion.

The difference between the green and red dashed areas is
the decrease of the social welfare due to the collusion, as
shown in the sub-figure.

In summary, in a peak-load period, i. e., constraint (5) is
binding, the collusion coalition can gain illegal profits with
the proposed strategy while the social welfare is decreased.
The charging coordination algorithm is vulnerable to dishon‐
est coordinator behaviors.

IV. PROPOSED COORDINATION METHOD VIA BLOCKCHAIN

To overcome the drawbacks of the algorithm presented in
Section III-A, the blockchain is introduced to the EV charg‐
ing coordination problem. According to [24], Ethereum is
the most widely used platform for energy blockchain devel‐
opment. In this section, the coordination method is imple‐
mented on Ethereum by building a coordination structure
and deploying a smart contract. Notably, other blockchain
platforms can also be utilized to coordinate EV charging.

A. Overview of Key Concepts of Ethereum

1) Smart contract. A smart contract is a program imple‐
mentation of an algorithm via a set of functions. After being
deployed on Ethereum, the functions can never be tampered
with. When a participant calls a function in a smart contract
(known as sending a transaction), it needs to spend a com‐
mission fee which is similar to the fee in a stock market.
The amount of the required commission fee depends on the
computational complexity of the function [25].

2) Miner. On Ethereum, participants can choose whether
to be a miner at its own will. A miner, firstly, collects the
transaction broadcast by all participants, and updates the sys‐
tem state by executing the smart contract. Secondly, a miner
needs to solve a difficult proof-of-work (PoW) problem [26].
Then, a miner can broadcast its block to others. The rest of
miners would verify the execution of the smart contract and
the PoW in this block. A miner who firstly broadcasts a new
valid block becomes the actual creator of the new block, and
can receive the commission fees paid by participants who
broadcast transactions as a reward. The new valid block
would be added to the chain. Non-miner participants would

only check the PoW and accept blocks as long as the PoW
is valid. If there is more than one chain whose blocks are
valid, non-miners would always trust the longest chain in
the network, which is known as the longest chain rule [25].

B. Structure of EV Charging Coordination Platform

The structure of the proposed EV charging coordination
platform is illustrated in Fig. 2. The platform is established
on a decentralized P2P network consisting of all charging
stations. In this network, each charging station has two iden‐
tities: a sub-problem solver and a miner.

1) As a sub-problem solver, a charging station optimizes
its charging demand off-chain, i.e., optimizes its charging de‐
mand locally based on the multiplier μ(υ)

t recorded in the
smart contract, and broadcasts its power demand by calling
the corresponding function in the smart contract.

2) A charging station can choose whether to be a miner at
its own will. As a miner, firstly, a charging station performs
the duty of the coordinator. That is, it collects the power de‐
mand broadcast by others, and updates variables (including
multipliers, charging demands, and some auxiliary variables)
recorded on the smart contract. Secondly, a charging station
needs to solve a PoW problem. A charging station who first‐
ly broadcasts a new valid block becomes the actual coordina‐
tor in this block.

On the platform, the authority of the coordinator is distrib‐
uted to all miners, enabling fully decentralized coordination.
The platform can function as long as there are some charg‐
ing stations that are willing to be miners. Hence, the mecha‐
nism can withstand single-point failures. If some miners ma‐
nipulate the multiplier, other honest miners would check and
reject the result, making the mechanism robust against mali‐
cious coordination behaviors.

Charging power

Station 1Station 2

Price

Charging power

Decrease of
social welfare

 

ch,maxPt
ch,maxPt

ωµt µt µt

Fig. 1. Schematic diagram to illustrate influence of collusion.

Transmission network 

Block m 

Data flow; Energy flow

Blockchain
Block n+1 

Smart
contract 

Data

Block n+2 

Data

�

�

�

�

��Only verify
PoW

��Add its
 new block

��Verify execution of
contract and PoW

��Verify execution of
contract and PoW

Fig. 2. Structure of EV charging coordination platform on Ethereum (in
Block n + 2, the green station is the first successful miner, the yellow sta‐
tions represent other miners, and the red station represents non-miner sta‐
tions).
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C. Smart Contract Design

On Ethereum, smart contracts are programmed by a Tur‐
ing-complete language, Solidity [27]. However, directly
translating the proposed algorithm into Solidity language
may encounter difficulties.

1) On Ethereum, only if someone calls the contract, min‐
ers would execute the corresponding function. The “coordi‐
nator” on Ethereum can neither update multipliers nor check
the convergence if nobody calls corresponding functions.

2) A transaction ordering attack may happen when appoint‐
ing a particular charging station or always requiring the last
submitter in each iteration to update multipliers and check
the convergence [28]. That is, malicious miners interfere
with the normal iteration process by changing the order of
received transactions. Thus, the multiplier updating process
should be asynchronous. Once a station submits its demand,
the coordinator would update the multiplier by (13) - (15).
Such an asynchronous algorithm also converges to the opti‐
mum [6].

The details of primary functions in the smart contract are
stated below. And Algorithm Ⅰ demonstrates the coordination
process on the proposed EV coordination platform.

1) Init. The Init function initializes the permissible total
charging load P chmax

t in all periods. The value of P chmax
t is pre-

determined according to the historical conventional load
curve and capacities of facilities. After being initialized,
P chmax

t cannot be modified by charging stations.
2) Register. To take part in the EV charging coordination

platform, a charging station needs to get its permission code
k per

i off-chain. Then the station can call the Register function.
The inputs of the Register function include the station’s ID
k id

i , permission code k per
i , and virtual address on Ethereum

k add
i . Meanwhile, to prevent malicious submission from the

station, the station must pay a fixed deposit Cdep to the con‐
tract. After k per

i and Cdep are verified, station i is appended to
a coordinated station list LCS.

3) Reset. Before the beginning of each period, the Reset

function is called, resetting DPt and μ(υ)
t .

4) Submit. By continuously monitoring the smart contract,
a charging station can view the current period and the latest
multiplier. When a new period begins or μ(υ)

t is updated, a
charging station solves its sub-problem based on μ(υ)

t . If the
increase of welfare by updating its power demand is larger
than the commission fee of calling the Submit function, the
station calls this function to submit its new demand ∑

jÎΩEV
it

Pjt.

The Submit function records ∑
jÎΩEV

it

Pjt and updates DPt and

μ(υ+ 1)
t by (13)-(15) after verifying the inputs. In the contract,

when there is no new submission at a fixed time τwait, the lat‐
est multiplier is regarded as the optimal congestion price. Af‐
ter that, the smart contract will reject new submissions for
the current period.

D. Collusion Mitigation

The EV charging coordination platform implemented on
Ethereum can mitigate the collusion mentioned in Section
III-B.

Malicious charging stations in the collusion coalition must
act as miners. These malicious miners execute the smart con‐
tract incorrectly, and broadcast blocks with incorrect La‐
grangian multipliers. Meanwhile, honest miners broadcast
blocks with correct Lagrangian multipliers. According to the
longest chain rule, miners in the collusion coalition must
keep the chain they generated being the longest one. Assum‐
ing that all charging stations have identical computational
power, the probability of keeping a malicious chain longer
than a valid chain during all the iteration periods can be calcu‐
lated by (29). With the increase of the number of blocks, the
collusion can be prevented when the proportion of malicious
charging stations is less than 50%.

PM =
[g/(g + h)]N

[g/(g + h)]N +[h/(g + h)]N
=

1

1+ (h/g)N (29)

where PM is the probability that the malicious chain is the
longest; g and h are the numbers of charging stations in/not
in the collusion coalition, respectively; and N is the number
of blocks.

Moreover, if malicious miners insist on optimizing their
charging demand with the congestion price recorded on the
malicious chain, they would be penalized during the settle‐
ment. This is because they will be charged according to the
correct congestion price recorded on the longest chain,
which is higher than the congestion price recorded on the
malicious chain.

V. SIMULATION RESULTS

A. Simulation Parameters

The simulation is performed on a distribution network
with 780 houses [2]. The number of periods in a day is set
to be T = 96. The permissible total charging load curve is de‐
termined by the capacity of the transformer at the root of the
network and a base load curve provided by Fig. 2 in [2].
The data of the base load curve are shown in Fig. 3. The ba‐

Algorithm 1: EV charging coordination process on the proposed platform

Init:

Initialize P chmax
t

Register (k per
i , k add

i , Cdep)

Verify k per
i and Cdep

Add k add
i to LCS

While (True):

Reset:

Reset DPi and μ(0)
t

Record the present time as tsubmit

Repeat:

Submit and update (k add
i , ∑

jÎΩEV
it

Pjt)

Reject this submission if k add
i is illegal

Update DPi and μ(v+ 1)
t

Record the present time as tsubmit

Until: no one has called Submit function from tsubmit to tsubmit + τwait
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sic electricity price is set to be 0.641 CNY/kWh, which is
the electricity price for non-residential customers below 1
kV in Shanghai, China. To simulate a scenario with high
penetration of EVs, it is assumed that there are 390 EVs in
this network, and those EVs are equally distributed in 10
charging stations. For simplicity, the 390 EVs have the same
parameters: E max

i = 20 kWh, P EVmax
i = 3.2 kW, and η j = 0.95.

The coefficient α i is subject to the normal distribution
N(50005002), which mimics the EVs’ preferences in reality.
The arrival time and departure time of EVs are set according
to the statistical estimates of [29], which are widely used in
EV coordination studies [4], [30], [31]. Parameters in the
multiplier updating procedure are problem-dependent [22].
These parameters are set to be a= 1500 b= 100. The parame‐
ters can be consistent in days because the driven pattern of
EVs is similar every day in statistical meaning.

An Ethereum private chain is created on which the smart
contract coordination for EV charging is deployed. All charg‐
ing stations are miners on the Ethereum private chain.

B. Coordination Results

Figure 4 demonstrates the total charging load curves with/
without EV charging coordination. Without EV charging co‐
ordination, the transformer at the T-D station might be over‐
loaded at peak hours. With EV charging coordination, the
proposed algorithm avoids the overload by incentivizing sta‐
tions to lower charging demand during peak hours. The pro‐
posed algorithm is effective in mitigating facility overload
with high penetration of EVs.

Figure 5 illustrates the iteration processes of the conges‐
tion prices in some peak-load periods. The multiplier at the
convergence is set as the base value in each period. As
shown in Fig. 5, in each period, 10 charging stations update
the multiplier for no more than 105 times in total. A charg‐
ing station only needs to solve a small-scale sub-problem for
about 10 times. The algorithm converges to the global opti‐
mum rapidly.

C. Impact of Possible Collusion and Mitigation via Block‐
chain

To illustrate the impact of the collusion on the welfare of
charging stations, the collusion mentioned in Section III-B is
simulated. Charging stations A-C are malicious stations,
whereas charging stations D-J are not in the collusion coali‐
tion. Figure 6 demonstrates the total welfare of EVs in each
charging station in a peak-load period (18: 00-18: 15) with/
without the collusion. Welfare allocation with different ω is
illustrated in Fig. 6, where ω= 1.0 represents that there is no
collusion. Stations A-C donate the collusion coalitions, while
D-J denote the honest stations. Table I shows the total social
welfare in 18:00-18:15 with different ω.

According to Fig. 6 and Table I, in a scenario without the
blockchain, when the collusion occurs, EVs park in charging
stations which are in the collusion coalition can gain higher
profits, whereas the total social welfare deviates from the op‐
timum and the profits of others decrease. The consequence
of the collusion is more serious for a larger value of ω.

Then, an analysis is given to show how the blockchain
can mitigate the above-mentioned collusion. In congestion
periods, the numbers of blocks when the multipliers con‐
verge are shown in Table II. The multiplier in 17:30-17:45
converges after only 28 blocks, which is the fewest among
all peak-load periods. According to (29), 17:30-17:45 is the
most vulnerable time period against the attacks. To test
whether blockchain can prevent the collusion, the mining ac‐
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TABLE I
TOTAL SOCIAL WELFARE WITH DIFFERENT ω

ω

1.0

2.0

4.0

8.0

Total social welfare (CNY)

178.82

178.06

176.44

174.96
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tivities during 17:30-17:45 with different proportions of mali‐
cious miners are simulated. Each proportion level has 10 times
simulations. Figure 7 shows the average number of blocks
mined by honest and malicious miners in 10 simulations.

As demonstrated in Fig. 7, if less than 50% of miners are
malicious, honest miners can always be the first to generate
28 blocks. If exactly 50% of miners are malicious, the win‐
ner of the mining competition is uncertain. If more than
50% of miners are malicious, the malicious miner coalition
would be the leader in the mining process. Given the longest
chain rule [25], such results substantiate that the blockchain
can prevent the collusion as long as more than 50% of min‐
ers in the network are honest.

D. Computational Cost of Blockchain

The computational time in each period is shown in Fig. 8.
In non-congestion periods, the computational time is negligi‐
ble. In congestion periods, the computation takes no more
than 3.02 min, which is acceptable for real-time operation.
There is room for optimizing our smart contract and input/
output data formats, so a shorter computational time could
be expected in practice.

The main operation cost of the blockchain-based platform
is the electricity consumed by miners who execute the smart
contracts and solve the PoW problems. Given that the simu‐

lation for each period is run on a personal computer with rat‐
ed power of 0.4 kW for less than 3.02 min, the estimated op‐
eration cost in one period is less than 0.4 kW × 3.02 min ×
0.641CNY/kWh= 0.0129 CNY. The operation cost of the
platform is negligible compared with the total social welfare
(around 0.01%).

From the perspectives of charging stations, the total com‐
mission fee they pay should cover the cost of miners. Table
III shows the total commission fee and total charging cost of
charging stations in congestion periods. According to Table
III, the commission fee represents a low portion in the charg‐
ing cost, which is even lower than the stock market (about
0.03% commission fee in China). The simulation results sub‐
stantiate that the platform can coordinate EV charging with a
low operation cost.

VI. CONCLUSION

This paper proposes a reliable EV charging coordination
method via the blockchain. The proposed EV charging coor‐
dination algorithm can coordinate all charging stations in a
hierarchical way. And the implementation via blockchain can
be robust against single-point failures and potential collusion
behaviors in the coordination process. Simulation results
show that: ① without collusion behaviors, the proposed co‐
ordination algorithm converges to the global optimum rapid‐
ly; ② a collusion coalition could gain profits while reduce
the social welfare; ③ the proposed blockchain-based plat‐
form can mitigate the collusion behaviors as long as the pro‐
portion of colluded charging stations is less than 50%; ④
the computational cost of the platform can meet the require‐
ment of real-time EV charging coordination.

Future work can focus on optimizing the EV charging co‐
ordination smart contract, or the scalability of blockchain-
based EV coordination platform.
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