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Abstract——With the advent of advanced energy management
systems in distribution systems, there is a growing interest in
rapid and reliable code for distribution system state estimation
(DSSE) in large-scale systems. Fast DSSE methods employed in
the industry are based on load scaling as they are well suited to
the abundance of pseudo-measurements. Due to the paucity of
real-time measurements in DSSE, phasor measurement units
(PMUs) have been proposed as a potential solution to increase
the estimation accuracy. However, load scaling methodologies
are not extendable for exploiting PMUs. This paper proposes a
high-performance DSSE method that can handle the PMUs to‐
gether with all common measurement types in industrial DSSE.
By using Wirtinger calculus, the method operates entirely in
complex variables and employs the latest version of advanced
vector extensions (AVX-2) to reap the maximum potential of
computer processing units. The paper highlights the derivation
of complex DSSE in matrix form, from which one can infer the
implications on code reliability and maintenance. Numerical re‐
sults are reported on large-scale multi-phase distribution sys‐
tems, and they are contrasted with a publicly available code for
DSSE in real variables. The simulation results show that loop
unrolling in AVX-2 contributes about a two-fold increase in the
solving speed.

Index Terms——Iterative algorithm, least squares approxima‐
tion, optimization method, distribution system, state estimation.

I. INTRODUCTION

DISTRIBUTION system state estimation (DSSE) is gain‐
ing increasing interest from the electric energy industry

due to its essential role in the energy management of smart
grids. In recent times, there has been a rapid growth of ad‐
vanced metering infrastructure (AMI) installations in addi‐
tion to the interest in incorporating phasor measurement
units (PMUs) in distribution systems. These have fueled the
development of DSSE methods, despite a myriad of chal‐

lenges including network unobservability, high R/X (resis‐
tance/reactance) ratio, unsymmetrical construction, and unbal‐
anced operation. References [1]-[4] present detailed surveys
that cover the development of DSSE from various aspects in‐
cluding the techniques, challenges, and future directions.
Practical DSSE can be applied on large-scale systems using
multi-phase models. According to [5], the computation time
of conventional state estimation methods, e. g., those using
the normal equations (NEs) and Hachtel’s augmented matrix
formulation, increases quadratically with the system size. In
industrial applications, the load scaling method [6] - [8] is
commonly employed due to its fast performance. However,
while this method can process the classical supervisory con‐
trol and data acquisition (SCADA) measurements and load
data pseudo-measurements, it is not compatible with new re‐
quirements for handling PMUs. This paper proposes a com‐
plex variable DSSE solver that supports all features of indus‐
trial estimation, including PMU measurements. The imple‐
mentation is in vectorized code, i.e., it employs loop unroll‐
ing and exploits the power of modern processors that posses
single instruction multiple data (SIMD) extensions [9].

Network-based DSSE algorithms fall in two major catego‐
ries: load scaling estimators and weighted least squares
(WLS) estimators. Load scaling estimators primarily employ
a power flow algorithm to balance loads with SCADA mea‐
surements, thus the implementation is efficient. Reference
[6] proposes a new approach for current balancing, which
forms the basis for further developments in load-adjustment
DSSE. It is subsequently enhanced in [7] for power balanc‐
ing over measurement areas, and in [8] to cater for weakly
meshed networks. On the other hand, WLS estimators are
conceptually similar to the optimization-based methods of
transmission network state estimation. The classical WLS es‐
timators are in two main types: node-voltage-based and
branch-current-based. The node-voltage-based DSSE is the
closest to the classical transmission network state estimator
but extended to three-phase modeling [10]. The solution,
which can account for non-solidly grounded networks [11],
is usually obtained using the NE formulation. The augment‐
ed matrix WLS method, also known as Hachtel's matrix ap‐
proach, avoids possible ill-conditioning in the NE formula‐
tion, which is linked to the high disparity in weights be‐
tween zero-injection, SCADA, and load data pseudo-mea‐
surements. Reference [12] presents the implementation de‐
tails of Hachtel’s matrix approach for industrial-grade distri‐
bution network models, and [13] accounts for active net‐
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works with detailed distributed generator models. Some im‐
plementations that also employ Hachtel’s matrix are special‐
ized for large-scale radial networks [14]. The branch-current-
based DSSE results in decoupled per-phase estimation when
all loads are Y-connected [15], [16], but its computation ad‐
vantage is sustained only for radial networks. Other recent
references discuss nonclassical estimation techniques such as
Hamiltonian cycle theory algorithms for rapid solutions [17],
and methods based on semidefinite programming relaxations
(SDP). The SDP-based methods include power flow solu‐
tions that are coupled over consecutive time instants to ex‐
ploit smart meter data [18], and a convex iteration scheme to
improve the convergence to a rank-1 solution [19]. A promis‐
ing research direction is the fully distributed three-phase state
estimation based on the augmented Lagrangian method [20].

Many of the measurements in DSSE are practically pseu‐
do-measurements obtained via short-term load forecasting
(STLF) that takes as input a combination of historical/statisti‐
cal load profiles, weather conditions, advanced metering in‐
frastructure (AMI)/advanced meter reading (AMR) data, and
previous state estimates [12]. The relationship between
STLF and DSSE is depicted in Fig. 1. Different versions of
STLF have been recently implemented via neural networks
[21], machine learning algorithms [22], and clustering with
partial least squares regression [11]. In general, the scarcity
of real-time SCADA measurements may affect the conver‐
gence of classical iterative methods such as those employing
the NE formulation. A possible remedy is via neural net‐
work. Shallow neural networks can learn to initialize the
solver [23], while deep neural networks combined with
Bayesian inference directly solve the minimum mean
squared error estimation [24].

Reference [3] identifies the incorporation of PMU mea‐
surements in DSSE as an imminent direction for future re‐
search. Reference [25] exploits PMU measurements in
DSSE to combat the SCADA measurement paucity and reli‐
ance on STLF. Other works postulate DSSE solutions within
futuristic networks containing only PMU measurements [26],
[27], which lead to entirely linear models. PMU measure‐
ments are, however, incompatible with some of the DSSE
methods adopted by the industry such as those based on
load scaling [6]-[8]. This paper proposes a wholly revamped
equality-constrained WLS method for DSSE operating entire‐
ly in the complex domain. The method handles PMU mea‐
surements effectively together with the legacy type DSSE
measurements and all features of industrial based DSSE. The
WLS solution in complex variables is obtained via Wirtinger
calculus [28], [29], which yields a distinctly elegant deriva‐
tion compared to real variable solutions. The compactness of
the complex matrix expressions is translated into a computer

code that is easily readable, and therefore, more compliant
to maintenance and upgrades. More importantly, the frame‐
work of complex variable solution is naturally suited to the
implementation on modern processors that support single in‐
struction multiple data (SIMD) operations [9], e.g., the fused
multiply-accumulate complex variable operations. The DSSE
solver in this article is implemented using advanced vector
extensions (AVX-2) [30], which benefits from the latest ver‐
sion of code vectorization. The use of Wirtinger calculus has
been recently gaining popularity in applications of power
flow computation, as the underlying variables are naturally
complex-valued. The applications are mainly in power flow
[31] - [35] and transmission network state estimation [36].
The paper describes the formulation of multi-phase DSSE in
the complex domain for the first time, and unravels the ad‐
vantages of loop unrolling in its computer implementation.
References [33], [36], [37] introduce the Wirtinger calculus
and its features that are relevant to power flow modeling in
positive sequence networks.

Reference [37] presents an equality-constrained hybrid
state estimator in complex variables for transmission systems
that are represented by their positive sequence networks.
This paper extends [37] to multi-phase distribution systems
with Y/Δ-connected loads and the detailed modeling of com‐
ponents such as the line-drop compensator. The paper con‐
tributes new vector derivative expressions that result in a
compact formulation. These expressions bring the multi-
phase DSSE to the level of single-phase DDSE in terms of
elegance and simplicity of implementation. The use of com‐
plex variables in DSSE allows to reap the maximum poten‐
tial of computer processing units by employing the latest ver‐
sion of AVX-2. The two primary essential aspects of DSSE
include speed and accuracy. The proposed method satisfies
the requirements of both speed and accuracy. Numerical re‐
sults show that the real variable DSSE implementation [12]
requires around double the time as compared to the complex
variable implementation. The real variable formulation in
[12] is not ideally suited to handle phasor measurements, as
the complex measurements result in cumbersome expres‐
sions, and [12] does not present the details for dealing with
phasor measurements. However, the code in [12] has been
extended for a comparison with the cases with PMU mea‐
surements.

The rest of this paper is organized as follows. Section II
describes the use of Wirtinger calculus for the equality-con‐
strained WLS solution. Section III presents the three-phase
modeling for DSSE in complex variables. Numerical results
are reported in Section IV on multi-phase networks of 1, 2,
or 3 phases, each with up to 3000 nodes. A numerical com‐
parison of performance with [12] is also given. The paper is
concluded in Section V.

II. COMPLEX EQUALITY-CONSTRAINED DSSE

The DSSE problem in complex variables seeks to find the
solution to the state vector x for a network having the fol‐
lowing measurement equations:

h ( )xx̄ » z (1)

In (1), the state vector x and its conjugate x̄ contain three

STLFDSSE Database

Typical load
profiles

AMI/AMRSCADA
alarms

Wind humidity,
temperature,

solar radiationReal-time measurements

Fig. 1. Relationship between STLF and DSSE.
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sets of variables as follows:
1) The complex nodal voltage phasors U a

K, U b
K, and U c

K for
each three-phase node K. The corresponding node voltages
are omitted at nodes with less than three phases.

2) The complex power absorbed in each phase of a three-
phase D-connected load at node K: S ab

K , S bc
K , and S ca

K .
3) The tap values of the transformer load tap changers

(LTCs) are automatically controlled by their line drop com‐
pensators. Each LTC in branch KL has three tap values: t a

KL,
t b

KL, and t c
KL.

The vector of measurement functions h ( )xx̄ and their cor‐
responding measurement values z are partitioned as:
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where hc ( )xx̄ is a vector of complex-valued measurement
functions; h̄c ( )xx̄ is the conjugate of hc ( )xx̄ ; hr ( )xx̄ is the
vector of real-valued measurement functions; and zc, z̄c, and
zr are the corresponding measurement values. Tables I and II
summarize the usual complex and real measurements in DSSE.

Each table includes the corresponding equation numbers
from the upcoming section in addition to one of the four
common classification-based measurement types: ① PMU;② SCADA, i.e., a real-time legacy measurement; ③ PSEU‐
DO, i.e., a pseudo-measurement obtained via STLF; and ④
VIRT, i. e., a virtual measurement that represents a value
known with certainty such as a zero injection at a node with

no generation or load. Each measurement has a correspond‐
ing weight that reflects the confidence in its value, with
higher weights placed on measurements that are expected to
be more accurate. The virtual measurements are excluded
from (1) and modeled as exact equality constraints with com‐
plex conjugate pairs and real-valued measurements:
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cc ( )xx̄
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cr ( )xx̄

= 0 (3)

A. WLS Algorithm

The inputs of DSSE problem are the multi-phase model of
the network, the measurement values in z, the measurement
weights placed on the diagonal of the matrix w, and a termi‐
nation tolerance ε. Reference [37] presents the following
WLS algorithm for the solution of general state estimation
problems in complex variables:

Step 1: form the expressions in the vector of measurement
functions h ( )xx̄ , c.f. Section III-A.

Step 2: form the partial derivative expressions in the Jaco‐
bian and conjugate Jacobian matrices, Hx and Hx̄, respective‐
ly, c. f. Section III-B. For m measurement functions in
h ( )xx̄ and n state variables in x, Hx and Hx̄ are given by:
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Similarly, the measurement functions in (3) have the Jaco‐
bian and conjugate Jacobian matrices formed by Cx and Cx̄,
respectively.

Step 3: initialize the iteration counter (k = 1) and the state
vector x(1).

Step 4: compute h ( )x(k)x̄(k) , H (k) = [H (k)
x H (k)

x̄ ], c ( )x(k)x̄(k) ,
and C (k) = [C (k)

x C (k)
x̄ ].

Step 5: compute the gain matrix G(k) and the right-hand
side β(k):

G(k) = (H̄ (k))TWH (k) (5)

β(k) = ( )H̄ (k)
T
W ( )z - h ( )x(k)x̄(k) (6)

where W is the diagonal matrix of measurement weighting
factors.

TABLE I
COMPLEX-VALUED MEASUREMENT VECTORS

Measurement

Nodal voltage phasor

Branch current phasor

Current injection phasor

Complex branch power flow

Complex power injection from three-phase
Y-connection

Complex power for a three-phase D-connected load

Complex power for a single-phase line-to-line load

Zero injection node

Three-phase D-connected load equation

Single-phase line-to-line load equation

Type

PMU

PMU

PMU

SCADA

PSEUDO

PSEUDO

PSEUDO

VIRT

VIRT

VIRT

Equation

(9)

(11)

(14)

(16)

(18)

(19)

(29)

(14)

(23)-(25)

(30)

TABLE II
REAL-VALUED MEASUREMENT VECTORS

Measurement

Nodal voltage magnitude

Line-to-line voltage magnitude

Branch current magnitude

Line drop compensator equation

Type

SCADA

SCADA

SCADA

VIRT

Equation

(33)

(35)

(38)

(41), (42)
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Step 6: solve the complex matrix equations using Bunch-
Kaufmann decomposition:
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where λ is a vector of Lagrangian multipliers.
Step 7: update the state vector and its conjugate:
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Step 8: stop and print the solution if | Dx |
¥
< ε. Otherwise,

update the iteration counter (k ¬ k + 1) and go to Step 4.
Figure 2 shows a flowchart of the DSSE method includ‐

ing bad data detection (BDD) and identification. Once bad
data is detected via the chi-square test, the largest normal‐
ized residual test identifies the bad data points as described
in [37]. The proposed method aims to replace the real vari‐
able implementation of DSSE, by allowing seamless han‐
dling of PMU, SCADA, virtual, and pseudo-measurements
in a compact form, while the routine for dealing with bad da‐
ta remains unchanged.

Start

z
Get measurement set

Set initial values:
x(0)=1�0

Set k=0

Compute
r(k)=z�h(x(k), x(k))

Identify and remove
erroneous measurement

from set z

Y

NIs bad data
detected?

End

Perform BDD
using χ2 test

|Δx|∞<ε? YN

Update:
x(k+1)=x(k)+Δx(k)

x(k+1)=x(k)+Δx(k)

k=k+1

Compute Jacobian
matrix H (k)

Compute G (k) matrix:
G (k)=(H (k))TWH (k)

Compute matrix:

J (k)=[G (k)
   (C (k))T]C (k)
       0

Solve:

J (k)[Δx(k)]=[(H (k))TWr (k)]Δx(k)

�c(x(k), x(k))λ(k+1)

Fig. 2. Flowchart of DSSE.

B. Efficient Computation of Gain Matrix Using SIMD Opti‐
mization

The computation of the gain matrix G(k) for the single-

phase system is well established in the transmission network
state estimation literature [38]. In the multi-phase distribu‐
tion systems, it is difficult to apply the mentioned approach
based on the phase; instead, the branch node model is uti‐
lized, and matrix-matrix multiplication is employed to com‐
pute the gain matrix. Matrix-matrix multiplication is best
suited for SIMD optimization–basic linear algebra subpro‐
grams (BLAS) level 3 [9]. The best performance gain from
SIMD optimization is obtained when the data is adjacent in
memory, and conditional statements are eliminated to allow
for data streaming into SIMD registers. The dimensions of
the Jacobian matrix block elements depend on the number of
phases of the measurement and the number of phases at the
corresponding nodes.

Figures 3 and 4 show a sample network and its corre‐
sponding measurement matrix. In Fig. 4, a, b and c repre‐
sent the three phases. The computation of the GKL block ele‐
ment of G is determined by two factors: ① the number of
phases at nodes K and L (shown by circles in Fig. 4); ② the
number of phases for each measurement M where the deriva‐
tives of M with respect to the voltages UK and UL are nonzero
(shown by the colored circles in Fig. 4, where the blue ones
are input data and the red ones are the results of computation).
The data in the Jacobian matrix is stored using a column-ori‐
ented approach, as indicated by the arrows in Fig. 4.

For the implementation of efficient code, it is essential to
avoid conditional statements when forming the gain matrix.

�

abc

bca

b c

�

�
�

�
�

Slack
node PQ node

Fig. 3. Sample multi-phase network.

a b      c a a  b c  b      c b c
a

b

c

a

b

c

a

b

c

b
cM6

M5

M4

M3

M2

M1

V1 V2 V3 V4 V5 V6

G2,5

Fig. 4. Measurement Jacobian matrix.
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The network and the measurement set remain constant
through all iterations of the DSSE algorithm, and therefore,
the computation can be streamlined by checking all condi‐
tional statements at the first iteration of the algorithm and
forming a list of functions. Each function contains vector‐
ized code specific to a measurement. In subsequent itera‐
tions, the computation of the gain matrix is carried out by
merely executing a call to every function in the prepared list.

III. MEASUREMENT FUNCTION VECTORS AND THEIR

PARTIAL DERIVATIVES

Section III-A presents the complex variable formulation of
the vector measurement functions in Tables I and II. The
vector measurement function takes the state vector and its
conjugate as input, and it gives three complex or real values
if the measurement is three-phase. Given that the network is
generally unsymmetrical in construction, the number of phas‐
es and consequently the size of the vector measurement func‐
tion can be 1, 2, or 3. Section III-B describes how the par‐
tial derivatives of the vector functions that form the Jacobian
and conjugate Jacobian matrices can be easily computed in a
compact form.

A. Multi-phase Measurement Function Vectors

1) Nodal Voltage Phasor
At a three-phase node K, the nodal voltage phasor mea‐

surement function is:

UK = [U a
K U b

K U c
K ]

T
(9)

In general, the GPS reference can be chosen for all nodal
voltage angles [39].
2) Branch Current Phasor

In a three-phase branch KL, the branch current phasors are
grouped in IKL:

IKL = [ I a
KL I b

KL I c
KL ]

T
(10)

The currents in (10) directed from the three-phase node K
to L and the reverse currents in ILK are related to the three-
phase nodal voltage phasors at K and L:
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YKK YKL

YLK YLL
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Each sub-matrix in the nodal matrix (11), e.g., YKL, is a 3´
3 matrix:

YKL =
é

ë

ê
ê

ù

û

ú
ú

Y aa
KL Y ab

KL Y ac
KL

Y ba
KL Y bb

KL Y bc
KL

Y ca
KL Y cb

KL Y cc
KL

(12)

Note that the elements corresponding to the missing phas‐
es are omitted when a two-phase or a single-phase branch is
considered.
3) Current Injection Phasor

The current injection phasors at K are grouped in IK:

IK = [ I a
K I b

K I c
K ]

T
(13)

The measurement function is expressed in terms of the
state vector via:

IK =Y S
KKUK +∑

LÎ φK

Y S
KLUL (14)

where Y S
KK and Y S

KL are 3´ 3 sub-matrices of the system nodal
admittance matrix; and φK is the set of nodes connected to
K by a branch.
4) Complex Branch Power Flow

The three-phase complex branch power flows from node
K to L are in the vector SKL:

SKL = [S a
KL S b

KL S c
KL ]

T
(15)

The corresponding measurement function is:

SKL = diag (UK) ĪKL = diag (UK) (ȲKKŪK + ȲKLŪL) (16)

where diag(×) returns a diagonal square matrix with the ele‐
ments of the argument placed on the diagonal.
5) Complex Power Injection from Three-phase Y-connection

The three-phase Y-connection with a solidly grounded neu‐
tral generally represents either the distributed generation or
load, giving rise to the following complex power injection
vector at K:

SK = [S a
K S b

K S c
K ]

T
(17)

The measurement function expresses SK in terms of the
state vector and its conjugate using the system admittance
matrix blocks:

SK = diag (UK) ĪK = diag (UK) (Ȳ S
KKŪK +∑

LÎ φK

Ȳ S
KLŪL) (18)

6) Complex Power for a Three-phase D-connected Load
The D-connected load in Fig. 5(a) is considered with the

complex power phase loads that form part of the state vector:

S D
K = [S ab

K S bc
K S ca

K ] (19)

The current injections at K are:

I a
K =

S̄ ca
K

Ū ca
K

-
S̄ ab

K

Ū ab
K

(20)

I b
K =

S̄ ab
K

Ū ab
K

-
S̄ bc

K

Ū bc
K

(21)

I c
K =

S̄ bc
K

Ū bc
K

-
S̄ ca

K

Ū ca
K

(22)

where U xy
K =U x

K -U y
K, xyÎ{abbcca}. Equations (20) - (22)

give rise to the following complex-valued virtual measure‐
ment equations with the injection currents computed from
the network side, i.e., IK, as given by (14).

f a
DK = Ū ab

K Ū ca
K I a

K + Ū ca
K S̄ ab

K - Ū ab
K S̄ ca

K = 0 (23)

f b
DK = Ū ab

K Ū bc
K I b

K + Ū ab
K S̄ bc

K - Ū bc
K S̄ ab

K = 0 (24)

Ik
a

Ik
ab

Ik
c

Ik
b

a

b

c

Ik
a

Ik
b 

Ik
c 

Ik
ab 

Ik
ca

Ik
bc

a

b

c
(a) (b)

Fig. 5. Representation of difference loads. (a) Three-phase Δ-connected
load. (b) Single-phase line-to-line load.
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f c
DK = Ū bc

K Ū ca
K I c

K + Ū bc
K S̄ ca

K - Ū ca
K S̄ bc

K = 0 (25)

7) Complex Power for a Single-phase Line-to-line Load
Considering the single-phase load connected between two

lines as shown in Fig. 5(b), the complex power absorbed by
the load is:

S ab
K = (U a

K -U b
K ) Ī b

K (26)

In general, the complex power absorbed by the load be‐
tween phase x and phase y (xyÎ{abbcca}) is:

S xy
K = (U x

K -U y
K) Ī y

K =ψxyUK Ī y
K (27)

where

ψxy =
ì

í

î

ïï
ïï

[1 -1 0]

[0 1 -1]

[-1 0 1]

xy= ab

xy= bc

xy= ca

(28)

Therefore, the measurement function is:

S xy
K =ψxyUK (Ȳ S - y

KK ŪK +∑
LÎ φK

Ȳ S - y
KL ŪL) (29)

where Ȳ S - y
KK and Ȳ S - y

KL are the rows of Ȳ S
KK and Ȳ S

KL correspond‐
ing to phase y, respectively. The corresponding zero se‐
quence condition in terms of the injection currents from the
network side is:

f 0
LL =ψ xy

0 IK = 0 (30)

where IK is given by (14) and:

ψ xy
0 =

ì

í

î

ïï
ïï

[1 1 0]

[0 1 1]

[1 0 1]

xy= ab

xy= bc

xy= ca

(31)

8) Zero Injection Node
The nodes that do not have load or generation connected

to them give rise to zero injection measurements. The mea‐
surement function at K is given by (14), which is con‐
strained to zero.
9) Nodal Voltage Magnitude

At K, the nodal voltage magnitude is:

|UK |= [ ||U a
K ||U b

K ||U c
K ]T

(32)

The corresponding measurement function is:

|UK |= diag ( )ŪK UK (33)

10) Line-to-line Voltage Magnitude
At K, the line-to-line voltage magnitude is:

|U L
K |= [ ||U ab

K ||U bc
K ||U ca

K ]T
(34)

The corresponding measurement function is:

|U L
K |= diag ( )ALŪK ( )ALUK (35)

where

AL =
é

ë

ê
ê

ù

û

ú
ú

1 -1 0
0 1 -1
-1 0 1

(36)

11) Branch Current Magnitude
In a three-phase branch KL, the magnitudes of the branch

currents are grouped in | IKL |:

| IKL |= [ || I a
KL || I b

KL || I c
KL ]T

(37)

The measurement function is:

| IKL |= diag ( )ĪKL IKL (38)

12) Line Drop Compensator Equations
Consider the three-phase transformer in Fig. 6 with an

LTC controlled by the line drop compensator, where K, M,
and L are the node names; IK, IM, IL, UK, UM, and UL are the
injection currents and nodal voltages of nodes K, M, and L,
respectively; T is the tap value of the transformer. The tap
values in the transformer in KL are part of the state vector:

tKL = [ t a
KL t b

KL t c
KL ] (39)

By defining T = diag (tKL), the nodal matrix equation (11)

for a transformer branch is generalized from the the single-
phase equivalent circuit case [33]:

é
ë
ê

ù
û
ú

IKL

ILK

= é
ë
ê

ù
û
ú

T̄YMMT T̄YML

YLMT YLL

é
ë
ê

ù
û
ú

UK

UL

(40)

In the presence of a transformer with an LTC, (40) is used
instead of (11) in forming the nodal admittance matrix,
which makes the power and current measurement functions
also dependent on tKL. tKL is a real-valued quantity; this re‐
quirement is imposed via the following virtual measurement
function:

f tKL
=

i
2
( t̄KL - tKL)= 0 (41)

In addition, the tap values are controlled by a line drop
compensator that regulates the voltage at a target load con‐
nected to node L by a distribution line. Let |Uref | denote a 3´
1 vector of target voltage magnitudes and Zreg denote the 3´
3 compensator impedance matrix. Zreg gives rise to the same
per-unit voltage drop in the compensator circuit as in the ac‐
tual branch where the target load is connected. Therefore,
the line-drop compensator is modeled by the following addi‐
tional real-valued virtual measurement vector function:

fLDC = (UL +Zreg ILK) (ŪL + Z̄reg ĪLK)- |Uref |
2

= 0 (42)

B. Partial Derivatives of Measurement Function Vectors

The majority of the above measurement functions are 3´ 1
vectors. It is required to compute their partial derivatives
with respect to 3´ 1 vectors, namely UK, S D

KL, tKL, and their
conjugates. An advantage of the multi-phase complex vari‐

K

UK UM UL

IK IM IL1:T

M
L

Transformer

Fig. 6. Line drop compensator.
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able formulation is that the partial derivatives of the vector
functions can be easily taken with respect to the quantities
of vectors [40]. The computation of the partial derivatives is
based on two facts described as follows.

Fact 1 Consider the vector function y =Ax, where x and
y are 3´ 1 vectors of variables and A is a 3´ 3 matrix of con‐
stants. Then dy/dx is a 3´ 3 matrix whose elements
( )dy/dx

ij
= ¶yi /¶xj =Aij, where i = 123 and j = 123, i.e.:

y =AxÞ
dy
dx

=A (43)

Fact 2 Consider the vector function y =A x , where the
square root function operates on each element of x. Then
dy/dx is a 3´ 3 matrix with element ( )dy/dx

ij
= ¶yi /¶xj =

Aij (2 xj ), where i = 123 and j = 123, i.e.:

y =A x Þ
dy
dx

=
1
2

Adiag (13´ 1 ⊘ x ) (44)

where the symbol ⊘ denotes the element-by-element divi‐
sion.

Three examples are given below to demonstrate the com‐
putation of the partial derivatives.
1) Example 1: Complex-valued Measurement Function

Consider the complex branch power flow measurement
function (16), which can be written as:

SKL = diag (UK)ȲKKŪK + diag (UK)ȲKLŪL (45)

Using (43), we can obtain:

ì

í

î

ï
ï
ï
ï

¶SKL

¶ŪK

= diag ( )UK ȲKK

¶SKL

¶ŪL

= diag ( )UK ȲKL

(46)

It is important to emphasize that each of the partial deriva‐
tives above is a 3´ 3 matrix, for instance:

¶SKL

¶ŪK

=

é

ë

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú

¶S a
KL

¶Ū a
K

¶S a
KL

¶Ū b
K

¶S a
KL

¶Ū c
K

¶S b
KL

¶Ū a
K

¶S b
KL

¶Ū b
K

¶S b
KL

¶Ū c
K

¶S c
KL

¶Ū a
K

¶S c
KL

¶Ū b
K

¶S c
KL

¶Ū c
K

(47)

To compute the partial derivatives of SKL with respect to
UK and UL, (16) is firstly re-written as:

SKL = diag (ĪKL)UK (48)

Then, using (43) again, we can obtain:

ì

í

î

ï
ï
ï
ï

¶SKL

¶UK

= diag ( )ĪKL

¶SKL

¶UL

= 03´ 3

(49)

The matrix of partial derivatives for the conjugate power
flow measurement vector can be deduced using the follow‐

ing properties for a complex-valued vector function fc [29]:

ì

í

î

ï
ïï
ï

ï
ïï
ï

¶f̄c

¶ν
=
- -- ---

( )¶fc

¶ν̄

¶f̄c

¶ν̄
=
- -- ---

( )¶fc

¶ν

(50)

where ν is a general complex variable; and ν̄ is its conjugate.
2) Example 2: Real-valued Measurement Function

The branch current magnitude measurement function is:

| IKL |= diag ( ĪKL ) IKL (51)

Then using the chain rule together with (44) and (11), we
can obtain:

¶ || IKL

¶UK

=
1
2

diag ( ĪKL )diag (1⊘ IKL ) ¶IKL

¶UK

=

1
2

diag ( ĪKL ⊘ IKL )YKK (52)

¶ || IKL

¶UL

=
1
2

diag ( ĪKL ⊘ IKL )YKL (53)

For a real-valued vector function fr such as | IKL |, the ma‐

trix obtained from computing the partial derivatives of fr

with respect to the conjugate variable vector is governed by
the following property [29]:

¶fr

¶v̄
=
- -- ---

( )¶fr

¶ν
(54)

3) Example 3: Complex-valued Measurement Function in
Two Variable Types

Consider KL with a transformer equipped with an LTC.
Based on (40), the measurement function for the phasor cur‐
rent on the side of K is:

IKL = T̄YMMTUK + T̄YMLUL (55)

The partial derivatives of (10) with respect to UK and UL

can be straightforwardly computed using (43):

ì

í

î

ï
ï
ï
ï

¶IKL

¶UK

= T̄YMMT

¶IKL

¶UL

= T̄YML

(56)

To find the partial derivatives with respect to tKL, T =
diag (tKL), and (55) can be re-written as:

IKL = T̄YMMdiag (UK) tKL + T̄YMLUL (57)

Then, using (43), we can obtain:

¶IKL

¶tKL

= T̄YMMdiag (UK) (58)

A similar procedure yields the following equations to find
the partial derivative matrix of IKL with respect to t̄KL:
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IKL = diag (YMMTUK) t̄KL + diag (YMLUL) t̄KL Þ
¶IKL

¶t̄KL

= diag (YMMTUK)+ diag (YMLUL) (59)

IV. NUMERICAL RESULTS

The proposed complex variable multi-phase distribution
system state estimator (CMPhDSSE) is programmed in C++,
and the computations are performed using solvers developed
via the AVX-2 processor extension [30]. A comparative anal‐
ysis is carried out on a multi-phase state estimator for the
distribution system that uses Hachtel’s matrix and operates
with real variables [12]. The basic implementation is avail‐

able in [41]. A Windows 10 PC with Intel i5-4690 processor
and 16 GB RAM is used for numerical testing. The termina‐
tion tolerance ε in Section II-A is set to be 10-6 per unit.

Table III shows a comparison on the IEEE 123-bus sys‐
tem with the measurement set in [12]. Additional phasor
measurements, i. e., six PMU voltage measurements and six
PMU branch current measurements, are included. The results
show a snapshot of the measurement set and reveal that
CMPhDSSE exhibits relative error values with respect to the
true measurement values, which are generally less than those
of the real variable estimator [12]. The maximum and aver‐
age error values from the proposed method are less than
those from [12].

Table IV shows a comparison of the number of iterations
and the execution time on the five networks described in
[12], in addition to two more extensive three-phase networks
with around 1500 and 3000 nodes, respectively. The last col‐
umn of Table IV represents the time ratio of [12] and
CMPhDSSE. IEEE 123-bus × 2 and 123-bus × 4 networks
are the IEEE 123-bus network replicated two and four times,
respectively, which are described in [12].

The last two large networks are intended to model the Eu‐
ropean distribution networks that primarily have three-phase
untransposed lines and unbalanced loads. Their correspond‐
ing data sets are available in [42]. The last column in Table
IV shows that CMPhDSSE results in a speedup relative to
[12], and the value of the speedup (1.97), which is equal to
the time in [12] divided by the time of CMPhDSSE, is most
substantial for the largest three-phase network. The results in
Table IV are with the branch measurements (real/reactive
power flow and phasor current) in the 1500-node and 3000-

node three-phase networks, which correspond to 20% of the
branches.

TABLE III
COMPARISON OF ESTIMATION RESULTS ON IEEE 123-BUS TEST SYSTEM

Node from

13

13

13

54

54

54

72

72

72

13

13

1

1

1

67

67

67

14

26

Node to

152

152

152

57

57

57

76

76

76

18

18

Measurement type

I-a

I-b

I-c

I-a

I-b

I-c

I-a

I-b

I-c

P-abc

Q-abc

V-a

V-b

V-c

V-ab

V-bc

V-ca

V-a

V-ca

SCADA data

360.800 A

267.100 A

292.400 A

306.500 A

257.500 A

292.400 A

129.500 A

136.200 A

99.100 A

1084.200 kW

632.400 kvar

2.292 kV

2.394 kV

2.364 kV

3.915 kV

4.123 kV

4.077 kV

2.062 kV

4.067 kV

Reference [12]

Estimated value

360.300

266.700

292.300

306.700

257.400

292.200

129.500

136.200

99.300

1082.800

631.500

2.282

2.392

2.368

3.916

4.123

4.076

2.074

4.061

Error (%)

0.14

0.15

0.03

0.07

0.04

0.07

0.00

0.00

0.20

0.13

0.14

0.44

0.08

0.17

0.03

0.00

0.02

0.58

0.15

CMPhDSSE

Estimated value

360.500

266.900

292.300

306.600

257.600

292.300

129.500

136.200

99.200

1084.500

632.800

2.287

2.395

2.366

3.916

4.124

4.075

2.066

4.069

Error (%)

0.08

0.07

0.03

0.03

0.04

0.03

0.00

0.00

0.10

0.03

0.06

0.22

0.04

0.08

0.03

0.02

0.05

0.19

0.05

TABLE IV
COMPUTATION PERFORMANCE OF DSSE

Network

IEEE 4-bus

IEEE 13-bus

IEEE 123-bus

IEEE 123-
bus × 2

IEEE 123-
bus × 4

1500-node
three-phase

3000-node
three-phase

Reference [12]

Iteration

2

6

4

4

4

4

4

Time (ms)

1.4

13.2

36.1

82.7

104.6

804.2

2487.6

CMPhDSSE

Iteration

2

6

4

4

4

4

4

Time (ms)

1.3

12.4

32.7

74.8

92.7

410.3

1262.6

Improvement

1.08

1.06

1.10

1.11

1.13

1.96

1.97
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Table V shows that increasing the proportion of branch
measurements does not significantly affect the computation
time.

V. CONCLUSION

This paper presents a vectorized implementation of equali‐
ty-constrained multi-phase state estimation in complex vari‐
ables. Wirtinger calculus and compact expressions of com‐
plex variable vector derivatives are the basis of the present‐
ed implementation. The underlying mathematical formulation
is elegant and leads to a computer code that can be easily
maintained. Additionally, the use of complex variables is ide‐
ally suited for handling the phasor measurements straightfor‐
wardly. The proposed implementation is compared with a re‐
al variable multi-phase distribution system state estimator
based on Hachtel’s matrix method. The basic implementa‐
tion is publicly available. The comparative analysis shows
that the proposed estimator has a favorable margin over the
real variable Hachtel’s matrix method in terms of accuracy,
and is around two times faster on the three-phase distribu‐
tion systems with about 3000 three-phase nodes, untrans‐
posed lines, and unbalanced loads.
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5

5
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