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Abstract——In the last decade, artificial intelligence (AI) tech‐
niques have been extensively used for maximum power point
tracking (MPPT) in the solar power system. This is because con‐
ventional MPPT techniques are incapable of tracking the global
maximum power point (GMPP) under partial shading condition
(PSC). The output curve of the power versus voltage for a solar
panel has only one GMPP and multiple local maximum power
points (MPPs). The integration of AI in MPPT is crucial to
guarantee the tracking of GMPP while increasing the overall ef‐
ficiency and performance of MPPT. The selection of AI-based
MPPT techniques is complicated because each technique has its
own merits and demerits. In general, all of the AI-based MPPT
techniques exhibit fast convergence speed, less steady-state oscil‐
lation and high efficiency, compared with the conventional
MPPT techniques. However, the AI-based MPPT techniques are
computationally intensive and costly to realize. Overall, the hy‐
brid MPPT is favorable in terms of the balance between perfor‐
mance and complexity, and it combines the advantages of con‐
ventional and AI-based MPPT techniques. In this paper, a de‐
tailed comparison of classification and performance between 6
major AI-based MPPT techniques have been made based on
the review and MATLAB/Simulink simulation results. The mer‐
its, open issues and technical implementations of AI-based
MPPT techniques are evaluated. We intend to provide new in‐
sights into the choice of optimal AI-based MPPT techniques.

Index Terms——Maximum power point tracking (MPPT), artifi‐
cial intelligence (AI), fuzzy logic control (FLC), artificial neural
network (ANN), genetic algorithm (GA), swarm intelligence
(SI), machine learning (ML).

I. INTRODUCTION

THE solar power system is widely used nowadays due to
its cost-effectiveness and high efficiency [1]. It is con‐

sidered as one of the most promising renewable energy
source (RES) because of its cleanliness, abundance and envi‐
ronmental friendliness, compared with conventional energy
sources such as oil, natural gas and fossil fuel [2]. Despite
its advantages, the output active power P from solar power
system varies according to the solar irradiance EE and opera‐

tion temperature T, especially under rapid changing partial
shading condition (PSC) due to the non-linear characteristic
of photovoltaic (PV) cell [3]. The complex relationship be‐
tween power output with PV input parameters results in un‐
satisfactory power extraction [4]. To alleviate the aforemen‐
tioned limitation, maximum power point tracking (MPPT)
becomes the research focus to improve the efficiency η of
the solar power system and ensure that the operation point is
always at maximum power point (MPP) [5]. The peak uni‐
form conditions without PSC can be tracked effectively by
using conventional hill-climbing (HC) MPPT techniques
such as perturb and observe (P&O) and incremental conduc‐
tance (IC) [6]. However, the power output from solar power
system generates multiple peaks under PSC, including one
global MPP (GMPP) and many other local peaks as illustrat‐
ed in Fig. 1, which complicates the HC MPPT technique to
search for the real maximum [7]. Hence, MPPT evolves into
an algorithm based on evolutionary, heuristic and meta-heu‐
ristic techniques. It is designated to track global peak instead
of local peaks since conventional HC MPPT techniques fail
to track global peak under PSC and rapid changing of solar
irradiance [8].

Apart from electronically implemented MPPTs, there are
other techniques to improve solar energy efficiency such as
integrated soft-computing weather forecast and adjustment of
the tilting angle of solar panel to track the sun direction [9].
We only focus on the artificial intelligence (AI)-based MPPT
techniques for DC-DC converter in the solar power system.
The integration of various AI optimization techniques with
MPPT is aimed to resolve and rectify the following limita‐
tions of a conventional HC MPPT:

1) Lack of adaptive, robust and self-learning capabilities.
2) High steady-state error, power oscillation at MPP and

slow transient response.
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Fig. 1. Curve of power versus voltage for a solar panel under PSC.
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3) Inability to find GMPP, trapping at local MPP and in‐
correct perturbation direction under PSC or sudden irradi‐
ance change due to MPPT failure [10].

In general, the existing AI-based MPPT techniques utilize
the sensory information including solar irradiance Ee, input
voltage of solar power system VIPV and input current IIPV

measurements to predict and estimate the GMPP throughout
the non-linear P-V curve. The integration of AI in MPPT ac‐
celerates the convergence speed and transient response be‐
cause of their complex, robust, self-learning and digitalised
system. MPPT techniques are categorized into two major
groups: conventional HC MPPT and AI-based MPPT [11].
AI-based MPPT term is known as computational intelligence
(CI) based MPPT, soft-computing MPPT, modern MPPT or
bio-inspired MPPT. It mainly consists of fuzzy logic control
(FLC), artificial neural network (ANN), differential evolu‐
tion (DE), genetic algorithm (GA), particle swarm optimiza‐
tion (PSO), Tabu search (TS), Cuckoo search (CS), firefly al‐
gorithm (FA) and hybrid algorithms. Conventional HC
MPPT techniques consist of P&O, IC, HC, constant voltage,
fractional short-circuit current, fractional open-circuit volt‐
age, scanning-tracking of current-voltage (I-V) curve, Fibo‐
nacci searching, global MPPT (GMPPT) segmentation
searching and extremum seeking control. There are various
sources of comparative literature review for all types of
MPPT. Existing literature only covers AI-based and hybrid
MPPT techniques. There are very limited comparative stud‐
ies, specifically in AI-based MPPT techniques [11]-[13].

The contributions of this paper are as follows: ① the ap‐
plicability and utilizations of AI in MPPT for solar power
system are reviewed; ② current development and research
areas of AI in MPPT are overviewed; ③ comparative analy‐
sis and performance evaluation of each AI algorithm in
MPPT techniques are provided. In this paper, popular AI-
based MPPT techniques are compared and evaluated. This
paper provides a comprehensive insight into the latest devel‐
opment and advancement of AI, which is applied in MPPT
for the solar power system. In general, all conventional
MPPT techniques exhibit the common disadvantages, includ‐
ing power fluctuation, inability to operate normally under
PSC and rapid irradiance changes, trapping at one of the lo‐
cal MPPs and oscillation around MPP [14], [15]. Hence, AI
is adopted to overcome these drawbacks [16], [17]. A typical
MPPT block diagram is shown in Fig. 2, where PWM
stands for pulse width modulation.
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Fig. 2. Block diagram of typical MPPT.

The design of a conventional control (CC) system in‐
volves mathematical modelling, which consists of all the dy‐
namics of the plant and is known as the mathematicians’ ap‐
proach since the designer must model the plant mathemati‐
cally before it is to be controlled. In contrast, to develop an
IC system, the system behavior is necessary for the inputs
and the IC system is responsible for autonomous and ab‐
stract modelling [18].

II. REVIEW OF AI-BASED MPPT TECHNIQUES

A. FLC

FLC is a control system based on fuzzy logic which con‐
verts analogue inputs into continuous digital values of 0 and
1 [19]. It is invented to resolve the limitations of convention‐
al MPPT techniques which include the oscillation around
MPP, high settling time and steady-state error (SSE). It is
easy to design because it does not require the knowledge of
an accurate model of MPPT. Hence, FLC is popular in the
last decade [20]. FLC can be integrated with HC algorithm
such as P&O and IC [21]. FLC translates HC algorithm into
fuzzy rules [22]. It has been proven to provide higher power
efficiency when there is irradiance change and load current
compared with HC algorithm [23].

dPPV

dVPV

=Err =
PPV ( )k -PPV ( )k - 1

VPV ( )k -VPV ( )k - 1
(1)

D
dPPV

dVPV

=DErr =Err (k)-Err (k - 1) (2)

where Err is the number of erro; DP is the ratio of change of
power; DV is the change of voltage; DErr is the rate of
change of error; and PPV and VPV are the output active power
and voltage of PV panels, respectively. A fuzzy controller
can be implemented on any low to medium powerful micro‐
controller including Arduino Mega and Microchip to manipu‐
late the output duty cycle D of the DC-DC converter depend‐
ing on T and Ee, which searches the MPP of the solar power
system [24]. The solar power is dependent on the dynamic
of solar irradiance [25]. Additionally, FLC is reconfigurable
and highly flexible because it can be reprogrammable
through a field-programmable gate array (FPGA) [26]. FLC
is a relatively simpler, cost-effective and historically older
implementation of CI in MPPT. The general rules of FLC on
MPPT are shown as follows, where DV is the change of volt‐
age; and DP is the change of active power.

1) If DP > 0 and DV > 0, DP/DV > 0, then D is decreased
by -DD.

2) If DP > 0 and DV < 0, DP/DV < 0, then D is increased
by +DD.

3) If DP < 0 and DV > 0, DP/DV < 0, then D is decreased
by +DD.

4) If DP < 0 and DV < 0, DP/DV > 0, then D is increased
by -DD.

5) If DP = 0, then MPP is achieved.
For each step, taking E =DP/DV and considering the sign

of DP and DV, the following conditions are concluded.
1) If E < 0, then D = D +ΔD.
2) If E > 0, then D = D-ΔD.
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3) If E = 0, then D = D.
Another type of FLC is reduced-rule FLC (RR-FLC),

which improves the simplicity of FLC by reducing the com‐
putational load [27]. There are also Mamdani and Takagi-
Sukeno (T-S) design approaches for FLC, where a Mamdani-
based FLC is relatively popular [28]. Typically, FLC consists
of three steps, fuzzification, fuzzy rules and defuzzification
[29]. In the first step, the input variables are converted into
linguistic variables by using various defined membership
functions [30]. In the next step, these variables are manipu‐
lated based on the rules “if-then” by applying the desired be‐
havior of the system. Lastly, these variables are converted in‐
to numerical variables [18]. The membership functions are
significant in affecting the speed and accuracy of FLC [31].

Figure 3 depicts that Err and ΔErr are two major FLC in‐
put variables while D of a DC-DC converter is the output
variable to be manipulated by FLC [32]. The input variables
are assigned to several linguistic variables which are denoted
by negative big (NB), negative small (NS), zero (ZE), posi‐
tive small (PS) and positive big (PB) [33]. The integration
of FLC with M5P model tree (Quinlan’s M5 algorithm) is
investigated to reduce the computation time [34]. Tables I
and II present the merits and demerits as well as the recent
studies of the FLC-based MPPT. In Table II, I/O stands for

input/output.

TABLE II
RECENT COMPARATIVE STUDIES OF FLC-BASED MPPT IMPLEMENTATIONS

Refer‐
ence

[35]

[22]

[26]

[28]

[36]

Input
parameter I/O

sensor

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Hardware/
software
platform

MATLAB/
Simulink

and arduino

DS1104
DSpace

FPGA and
MATLAB/

Simulink

MATLAB/
Simulink

PVPM
2540C,

MATLAB/
Simulink

Solar panel

PV module
(EP) 30W

60 W
solar panel

PV
module

(KC200GT)

230 W
poly-crys‐
talline Si

DC-DC
converter

Buck

Boost

Boost

Boost

Boost

MPPT
time (s)

0.43

0.3

±0.06

Less
than
0.01

Steady-state
oscillation

(%)

±4.0

±1.7

±1.0

MPPT
efficiency

(%)

98.50

98.00

99.00

99.37

Finding

FLC is used to control MPPT in a microgrid. The steady-
state performance has been improved as compared with
conventional P&O method

Single-input T-S FLC is effective in tracking GMPP un‐
der PSC compared with conventional P&O algorithm.
FLC exhibits less settling time and minimum oscillation

FPGA-based FLC is flexible as the membership func‐
tions and inference rules can be reconfigured by chang‐
ing very high speed integrated circuit hardware descrip‐
tion language (VHDL)

FLC is efficient in tracking GMPP value with less track‐
ing time, compared with IC and P&O

Improved M5P model (FLC-based MPPT) proves to min‐
imise computation time and lead to energy loss.

B. ANN

ANN or connectionist system is inspired by the biological
neural networks from animal brains. It is utilized to train
and test for the non-linearity relationship between I-V and P-
V. From input current, input voltage, irradiance, temperature
to metrological data, ANN fetches these inputs and continu‐
ously learns to fit the behavior of the solar power system for
the maximum power [37]. The design of FLC can be mod‐
elled by using ANN with higher accuracy and simpler imple‐
mentation of converters [38].

From the collection of the simulation or hardware setup,

the dataset is acquired by inputting solar irradiances, temper‐
atures, solar power system voltage or current to ANN in
finding the corresponding Pmax or Vmax output as shown in
Fig. 4. These data are converted to the training data and to
pass into the designed ANN to teach it how to perform. Af‐
ter the training, the test datasets are used to evaluate the per‐
formance of the designed ANN, and the errors are feed‐
backed to ANN for further adjustment [39]. It is deployable
to assist for the prediction of MPP alongside the state estima‐
tion by the sequential Monte Carlo (SMC) filtering. A state-
space model for the sequential estimation of MPP is able to

TABLE I
MERITS AND DEMERITS OF FLC-BASED MPPT TECHNIQUE

Merit

High efficiency and small fluctua‐
tion in steady state

Simple design and implementation
Operation with inaccurate input
Fast tracking speed during rapid ir‐

radiance change
Good dynamic performance
Combination with another algorithm

Demerit

Difficulty in deriving fuzzy rules
and time consuming

Inability to automatically learn
from the environment

Complex calculation
Undesirable performance under PSC
Fuzzy rules directly affect system

performance

E

Fuzzification

Change of ∆E 

Rule base Inference

Defuzzification

FLC
+

VPV IPV

Calculation of E and ∆E

Crisp output (duty cycle)

Fig. 3. Block diagram of general FLC.
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fit alongside the framework of IC MPPT technique, and the
ANN model observes the voltage and current or irradiance
data in predicting GMPP to refine the estimation by
SMC [40].

1

2

3

4

5
Output

NY

Optional input

Measure solar
irradiance

Measure voltage
and current

Detect irradiance
change

Is abrupt
change detected?

Estimate local
optimal operation

voltage

Set new
operator voltage 

MPP
voltage/
power

PV
voltage

PV
current

Input

Hidden layers ANN-based MPPT

Fig. 4. Structure of an ANN-based MPPT.

The advantages of ANN include exceptional accuracy in
modelling non-linearity and resolving problems without any

prior knowledge or any model [41]. ANN can be utilized in
modelling and predicting the output power of the solar pow‐
er system to improve the tracking speed and accuracy [42].
It is proven to have better response time and less oscillation
around MPP [43]. ANN-based MPPT is proven to exhibit
the capability of tracking MPP with the minimum transient
time and low ripple under the real operation climatic condi‐
tion [44]. The error calculation is executed by using the
square error algorithm as its feedback correction [45]. How‐
ever, an accurate, standardized and proper training set of da‐
ta is a main limitation for the ANN to perform optimally
without high training error [46]. Table III presents the merits
and demerits of ANN-based MPPT. Table IV shows the re‐
cent application of ANN in MPPT.

C. GA

GA is a general AI-based optimization method applied to
different optimization problems. It is widely used in MPPT
to compute the voltage reference of PV panel by modifying

a population of individual solutions. In general, GA has rela‐
tively small oscillations, rapid convergence speed and fast
dynamics by using voltage-step selection GA algorithm [49].
A modified GA exhibits reduced population size, simplified

TABLE III
MERITS AND DEMERITS OF APPLICATION OF ANN IN MPPT

Merit

Fast response and track‐
ing speed

Slight fluctuation in
steady-state

No need to be re-pro‐
grammed

Demerit

A massive dataset is required
Complex and time-consuming
Tracking accuracy is affected by the PV panel
model (system dependent)

Periodic tuning is required due to environmen‐
tal change and ageing

Difficult to be trained properly and get train‐
ing data

TABLE IV
RECENT COMPARATIVE STUDIES OF ANN-BASED MPPT IMPLEMENTATIONS

Refer‐
ence

[47]

[38]

[39]

[40]

[48]

Specific type
of MPPT
controller

ANN

ANN
modeling

Neural
network

ANN

Feed
forward ANN

Input
parameters
I/O sensors

Voltage,
current,

atmospheric
parameter

Voltage and
current

Voltage and
current

Voltage and
current

Temperature
and

irradiance

Hardware/
software
platform

MATLAB/
Simulink and
experiment

MATLAB/
Simulink

MATLAB/
Simulink

MATLAB/
Simulink

MATLAB/
Simulink

Solar panel

Experiment
and simulated

Simulated

MSX 60 PV
(simulated)

Simulated

Simulated

DC-DC
converter

Boost

Boost

Buck
Boost

Boost

MPPT
time (s)

0.06

0.2-0.4

0.03

Steady-
state

oscillation
(%)

±0.1

±0.7

MPPT
efficiency

(%)

Up to
99.68

Above 90

Above 90

Finding

An ANN model is deployed to
learn operation variation of a so‐
lar power system. PSO is used to
find optimum initial weights of
ANN model

MPPT based on ANN-modelled
FLC exhibits higher fault toler‐
ance and simpler implementation

Backpropagation trained neural net‐
work can accurately predict the
MPP of a PV panel. It provides
accurate and faster results than
P&O based MPPT

ANN model is based on the input
voltage, input current and irradi‐
ance to predict GMPP with knowl‐
edge learned from training data

ANN is trained by using “nntool”
in MATLAB/Simulink model.
ANN based MPPT controller has
less steady-state error, fast re‐
sponse for sudden change in solar
temperature and irradiance, com‐
pared with P&O and IC
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mutation processes and simpler calculation of crossover
[50]. Unlike conventional MPPT, GA-based MPPT is capa‐
ble of searching GMPP instead of being trapped in the local
MPP.

However, despite its performance, GA is not recommend‐
ed to optimize very large-scale, highly complex and exces‐
sive problems due to its simplified algorithm. In the optimi‐
zation process of MPPT, GA is initialized by starting the ini‐
tial parent population as an array:

X i = [parent1 parent2 ... parentn ] (3)

where n is the population size; and parenti (i = 1, 2, ..., n) rep‐
resents the initial voltage values when the algorithm starts
the optimization. The objective function f (X i) is the generat‐
ed output power of the solar power system. The evaluation
of fitness values for each position is executed by the objec‐
tive function. Then, they are used to evolve the population
and improve the population fitness through the generations.
Compared with conventional GA, the algorithm must be rein‐
itialized specifically for MPPT application because of sud‐
den changes in load, solar irradiance or PSC. Therefore, the
following conditions reinitialize the GA-based MPPT tech‐
nique once they have been satisfied in (4) and (5).

|V (k + 1)-V (k) |< DV (4)

| P ( )k + 1 -P ( )k

P ( )k |> DP (5)

where k is the current measurement; and k + 1 is the next it‐
eration of the measurement.

GA is invented based on the evolution of chromosomes.
Figure 5 shows the typical GA process. Firstly, the initial
population is encoded in binary. They are decoded into real

number and their fitness values for each chromosome are
evaluated. The genetic operations including selection, cross‐
over and mutation are performed for an optimal solution,
specifically in the maximization of power output. Tables V
and VI show the merits and demerits as well as the recent re‐
searches of GA-based MPPT.

D. PSO

The most common SI-based MPPT is PSO algorithm. It is
a heuristic method for resolving MPPT optimization prob‐
lem. The position of a particle represents the possible solu‐
tion and the duty ration represents the solution space [53].
PSO is proven to give a better-fitted result with every itera‐
tion, which is based on the concept of bird flocking. In
PSO, each particle follows the best possible particle. A popu‐
lation of particles are presented in PSO and their positions
are compared with the local best position and the global best

position. Then, these particles are moved in the search space
to find the best solution [54]. PSO is available to be integrat‐
ed with overall distribution (OD), which can rapidly find the
rough region around GMPP [55]. An improved PSO inte‐
grates with a non-linear decreasing inertia weight in improv‐
ing the search process of the particles [56]. For other modi‐
fied PSO, the weighting value and learning factor decrease
with every iteration. In contrast, the social learning factor is
expected to increase. Besides, the weighting value is modi‐
fied based on the changes in the slope and power characteris‐

Select next generation

Perform mutation

Display results

Next generation

Start

Initialize by creating a population
of chromosones No generation

Evaluate and determine the
fitness of each individual

Is stopping
criteria met?

Perform reproduction
by using rossover

End

Y

N

Fig. 5. Flowchart of a typical GA method in MPPT.

TABLE V
MERITS AND DEMERITS OF APPLICATION OF GA IN MPPT

Merit

Low computational requirement
General and uniform implementa‐
tion scheme

MPPT is done by function values
without calculation

High stability and rapid response

Demerit

Slow tracking speed due to series
format

Depending on the initial condition

TABLE VI
RECENT COMPARATIVE STUDIES OF GA-BASED MPPT IMPLEMENTATIONS

Refer‐
ence

[51]

[49]

[52]

Input parameter
I/O sensor

Temperature and
irradiance

Voltage and
current

Voltage and
current

Hardware/software
platform

MATLAB/Simulink

dSpace and Terra‐
SAS control soft‐

ware

MATLAB/Simulink

Solar panel

HT60-156-
265

SHARP
NU-U235F1

S440M34

DC-DC
converter

Boost

Finding

A GA based on large variation radial basis function is used to learn data pat‐
tern of temperature and irradiance. The algorithm predicts MPP with high
accuracy after dataset training

GA is applied to calculate voltage reference of PV panels to combine MPPT
and constant power generation in solar power systems. It imitates the per‐
formance of P&O MPPT with small power oscillations and fast
dynamics

GA is implemented to improve the efficiency especially under PSC which
results in an overall reduction of loss energy
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tic curve. These modifications increase the tracking speed
and stability [57]. A discrete PSO (DPSO) is a simpler struc‐
ture with higher performance and consistent solution for a
smaller number of particles, compared with conventional
PSO. Only one parameter is required to be tuned for the in‐
ertia weight [58].

E. Grey Wolf Optimization (GWO)

GWO is one of the modern heuristic optimization tech‐
niques, which is inspired by the lifestyle of the grey wolves.
The leader is defined as α, subleader is called as β, the low‐
er rank is called as δ and the lowest rank is called as ω. A
GWO-based MPPT is dependent on the hunting techniques
of the grey wolves by obeying the order of α, β and δ in the
priority order. The algorithm will converge to the prey,
which is GMPP in this paper.

F. FA

Another type of SI is FA which is based on the behavior
and flashing of fireflies. The ideology is that the attractive‐
ness is proportional to the brightness of a firefly. In this con‐
text, fireflies can converge into an optimal solution by the at‐
tractiveness. Similarly, FA can be utilized as a type of SI in
MPPT to find the optimal MPP [50]. Modified cat swarm op‐
timization (MCSO) based MPPT method is system indepen‐
dent and has high ability to find GMPP regardless of the lo‐
cation of GMPP in search space. It tracks GMPP accurately
and converges faster [59]. Moth-flame optimization (MFO)
is another new meta-heuristic optimization based on the con‐
vergence of moth behavior towards the light source [60].

G. CS

CS is an emerging SI algorithm based on the reproduction
strategy of some species of Cuckoo birds that lay their eggs
in the nests of other birds. CS optimization algorithm is in‐
spired by this parasitic reproduction approach. The basis of
CS is to find the right host nest, which is similar to the
searching for food. It is a random process and can be mod‐
elled by using a mathematical optimization approach. The
Lévy flight model is the most common method to model
food seeking trajectory of an animal. Hence, in CS-based
MPPT, the Lévy flight model is used to characterize the nest
seeking approach of a reproduction process of Cuckoo bird.
Mathematically, the Lévy flight model represents a random
walk where the step sizes are defined by using Lévy distribu‐
tion. It has fast MPPT speed and high tracking accuracy re‐
gardless of any weather condition. It is a simpler MPPT tech‐
nique with only three particles and only one parameter to be
tuned [61]. However, only the CS method does not guaran‐
tee the tracking of GMPP and is highly complex to imple‐
ment [62].

H. Gravitational Search Algorithm (GSA)

GSA is based on the concept of Newtonian gravity and
laws of motion, which states that particles tend to accelerate
towards each other because they attract each other [13]. The
following is the standardized steps for GSA:

1) The population size is assigned with the upper and low‐

er limits of the duty cycle for the DC-DC converter, which
usually ranges from 10% to 90%.

2) Solar agents are uniformly positioned between the
search space intervals to achieve the optimum convergence
speed.

3) For each agent position, PV output power is calculat‐
ed. The power of MPPT is assumed as the mass of the
agents.

4) The force G acting between the agents and the net
force acting on each agent is computed.

5) The acceleration a of each agent is calculated.
Apart from conventional GSA, an improved GSA has dy‐

namic weight in the change factor of the gravity constant.
The factors of memory and population information are add‐
ed into the updated formula of particle velocity [63]. Other
SI algorithms including artificial bee colony (ABC), bird
flocking, animal herding, bacterial growth, microbial intelli‐
gence and crowd or human swarming are inspired by biologi‐
cal behavior for the optimization process. Table VII shows
the open issues and advantages of SI techniques for MPPT.
Table VIII presents the lists of recent studies on SI-based
MPPT.

I. Hybrid MPPT

Hybrid MPPT is a general term to describe the integration
of two or more MPPT either from AI or conventional tech‐
niques. One of the most popular hybrid MPPT is the integra‐
tion of ANN with conventional P&O algorithm, which is
known as “neural network P&O controller” [41]. On the
contrary, an improved P&O algorithm with variable step size
is to reduce the steady-state fluctuation or oscillation and ac‐
celerate the tracking speed under sudden irradiance changes
or PSC. ANN and FLC are suitable to integrate with conven‐
tional MPPT methods like P&O and IC. ANN estimates the
MPP without any shading conditions or panel temperature,
while the HC method improves the result further. Other hy‐
brid MPPTs include PO-ANN and IC-ANN, which integrate
with the stacked autoencoder (SAE) controller by using deep
learning (DL) training and building blocks to act as an auto‐
encoder. It is trained with a greedy layer-wise pattern in ex‐
tracting the maximum power from the solar power system.
After that, it uses backpropagation with supervised learning
to fine-tune the deep neural network with conventional
MPPT-IC and PO to reach the maximum power [68].

TABLE VII
MERITS AND DEMEERITS OF APPLICATION OF SI INCLUDUNG PSO, GWO,

FA, CS AND GSA IN MPPT

Merit

Without requiring a massive dataset
High ability in searching GMPP re‐
gardless where is GMPP

Elimination of oscillation around
MPP

High tracking accuracy and fast
convergence

Simple structure, easy implementa‐
tion and fast computation ability

Demerit

Oscillations because of large ran‐
dom search

Larger computational burden
Requiring huge data
Highly complex and time-consuming
Algorithm parameters need to be
carefully set
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Another popular hybrid MPPT is an adaptive neuro-fuzzy
inference system (ANFIS) which integrates ANN and FLC
together. It has the advantages of both ANN and FLC. ANN
is trained to estimate the optimal MPP and used to drive an
FLC-based MPPT. ANFIS and fuzzy logic are optimal, flexi‐
ble and adaptable to any new configuration for smart power
management and solar power system [69]. Neuro-adaptive
learning technique is used to model fuzzy procedure in learn‐
ing all the information about a dataset. It is a process to
map all the given dataset from multiple inputs into a single
output. By using input-output datasets, ANFIS constructs a

fuzzy inference system. The model computes the member‐
ship function parameters, which are the best fit in allowing
FIS to track the input and output data [70]. The fuzzy mem‐
bership function parameters are adjusted by utilizing a hy‐
brid learning method, including backpropagation and least
square algorithms [71]. ANFIS-based MPPT is proven to im‐
prove the conversion efficiency of the solar power system
[72]. The fuzzy neural network is also capable of bit error
correction in predicting and forecasting weather data for so‐
lar power system [73].

ANN is deployable based on hybrid PSO and GSA, along‐

TABLE VIII
RECENT COMPARATIVE STUDIES OF SI-BASED MPPT IMPLEMENTATIONS

Refer‐
ence

[64]

[53]

[54]

[55]

[57]

[59]

[60]

[61]

[65]

[66]

[67]

[63]

Specific
type of

SI

Pigeon

PSO

PSO

PSO

Modi‐
fied PSO

Modi‐
fied CSO

MFO

CS

ACO

Spider
monkey

AFSA

GSA

Input
parameter
I/O sensor

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Voltage
and current

Irradiance
and temper‐

ature

Hardware/soft‐
ware platform

MATLAB/
Simulink

MATLAB/
Simulink

dSpace 1104
controller and

MATLAB/
Simulink

MC56F8245 mi‐
cro-processor

PIC18F8720 mi‐
cro-controller &

MATLAB/
Simulink

DSP TMS320F2
8335

MATLAB/
Simulink

Microchip DSP
and MATLAB/

Simulink

dSpace/ MAT‐
LAB/Simulink

MATLAB/
Simulink

MATLAB/
Simulink

MATLAB/
Simulink

Solar panel

Simulated

Simulated

MSX-60W
PV

TC.P.32 PV
simulator

1000 V/13 A

Sanyo
HIP2717
modules

Chroma
62100H-

600S
programable

DC

SunPower
SPR305

WHT

SAS

200W PV

Simulated

PV panel
emulator

Simulated

DC-DC
converter

Boost

Boost

Buck

Boost

Boost

Boost

Boost

Cuk

Boost

Boost

Boost

MPPT
time (s)

±0.1

±1.0

0.4

±1.6

0.55-1.2

0.05

1.8-2.8

0.38

±0.20

±0.04

±0.04

Steady-
state

oscillation
(%)

±0.050

±0.046

±0.050

±1.000

MPPT
efficiency

(%)

±97.00

99.91

±99.00

Finding

A pigeon-inspired optimization is used to
optimize MPPT under PSC. It reduces
power oscillation, improves stability and
achieves desirable control results

PSO combined with one cycle control is
able to track GMPP under varying shad‐
ing conditions

PSO is applied for MPPT in obtaining the
optimum duty cycle for the Z-source in‐
verter to overcome the shortage of conven‐
tional MPPT technique

OD PSO is implemented in MPPT to track
MP. PSO has more power and lower pow‐
er fluctuation compared with FA and P&O

Conventional PSO has been modified to
vary the weighting value, cognition learn‐
ing factor, and social learning factor based
on the slope and changes in power

The system-independent cat swarm optimi‐
zation (CSO) has high ability to find
GMPP regardless of the location of GMPP
in search space. It eliminates the power os‐
cillation around MPP compared with P&O

MFO is applied as a novel approach for op‐
timal exploitation of PV sources under
PSC. It exhibits better performance com‐
pared with IC, FL and PSO in terms of
tracking ability, efficiency and steady state

Deterministic CS is deployed to remove the
random number in the voltage calculation
equation of the conventional CS method

Ant colony optimization (ACO) based
MPPT provides optimal power extraction
from solar for residential applications

P&O MPPT technique has been improved by
PI controller which is tuned by spider mon‐
key algorithm to achieve good response un‐
der different atmospheric condition

Artificial fish swarm algorithm (AFSA)
method can easily avoid the constraint of
multiple local extreme value points and
catch MPP of the current environment
with high precision

Improved GSA-based MPPT achieves short
tracking time and good tracking accuracy
in MPPT under various of conditions com‐
pared with GSA and PSO
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side with FLC. For instance, PSO-GSA generates a random
initial population first and send them to ANN for data train‐
ing [74]. Another hybrid MPPT technique is based on im‐
proved open-circuit voltage model-based approach and smart
power scanning procedure. The smart power scanning
checks the voltage values to see whether PSC is happening
or not [75]. Apart from ANN, FLC is also versatile to inte‐
grate with P&O algorithm. It combines both technique ad‐
vantages together [16]. FLC-based P&O has a variable step
size to ensure small oscillation and faster response because
big step size ensures fast response but leads to excessive os‐
cillation whereas small step size has slow response and less
oscillation [76]. The integration of the IC method with PSO
algorithm is also available to resolve the inability of conven‐
tional MPPT in tracking GMPP under PSC while improving
the convergence speed and tracking precision [77].

Another hybrid MPPT is the integration of two powerful
machine learning (ML) techniques, coarse-Gaussian support
vector machine (CGSVM) and ANN, which is known as
ANN-CGSVM technique. CGSVM is a type of non-linear
SVM learning technique categorized as a data mining tech‐
nique [78]. Rational quadratic Gaussian process regression
(RQGPR) is required in generating large and accurate train‐
ing data for MPPT, as well as integrating ANN and RQGPR

to utilize data mining and regression learner for PV MPPT
[79]. A novel ANFIS with HC (ANFIS-HC) combines the
ANFIS controller with HC method to offline estimate the du‐
ty ratio with higher accuracy. HC carries on an online fine-
tuning of the duty cycle, which resolves the problem of con‐
ventional MPPT in searching GMPP under PSC since the du‐
ty ratio of MPP is estimated offline by the ANFIS technique
[80]. The classical ML algorithms, including support vector
machine (SVM) and extreme learning machine (ELM) are
available to be integrated with fuzzy-weighted classification
labelling. Provided by a supervised learning classification
system, this integration enables the determination of optimal
step size according to the weather information [81]. Tables
IX and X present the recent researches of hybrid MPPT as
well as the merits and demerits, respectively.

TABLE IX
MERITS AND DEMERITS OF HYBRID MPPT

Merit

Combination of conventional and AI-based
MPPT advantages

Cancellation of disadvantages of conventional
and AI-based MPPT

High accuracy and fast-tracking speed

Demerit

Relatively complex
Longer computational time
Costly

TABLE X
RECENT COMPARATIVE STUDIES OF HYBRID MPPT IMPLEMENTATIONS

Refer‐
ence

[82]

[83]

[31]

[50]

[84]

[68]

[71]

Specific type
of MPPT
controller

FLC with PSO
and GA

ANFIS-PSO

FLC with P&O

Modified GA
and FA

FLC with vari‐
able step P&O

Hybrid intelli‐
gent controller
(PO-ANN and

IC-ANN)

ANFIS

Input param‐
eter I/O
sensor

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Hardware/
software
platform

MATLAB/
Simulink

MATLAB/
Simulink
linked to
dSPACE
DS1104

board

MATLAB/
Simulink

Labview,
MATLAB/

Simulink, cy‐
press, PSoC4
ARM cortex-

M0

dSpace

MATLAB/
Simulink

Solar
panel

Simulat‐
ed un‐

der EN
50530

standard

IV
curve
simula‐

tor

SHARP
80W

DC-DC
converter

Boost

Zeta

Boost

Buck

Boost

Cuk

Buck

MPPT
time (s)

±0.200

±0.300

±1.000

0.089

±0.030

±0.400

0.012

Steady-state
oscillation

(%)

±0.01

±2/3

0.05

MPPT
efficiency

(%)

98.35

99.6

>91.00

91.00

Finding

Parameters of an FLC are tuned by us‐
ing hybrid PSO and GA. It exhibits
2%-8% higher output power with fast‐
er response rate and higher accuracy

ANFIS-PSO hybrid MPPT is deployed
to acquire MPP with zero oscillation
tracking

The designed membership functions of
FLC incorporate the advantages of the
P&O-MPPT and the FL-MPPT and
eliminate their drawbacks

A fusion algorithm is deployed to inte‐
grate three nature-inspired algorithms
for MPPT. It simplifies the calculation
of GA with the integration of the mu‐
tation process of DE and modifies the
attractive process of FA

FLC is developed to regulate DC-link
while an improved P&O with variable
step size is designed to reduce PV
power fluctuation

The hybrid techniques based on PO-
ANN and IC-ANN are utilized in
SAEs. It is trained with DL network
and building blocks to enable the max‐
imum power extraction from solar.

ANFIS-based model on top of IC meth‐
od and constant voltage method has
been proposed for MPPT

J. ML

Bayesian ML is a method specialized in unsupervised clas‐
sification, curve detection, and image segmentation. It is ap‐
plicable in MPPT to achieve GMPP [85]. The real-time loca‐
tion-based weather forecasting is also applicable by using op‐
timized modified ELM or Bayesian ML (BML). In order to
train a single layer feed-forward network, ELM algorithm is
utilized to update the weights by different PSO techniques.
Their performances are compared with existing models like
the back-propagation forecasting model [86]. As illustrated
in Fig. 6, reinforcement learning (RL) method enables auton‐
omous learning by observing the environment state of the so‐
lar power system. It is used to train and adjust the perturba‐
tion for the maximum output. Table XI shows the merits and
demerits of ML-based MPPT, while Table XII presents the
recent studies.

Solar PV
DC source 

A

V
State

calculation
Integrator

Action
PWM

Load

E

T
+

�

Reward
calculation

RL-based
MPPT

controller

DC-DC converter

Fig. 6. General structure of RL-based MPPT.

TABLE XI
MERITS AND DEMERITS OF ML-BASED MPPT

TABLE XII
RECENT COMPARATIVE STUDIES OF ML-BASED AND OTHER MPPT IMPKEMENTATIONS

K. Development of New AI-based MPPT and other Emerg‐
ing Metaheuristic Algorithms

DE-based MPPT is an optimization method to use target
vectors as the population in each iteration. The more parti‐
cles are used, the larger the search space, the slower the con‐
vergence speed. DE is meta-heuristics since it searches very
large spaces of possible solutions and does not guarantee an
optimal solution [87]. Another emerging algorithm is a modi‐
fied flower pollination algorithm (FPA) which is inspired by
the pollination process of flowers. Cross-pollination requires
communicators including birds, bees and bats while self-pol‐
lination is the propagation of mature pollens by the wind.
This process is referred to complete local optimization [88].
Other emerging algorithms are evolutionary algorithm (EA)
[89] and TS [90]. EA is a generic population-based metaheuris‐
tic algorithm based on biological evolution which includes re‐
production, mutation, recombination and selection. TS is an‐
other metaheuristic search method using local search methods
for mathematical optimization. Table XIII shows the recent
studies of other emerging AI for MPPT control strategies.

III. ANALYTICAL COMPARISON OF AI-BASED MPPT
TECHNIQUES

A. Classification of AI-based MPPT Techniques

The AI-based MPPT techniques are compared with re‐

gards to the following parameters: ① tracking speed for
MPP; ② tracking accuracy; ③ steady-state oscillation; ④
complexity of the algorithm which affects the computation
time; ⑤ overall cost. The general classification of the popu‐
lar AI-based MPPT techniques is categorized as FLC, ANN,
SI, hybrid, GA, ML and other new emerging algorithms, ac‐
cording to their descending popularity. There are other
emerging algorithms which may not be included in this pa‐
per due to the limited space and constrained area. Approxi‐
mate citation popularity of AI-based MPPT versus year is
shown in Fig. 7.

1965 1988 2010 Year
0

500

1000

FLC

ANN

GA
SI

Hybrid

ML

Po
pu
la
rit
y

Fig. 7. Approximate citation popularity of AI-based MPPT versus year.

FLC is invented in the year 1965, and it is popular in that
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J. ML

Bayesian ML is a method specialized in unsupervised clas‐
sification, curve detection, and image segmentation. It is ap‐
plicable in MPPT to achieve GMPP [85]. The real-time loca‐
tion-based weather forecasting is also applicable by using op‐
timized modified ELM or Bayesian ML (BML). In order to
train a single layer feed-forward network, ELM algorithm is
utilized to update the weights by different PSO techniques.
Their performances are compared with existing models like
the back-propagation forecasting model [86]. As illustrated
in Fig. 6, reinforcement learning (RL) method enables auton‐
omous learning by observing the environment state of the so‐
lar power system. It is used to train and adjust the perturba‐
tion for the maximum output. Table XI shows the merits and
demerits of ML-based MPPT, while Table XII presents the
recent studies.

Solar PV
DC source 

A

V
State

calculation
Integrator

Action
PWM

Load

E

T
+

�

Reward
calculation

RL-based
MPPT

controller

DC-DC converter

Fig. 6. General structure of RL-based MPPT.

TABLE XI
MERITS AND DEMERITS OF ML-BASED MPPT

Merit

Able to take more variables into con‐
sideration

Weather forecast for MPPT prediction
High accuracy and fast-tracking speed

Demerit

Highly complex and costly
A huge amount of data is required
Longer computation time

TABLE XII
RECENT COMPARATIVE STUDIES OF ML-BASED AND OTHER MPPT IMPKEMENTATIONS

AI-based
MPPT

ML

Others

Refer‐
ence

[85]

[86]

[87]

[88]

Specific type of
MPPT controller

BML

Modified ELM

DE

Modified FPA

Input parameter
I/O sensor

Voltage and current

Voltage and current

Voltage and current

Voltage and current

Hardware/software
platform

MATLAB/Simulink
and pIss controller

MATLAB/Simulink

PIC18F4520
micro-controller

MATLAB/Simulink

Solar panel

Simulated

Mitsubishi PV
in solar array

simulator

Simulated

DC-DC
converter

Boost

SEPIC

Boost

MPPT
time (s)

±1.88

±2.00

0.05

Steady-state
oscillation (%)

Almost zero

±1

MPPT
efficiency

(%)

98.9

99.0

99.1

K. Development of New AI-based MPPT and other Emerg‐
ing Metaheuristic Algorithms

DE-based MPPT is an optimization method to use target
vectors as the population in each iteration. The more parti‐
cles are used, the larger the search space, the slower the con‐
vergence speed. DE is meta-heuristics since it searches very
large spaces of possible solutions and does not guarantee an
optimal solution [87]. Another emerging algorithm is a modi‐
fied flower pollination algorithm (FPA) which is inspired by
the pollination process of flowers. Cross-pollination requires
communicators including birds, bees and bats while self-pol‐
lination is the propagation of mature pollens by the wind.
This process is referred to complete local optimization [88].
Other emerging algorithms are evolutionary algorithm (EA)
[89] and TS [90]. EA is a generic population-based metaheuris‐
tic algorithm based on biological evolution which includes re‐
production, mutation, recombination and selection. TS is an‐
other metaheuristic search method using local search methods
for mathematical optimization. Table XIII shows the recent
studies of other emerging AI for MPPT control strategies.

III. ANALYTICAL COMPARISON OF AI-BASED MPPT
TECHNIQUES

A. Classification of AI-based MPPT Techniques

The AI-based MPPT techniques are compared with re‐

gards to the following parameters: ① tracking speed for
MPP; ② tracking accuracy; ③ steady-state oscillation; ④
complexity of the algorithm which affects the computation
time; ⑤ overall cost. The general classification of the popu‐
lar AI-based MPPT techniques is categorized as FLC, ANN,
SI, hybrid, GA, ML and other new emerging algorithms, ac‐
cording to their descending popularity. There are other
emerging algorithms which may not be included in this pa‐
per due to the limited space and constrained area. Approxi‐
mate citation popularity of AI-based MPPT versus year is
shown in Fig. 7.
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GA
SI

Hybrid
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Fig. 7. Approximate citation popularity of AI-based MPPT versus year.

FLC is invented in the year 1965, and it is popular in that
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decade. After that, ANN, GA, SI, hybrid and ML are invent‐
ed at a respective timeline, and all of them are still applica‐
ble in AI-based MPPT over the decades. In the result sec‐
tion, there are three major comparative tables and one cate‐
gorization figure. The tables include the merits and open is‐
sues for each AI-based MPPT, the comparison of parameters
between all AI-based MPPT, and the available AI-based
MPPT in recent years.

The categorization figure presents a clear representation of
available AI-based MPPT in each category and classifica‐
tions. Generally, the evaluation of AI-based MPPT tech‐
niques is executed in terms of several parameters and fea‐
tures which include the number of control variables (input
sensory parameters), the utilized platform (software: MAT‐
LAB/Simulink; hardware: arm cortex microcontroller, Ardui‐
no, Raspberry Pi, and DSP board-dSpace), the solar panel pa‐
rameters, the switching frequency of DC-DC converter, the
type of DC-DC converters (buck, boost, buck-boost, Ćuk or
SEPIC), tracking/convergence speed or transient time, oscil‐
lation accuracy and MPPT efficiency. In recent years, bio-in‐
spired algorithms and ML are very popular due to their so‐
phistication in terms of accuracy, speed and performance.
More parameters are considered as input parameters instead of
only current and voltage inputs. It includes the humidity, shad‐
ing, cloud and metrological data. All algorithms aim to have
fast convergence or tracking speed, low steady-state oscilla‐
tion, simple cost-effective implementation, fast computational
capability and high efficiency with the minimum power loss.

B. Comparison

The recent AI-based MPPT techniques are typically more
advanced and efficient but require a huge amount of data,
highly complex and costly. The balance between the perfor‐
mance and the cost or complexity is critical for the applica‐
tion of MPPT in a specific area. Figure 8 categorizes the re‐
cent popular AI-based MPPT techniques into seven major
groups, namely FLC, ANN, SI, hybrid, GA, ML and emerg‐
ing algorithms.

The family of SI is the largest in AI-based MPPT, mainly
because its algorithms are inspired by biological swarm intel‐
ligence (SI) due to fast performance and high accuracy. The
hybrid and ML have a great variety of sub-categories. The

hybrid MPPT is relatively versatile as the AI-based MPPT is
easily integrated with each other. ML is another popular tech‐
nique. It has various approaches and techniques to learn
from the experience or dataset in order to output the maxi‐
mum power. FLC, ANN, and GA do not have any sub-cate‐
gories. The emerging algorithms have the latest advancing
techniques in MPPT, which is continuously improving and
populating.

As illustrated in Figs. 9 and 10, all AI-based MPPT tech‐
niques are evaluated in term of the performance evaluation
in each category and total evaluation point, respectively.
Points 0-10 imply the performance compared with other al‐
gorithms, where point 10 indicates high performance while
point 0 indicates undesirable performance. The scoring is
based on Table XIII. The results are established based on the
literature reviews on existing studies and validated by the
simulation results on MATLAB/Simulink. It is concrete that
SI has scored the highest point in average, followed by hy‐
brid, ML and GA. They are meta-heuristic methods which
are able to adapt to the operation environment of the solar
power system. The balance between algorithm complexity
and desirable MPPT performance is achievable by using SI,
hybrid MPPT, ML or GA techniques.

FLC ANN SI Hybrid GA ML Emerging algorithms 

PSO

ABC

SMO

CSO

FA

ACO

CS

GSA

ANFIS RL

BML

ELM

FPA

DE

AI-based MPPT techniques

ANN+
P&O/IC

FLC+
P&O/IC

Fig. 8. Classification and categorization for popular AI-based MPPT tech‐
niques in recent years.
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Fig. 9. Performance evaluation of each AI-based MPPT in term of each
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Fig. 10. Performance of AI-MPPT techniques.
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Table XIII presents a detailed comparison between AI-
based MPPT in terms of the performance indices such as
tracking accuracy, tracking speed, convergence speed, ability
to track under PSC and others. It is observed that older AI-
based MPPT techniques such as FLC and ANN have rela‐
tively poor performance in terms of convergence speed and
their ability to track under PSC. Under PSC or sudden
change of irradiance, continuous periodic tuning process is
required in the converter switch to track MPP. For ANN, a
massive dataset is required to design a proper ANN-based
MPPT with high accuracy, difficulty in training and higher
time consumption. For FLC, it is difficult to derive its fuzzy
rules accurately and unable to learn actively from the dynam‐
ic environment and perform undesirably. In contrast, SI, hy‐
brid GA and ML exhibit faster speed and high ability in
tracking even under PSC owing to their newer architecture

which combines the advantages of conventional HC MPPT
and the latest advancement of AI.

IV. SIMULATION RESULTS

A. Simulation Setup and Configuration

To validate and compare the performance of AI-based
MPPT techniques, an extensive simulation based on MAT‐
LAB/Simulink R2020a is conducted. The simulation setup is
to study, evaluate and investigate the dynamic behavior of
the AI-based MPPT under PSC. The optimal MPP is bench‐
marked against the searching process of each AI-based
MPPT. As illustrated in Fig. 11, the block diagram presents
the simulation environment in a standalone solar power sys‐
tem.

TABLE XIII
COMPARISON OF AI-BASED MPPT TECHNIQUES IN TERM OF PARAMETERS

Index

Tracking accuracy

Tracking speed

Convergence speed

Ability to track under PSC

Ability to track normally

Steady-state oscillation

Oscillation around MPP

Settling time

Complexity

Parameters required (sensor)

Periodic tuning

Dependency of initial design

System independence

Efficiency

Cost

Computation time

Algorithm complexity

Application

FLC

Moderate

Moderate

Moderate

Poor

High

Small

No

Fast

Moderate

Voltage and
current

Yes

High

Poor

Poor (PSC)

High

Moderate

Medium

Grid and solar vehicles

ANN

High

Fast

Moderate

Poor

High

Small

No

Fast

High

Irradiance, temperature,
voltage and current

Yes

High

Poor

Poor (PSC)

High

High

Medium

Grid, water pump, solar
vehicles and motor drives

SI

High

Fast

Fast

High

High

Almost Zero

No

Fast

Moderate

Voltage and
current (varies)

No

Moderate

High

High

Moderate

Moderate

Simple

Off-grid and
on-grid

Hybrid

High

Fast

Fast

High

High

Small

No

Fast

High

Varies

No

Moderate

High

High

High

High

High

Off-grid and
on-grid

GA

Moderate

Moderate

Fast

High

High

Moderate

No

Fast

High

Voltage and
current (varies)

No

Moderate

High

High

Moderate

Moderate

High

Off-grid and
on-grid

ML

High

Moderate

Fast

High

High

Small

No

Fast

High

Varies

No

Moderate

High

High

High

High

High

Off-grid and
on- grid
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Fig. 11. MATLAB/Simulink simulation for comparison of AI-based MPPT.
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The PV panel SunPower module (SPR-305E-WHT-D) in‐
puts with varying solar irradiance Ee and T. It is simulated
under PSC to emulate the practical environment. A 5 kHz
DC-DC boost converter is designed and its insulated-gate bi‐
polar transistor (IGBT) switching devices are controlled by
the AI-based MPPT controller to output the most optimized
voltage and current for MPP.

A DC-AC converter (inverter) based on synchronverter to‐
pology is deployed to convert optimized solar MPPT of DC
output to AC output in supplying AC for the three-phase bal‐
anced resistive load RL. The MPPT controller is the variable
that has been changed from FLC, ANN, SI, hybrid, GA to
ML to compare their tracking ability for MPP under PSC,
which is validated as shown in Table XIV. Other emerging
techniques are not included in the simulation because of
their dynamic development and constantly-changing algo‐
rithms. Two case studies have been executed to study the
MPPT ability under PSC and normal conditions with con‐
stant irradiance and temperature. The power output is at the
DC output of the DC-DC boost converter for evaluating the
optimized MPPT output. The simulation results are then
compared and validated as shown in Table XIV.

As shown in Fig. 12, the solar panel characteristic graphs
of I-V and P-V are plotted under standard test condition
(STC) at the temperature of 25 °C and solar irradiance level
of 1000 W/m2. Figure 12(a) presents the I-V and P-V charac‐
teristics when the irradiance varies while the temperature re‐
mains constant at 25 °C. On the contrary, Fig. 12(b) presents
the I-V and P-V characteristics when the temperature varies
while the irradiance remains constant at 1000 W/m2. The
non-linearity of I-V and P-V from a solar power system is
the main reason of an AI-based MPPT to search for MPP
with different irradiance and temperature.

B. PSC Analysis

PSC analysis is conducted by emulating PSC for the in‐
puts of the solar panel. To simulate PSC, the current is ad‐
justed to allow multiple peaks in the P-V curves. Besides,
MPPT failure caused by dynamic irradiance changes is inves‐
tigated. The current source of solar cells is adjusted automati‐
cally using the look-up table. The PSC effects on the solar
module are accounted for, which enables partial shading on
certain cells. The phenomenon is common for the practical
environment where partial shading occurrs when there are
dirt, leaf, cloud, tree and other obstacles that block the sun‐
light. Figure 13 shows the local MPP and GMPPT perfor‐
mance by the AI-based MPPT under PSC.

It is self-explanatory that SI and hybrid MPPT are per‐
forming optimally by tracking GMPP, which is the highest
possible output of solar power system. This is because of the
algorithm optimization, population searching ability and com‐
bination of different algorithms. ML and ANN are also per‐
forming well while GA tracks the local MPP with some
steady-state oscillations. However, the performance of FLC
is relatively unsatisfactory owing to its slow transient re‐
sponse and inability to track GMPP. It is trapped at the local
MPP and results in lower power conversion efficiency.

C. MPPT Ability

The tracking ability of AI-based MPPT controller for MPP
with constant irradiance is simulated. Figure 14(a)-(f) shows
MPPT ability of different algorithms. The dotted blue line in‐
dicates the optimal MPP at approximately 650 W with nor‐
mal irradiance and temperature. The red line indicates the
output power of solar power system as the AI-based MPPT
tracks and suggests MPP to extract the maximum power
from the solar power system. It is observed that the perfor‐
mance of AI-based MPPT is relatively satisfactory except
for FLC.

TABLE XIV
COMPARISON OF AI-BASED MPPT TECHNIQUES IN TERM OF PARAMETERS

AI-based MPPT

FLC

ANN

SI

Hybrid

GA

ML

Tracking time
(s)

0.70

0.25

0.28

0.23

0.80

0.60

Steady-state
oscillation (%)

±3.0

< 1.0

±1.7

±0.1

±10.0

±1.5

Affected by PSC/
varied irradiance

Yes

Yes

No

No

No

Slightly
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D. Comparative Analysis and Validation of Results

Table XIV summarizes and presents the comparison of AI-
based MPPT techniques in terms of MPPT time, steady-state
oscillation at MPP and the ability to resist the adverse effect
of PSC or varying irradiance, which occurrs at around t = 0.7
s. It is observed that FLC is underperforming by exhibiting
higher tracking time for MPP with high SSE and affected by
PSC. However, SI and hybrid-based MPPT perform satisfac‐
torily with the minimum tracking time, low SSE and the
minimum disturbance under PSC. These analyses are tally
with Table XIII and the findings from the existing literature
and researches on AI-based MPPT. Both simulation results
and literature review findings are mutually verified and vali‐
dated. Nevertheless, different scenarios and applications re‐
sult in different choices of AI-based MPPT. Hence, it is rec‐
ommended to choose the appropriate and most suitable AI-
based MPPT based on the design criteria and requirements.

V. DISCUSSION

The extensive comparison and investigation on various AI-
based MPPT have clearly shown that each algorithm has its
own merits and demerits. The choice of algorithm is solely
depending on the choice of the designer. Typically, the input
parameters of MPPT are Vin,pv and Iin,pv , which are acquired
through voltage and current sensors. Pin,pv is then computed
by using Pin,pv = Vin,pv Iin,pv . However, solar irradiance, tempera‐
ture, metrological data of humidity and shading are required
to train AI. Irradiance and temperature are used by some
MPPT techniques to define MPP [91]. AI is deployed to pre‐
dict current and voltage while taking input variability of
MPPT and non-linearity relation between I-V and P-V. The
model can better estimate the voltage chosen by MPPT by
using historical data. The performance and accuracy of the

MPPT techniques can be influenced by the voltage step.
When the voltage step is too small, it takes longer time to
reach MPP. If the voltage step is too large, although it takes
shorter time to reach MPP, MPP cannot be reached because
of the excessive oscillation around MPP [92]. To check the
convergence speed or tracking speed, a sudden change in ir‐
radiance is required as an input to observe the output of
MPPT, whether it is in response to the rapid changes of in‐
put [93]. EN 50530 [31] is a standardized test to evaluate
the efficiency of MPPT by providing triangular waveforms
of irradiance with different ramp gradients. It is also used to
provide rapid change or PSC situation in testing the re‐
sponse and performance of MPPT. In general, the normal
conditions of an MPPT testing environment presume that the
temperature is 25 ℃ , the maximum solar irradiance level is
at 1000 W/m2 and the angle of incidence α is 90° [16].

Another important aspect of AI-based MPPT is to search
for GMPP under PSC or varying irradiance and temperature.
The failure of MPPT could be caused by the inability of the
algorithm to search for GMPP. It will be stuck at the local
MPP and thus cannot produce the optimal power output. In
general, SI approaches are based on the searching for the op‐
timal solution in the search space. The acting participants in
the optimization can be a reminiscence of an ant for ACO
[94], a monkey for spider monkey optimization (SMO), a
cuckoo for CS and a firefly for FA. The conditional algo‐
rithm detects the fulfilment of the maximum power by set‐
ting a range. The oscillations are caused by the fluctuation
of an operation point, non-uniform distributed solar insola‐
tion, the inability of the algorithm in identifying GMPP
when there are many other local MPPs. In terms of perfor‐
mance parameters, the oscillation time is the period between
the changes until the output enters into steady state, i.e., no
more oscillation. The tracking speed or convergence speed
indicates how fast MPPT tracks the real MPP. In contrast, η
is defined as the power tracked by MPPT or output power
Pout = Vout Iout, divided by PMPP, which is equal to VMPP IMPP .
The settling time is required for the steady-state form with‐
out any oscillation [95]. The choosing criteria of AI-based
MPPT are based on the implementation complexity, required
sensors, the ability to detect multiple local maxima, response
time, costing and its application, transient time, settling time,
steady-state error, overshoot and ripples in the output volt‐
age of PV panel [96]. Generally, the conventional or HC
methods fail to track GMPP under PSC. They have oscilla‐
tions around MPP during the steady state, and longer time
are required in tracking MPP with lower efficiency. Howev‐
er, AI-based MPPT techniques do not exhibit the drawbacks
of conventional MPPT but require higher cost, complex com‐
putation and modelling. Overall, the hybrid methods are the
best among all algorithms, since it combines and integrates
two or more algorithms, which contributes to the mutual can‐
cellation of open issues [31]. The validation of the experi‐
mental result is usually conducted by the comparison, evalua‐
tion and analysis between simulation and experimental re‐
sults.

Apart from MPPT, an inverter is the medium interface be‐
tween the solar power system and the power grid. Hence, an
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efficient inverter is important for converting DC to AC and
acting as anti-islanding protection [97]. An improved invert‐
er optimizes the power extraction without adversely affect‐
ing the PV DC output to AC [98]. Proportional integral de‐
rivative (PID) controller is recommended to regulate D out‐
put to pulse width modulation from MPPT techniques due to
its flexibility, stability, the minimum overshoot, fine-tuning
characteristic, the minimum rise time for output voltage and
performance optimization [85], [99]. Generally, AI-based
MPPT techniques are applicable for grid-connected (on-
grid), standalone (off-grid) and other specialized applications
including solar vehicle, solar lamp, water heater, DC motor,
and water pump. On-grid is connected to the electric utility
grid while off-grid is directly connected to loads.

VI. RECOMMENDATIONS AND FUTURE RESEARCH DIRECTION

This section aims to recommend AI-based MPPT to be ap‐
plied in the solar power system and their future research ar‐
eas. The traditional MPPT techniques are phasing out since
the latest AI-based MPPT techniques have better perfor‐
mance and stability. The development of the AI-based MPPT
is dependent on the latest advancement in ML and DL. The
main challenges include the ability to search for GMPP and
the complexity of the algorithm.

For the conventional MPPT such as open current, open
voltage, P&O and IC, they are recommended for simple and
low-cost application which does not require high perfor‐
mance. In order to resolve, optimize and predict the non-lin‐
earity of the PV cell without staying at local MPP under
PSC, the AI-based MPPT techniques are recommended for
optimal performance, accuracy and convergence speed. For
the type of EA, GA is faster than classical methods, but it
tends to stick at local minima. The improved GA requires
higher computation resources and different parameters re‐
quire tuning. In contrast, DE is fast and accurate without
any employment of probability distribution. However, its
population can be stagnant in some sub-optimal values. PSO
has the highest performance by considering different best po‐
sitions to update the population, which is also simple to be
implemented in hardware and independent from the installed
system [100]. However, it tends to converge prematurely and
can be trapped at local minima. The choice of AI-based
MPPT method is dependent on the design choice, applica‐
tion and design requirement. For the maximum performance,
PSO is recommended due to its maturity compared with
GA. DE is better than GA in term of accuracy and computa‐
tion time while GA is faster than classical methods. GA and
DE techniques can track the GMPP under PSC because of
their capabilities of resolving multi-objective problems. For
the applications which are sensitive to the power fluctuation
such as household appliances, motor, extreme low voltage
(ELV), light sources, electro-heat equipment, electrical ma‐
chine, uninterruptible power source (UPS), computer, and
electronic devices, CS and radial movement optimization
(RMO) are recommended owing to their faster convergence
speed to settle at GMPP with minimal fluctuation.

Theoretically, the occurrence of voltage fluctuation is de‐
fined as a continuous change in the voltage when devices or

appliances that require a higher load are extensively used.
The parameters of an AI-based MPPT controller are the de‐
sign complexity, ability to track GMPP, cost-effectiveness,
PV panel dependency, prior training requirement, dataset re‐
quirement, convergence speed, analogue or digital architec‐
ture, required sensory information, periodic tuning, stability,
SSE, efficiency, and TET. The balance between the complex‐
ity and performance of the algorithm should be considered
when designing AI-based MPPT. In the general context, the
higher the performance of AI-based MPPT, the more com‐
plex the designed algorithm. Therefore, TET and computa‐
tion time are affected.

The most critical aspects of the AI-based MPPT are the
ability to track GMPP. Besides, real-time solar panel experi‐
ments lack concrete evidence. A general design flow for the
standardized AI-based MPPT is in lack of studies. In a grid-
connected solar power system, MPPT is also a crucial ele‐
ment to be integrated with synchronverter to act as a DC-
DC-AC converter, which is to provide the maximum power
extraction and virtual inertia concurrently [101]. The stabili‐
zation of the grid voltage and frequency output of the solar
power system at the AC grid side is guaranteed and main‐
tained [102]. High power efficiency is ensured with the mini‐
mum grid frequency and voltage fluctuation.

VII. CONCLUSION

We provide a detailed comparison of popular AI-based
MPPT techniques for the solar power system. They are de‐
signed to track GMPP instead of local MPP in alleviating
the effects of PSC. Each technique is compared in terms of
algorithm structure, cost, complexity, platform, input parame‐
ters, tracking speed, oscillation accuracy, efficiency and their
applications. The AI-based MPPT techniques are generally
classified into FLC, ANN, SI, hybrid, GA, ML and other
emerging techniques. Generally, all of them exhibit good
convergence speed, small oscillation at steady state and accu‐
rate tracking, even under PSC or rapid change of irradiance.
However, most of the techniques are costly and complex to
build and require more datasets compared with conventional
MPPT techniques. Compared with FLC, ANN, and GA, oth‐
er emerging and newer algorithms including hybrid, SI, ML
and DL are also recommended due to their newer architec‐
tures with adaptive learning capabilities, fully digitalized sys‐
tem and fewer open issues. In contrast, ANN and FLC are
not much preferred due to their ageing architecture, periodic
tuning requirement and inability in tracking MPP under
PSC. This review is expected to provide a detailed insight in‐
to the latest advancement of AI-based MPPT techniques for
the application in the solar power system.
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