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Abstract——Transient stability assessment (TSA) based on secu‐
rity region is of great significance to the security of power sys‐
tems. In this paper, we propose a novel methodology for the as‐
sessment of online transient stability margin. Combined with a
geographic information system (GIS) and transformation rules,
the topology information and pre-fault power flow characteris‐
tics can be extracted by 2D computer-vision-based power flow
images (CVPFIs). Then, a convolutional neural network (CNN)-
based comprehensive network is constructed to map the rela‐
tionship between the steady-state power flow and the generator
stability indices under the anticipated contingency set. The net‐
work consists of two components: the classification network
classifies the input samples into the credibly stable/unstable and
uncertain categories, and the prediction network is utilized to
further predict the generator stability indices of the categorized
samples, which improves the network ability to distinguish be‐
tween the samples with similar characteristics. The proposed
methodology can be used to quickly and quantitatively evaluate
the transient stability margin of a power system, and the simu‐
lation results validate the effectiveness of the method.

Index Terms——Security region, computer-vision-based power
flow image (CVPFI), transient stability margin, convolutional
neural network (CNN), comprehensive network.

I. INTRODUCTION

TRANSIENT stability is of great significance to the safe
operation of the power grid. The development of fast

and accurate methodologies for online transient stability as‐
sessment (TSA) is one of the major research topics in power
system operation and control.

There are several traditional analysis methods for TSA
such as time-domain simulation [1], transient energy func‐
tion method [2] and extended equal-area criterion [3]. How‐
ever, the flaws of these methods such as their poor model
adaptability and complexity of computation are salient. With

the development of wide-area measurement systems
(WAMSs), data-driven artificial intelligence (AI) methods
provide new opportunities for TSA such as artificial neural
network (ANN) [4], support vector machine (SVM) [5] and
decision tree (DT) [6]. Recently, deep learning has been
widely utilized for online decision-making such as deep be‐
lief network (DBN) [7], convolutional neural network
(CNN) [8] and long-short-term memory (LSTM) network
[9]. Compared with the shallow learning models, the deep
learning models have more powerful self-learning ability and
higher computational efficiency.

In general, there are two types of application scenarios for
these data-driven AI approaches. One scenario is TSA based
on stability region, which depends on the post-disturbance
dynamic features such as the magnitude of the recovery volt‐
age [10], rotor angles [11], [12] and kinetic energy [13]. The
other is TSA based on security region, which chooses steady-
state characteristics as the input such as the line flow, load,
and generator power [14], [15]. This assessment considers
anticipated contingencies. Therefore, preventive control mea‐
sures can be conducted to withstand potential severe distur‐
bances. However, the aforementioned methods mainly per‐
form qualitative analyses of transient stability problems. In
practical applications, the quantitative evaluation of the tran‐
sient stability margin is most conducive to security preven‐
tion and control. Therefore, we focus on the transient stabili‐
ty margin assessment based on security region.

For the input features of the AI model, most previous stud‐
ies focus on the feature selection and data preprocessing to
enhance prediction accuracy. Reference [16] proposes the
principle of feature selection, which considers system scale
and transient stability mechanism. Reference [17] proposes
the dimension reduction approach for the original features,
which can shorten the evaluation time. However, a power
system is topologically connected by electrical equipment,
and the topology information should be considered as the im‐
portant input feature, which was not discussed in the previ‐
ous studies.

The AI learning algorithms are improved to predict the
transient stability margin more accurately. A DT algorithm is
proposed in [12], which improves the prediction accuracy by
adding the layers of the network. Reference [18] proposes
the TSA model based on CNN, which integrates CNNs with
different structures for prediction. However, it is not enough
to enhance prediction accuracy only by modifying the struc‐
tures and parameters of the AI model. Since the characteris‐
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tics of the samples near the stability boundary are unclear, it
is more likely to be misjudged and will cause poor predic‐
tion accuracy. Thus, it is necessary to improve the discrimi‐
nation ability of the model, especially the samples near the
stability boundary to produce higher accurate prediction of
the stability margin.

Therefore, a CNN-based comprehensive network is estab‐
lished in this paper to map the relationship between the
steady-state information and the transient stability margin of
the system under the anticipated contingencies. The pro‐
posed network consists of two components. The first classifi‐
cation subnet classifies the samples into the credibly stable/
unstable and uncertain categories, and a computer-vision-
based power flow image (CVPFI) based on a geographic in‐
formation system (GIS) is utilized as the input to extract the
power flow and topology information of the system. The sec‐
ond prediction subnet further predicts the stability margin of
each subclass of the samples through stable prediction sub‐
net, unstable prediction subnet and checking and correction
subnet, respectively. A generator stability index [19] is uti‐
lized to quantitatively evaluate the stability margin of the
system.

The main contributions of this paper are as follows:
1) As the input feature, the proposed CVPFI contains the

operation conditions and topology information of the power
system. Therefore, the topological variations can be consid‐
ered in transient stability prediction.

2) By classifying the input samples into different catego‐
ries, the index prediction subnet of each type is more target‐
ed to the samples of the current class, which can enhance
the prediction accuracy. Additionally, it can avoid misjudg‐
ment near the stable boundary to the most extent through fur‐
ther checking and correcting of uncertain samples.

The remainder of this paper is organized as follows. Sec‐
tion II illustrates the transformation rule of CVPFI. Section
III illustrates the details of the proposed comprehensive neu‐
ral network for TSA. The interpretability of the prediction re‐
sults is analyzed in Section IV. Section V presents case
study details and discusses the results. Conclusions are made
in Section VI.

II. TRANSFORMATION RULE BASED ON STEADY-STATE

CHARACTERISTICS

A. Computer-vision-based Power Flow Image

GIS combines the operation information of a power sys‐
tem with geographic location information, which can visual‐
ly show the operational status of the system based on the
electronic map.

Firstly, the administrative division of the regions and the
geographical coordinates of the substations and transmission
lines are required for the GIS database. Then, a topology
connection diagram of the system is established by the visu‐
al modeling tool and can be updated in real time.

It is well known that each pixel of an image consists of
red, green and blue channels, which can be described by dif‐
ferent color values. Therefore, a transformation rule between
the steady-state characteristics and the GIS-generated topolo‐

gy diagram can be formulated in this paper to realize the vi‐
sualization of power flow. The steady-state information is
collected by the monitoring system as shown in Table I.

Assuming that the color value (0-255) of the node in the
topology diagram is CN and that of the transmission line is
CL, the power transmission direction of each line is defined.

The transformation rules of the active or reactive power
are as follows:

1) The red channel represents the power levels of the ith

node injection and the j th line transmission: CNi = PGi -
PLi (QGi -QLi); CLj = PTj (QTj).

2) The green channel represents the direction of the ith

nodal power: when PGi -PLi (QGi -QLi)> 0 (the power is in‐
jected into the node), CNi is set to be the minimum value,
and CNi is set to be the maximum value when PGi -PLi (QGi -
QLi)< 0 (the power flows out of the node).

3) The blue channel represents the transmission direction
of the j th line power. CLj is set to be the minimum value
when it is consistent with the reference direction. Otherwise,
CLj is set to be the maximum value.

The transformation rules of the voltage are as follows:
1) The red channel represents the voltage magnitude of

the ith node: CNi = Umi .
2) The green channel represents the voltage phase angle

difference Δθ between the two ends of the j th line: CLj =Dθj.
Since θ and P have a strong correlation in a high-voltage
power system, Dθ can approximately reflect the distribution
of the active power in the line.

3) The blue channel represents the direction of Dθ which
can reflect the transmission direction of the active power of
the j th line. CLj is set to be the minimum value when it is
consistent with the reference direction Dθj > 0. Otherwise,
CLj is set to be the maximum value.

Since the range of each electrical quantity is different, its
value is adaptively matched with the range of pixel color val‐
ues (0-255) according to (1).

C ′=
255

Cmax -Cmin

(|C |-Cmin) (1)

where C and C ′ are the color values before and after match‐
ing, respectively; and Cmin and Cmax are the minimum and
maximum absolute value of the electrical quantity, respec‐
tively.

After matching, the P-CVPFI (active power), Q-CVPFI
(reactive power) and U-CVPFI (voltage) can be generated,
and these images are set to be a uniform size according to
the topology size. With the transformation rule, the system
topology as well as the magnitude and direction of the elec‐

TABLE I
STEADY POWER FLOW OF EACH COMPONENT

Equipment type

Generator

Load

Line

Bus

Electrical quantity

Active power output PG; reactive power output QG

Active load PL; reactive load QL

Active power flow PT; reactive power flow QT

Voltage magnitude Um; voltage phase angle θ
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trical quantity used is completely retained in CVPFI, en‐
abling the neural network to learn the overall operation state
of the system.

Furthermore, the proposed rule exhibits excellent adapt‐
ability. Since CVPFIs are transformed based on the online
data, when the operation condition changes, the color of the
CVPFI varies correspondently. Moreover, based on GIS, a
new connection diagram can be generated when the topologi‐
cal structure changes.

B. Quantitative Indices for Evaluating Stability Margin of
Power System Under Anticipated Contingencies

To quantitatively evaluate the transient stability margin of
the post-disturbance system, the trajectory analysis approach
[19] is used to construct the generator stability and instabili‐
ty indices. In the method, the trajectories of the accelerating
power and angular velocity of the generator are utilized to
analyze the variations in the transient energy of the genera‐
tors.

The potential energy VPEi trajectories of the ith generator
under stable and unstable conditions are shown in Fig. 1.

In Fig. 1, θia and θib are the rotor angles when VPEi reaches
its first minimum and maximum values, respectively; and θicr

is the critical value of θi. If the ith generator is stable,

|dVPEi dVPEi
θib

¹ 0, and |dVPEi dθi
θib

= 0 when it loses the sta‐

bility. The value of |dVPEi dθi
θib

decreases as θib approaches

θicr and finally becomes 0 when θib = θicr .
Another characteristic of the trajectories is that angular ve‐

locity ωi (tbi)= 0 when the ith generator is stable; otherwise,
ωi (tbi)¹ 0. Obviously, the value of ωi (tbi) increases as the de‐
gree of instability increases.

Therefore, when VPEi reaches its first maximum value, the
corresponding stability index Si and instability index Ui of
the ith generator can be defined as in (2) and (3), respectively.

Si =

|

|
||

dVPEi

dθi
tbi

VPEi (tbitai)
=

-Pai (tbi)

VPEi (tbitai)

(2)

Ui =
ωN

2
Mi

||ωi (tbi) ωi (tbi)

VKEi (tai)
(3)

where Mi, Pai , and VKEi are the inertia time constant, acceler‐
ating power, and kinetic energy of the ith generator, respec‐
tively; and ωN is the nominal angular velocity.

Si tends to be zero only when the ith generator is unstable,
and Ui is nonzero only when the ith generator loses its stabili‐
ty. This stability index does not depend on any critical ener‐
gy, and the index value decreases monotonically with the de‐
terioration of stability, which is mathematically proven in [20].

Anticipated contingencies are considered in TSA based on
security region. Typically, the system stability margin and

the weakest generators with the most severe disturbances are
the major focuses for the dispatchers. Thus, the stability and
instability indices of the generator with the most severe fault
are further selected from the anticipated contingencies, and
the concept of the most severe fault is illustrated in Table II.

With a given operation mode, if at least one stability in‐
dex of the generator equals zero and its instability index is
nonzero, this operation mode is classified as an unstable op‐
eration mode, and the fault with the maximum instability in‐
dex values is defined as the most severe fault such as fault
Mi. In the same operation mode, if stability indices of all
generators are nonzero and their instability indices are all ze‐
ro, this operation mode is classified as a stable operation
mode, and the fault with the minimum stability index value
is defined as the most severe fault such as fault Nj.

III. TSA BASED ON CNN

CNNs are some of the most commonly used neural net‐
works, which have a strong image processing ability. Since
strong recognition ability of CNN for highly nonlinear pat‐
terns, it is effective for a number of problems in the fields
of both classification and regression.

Therefore, a CNN-based comprehensive network is pro‐
posed to predict the generator stability indices under the an‐
ticipated contingencies. It consists of a classification subnet
and a prediction subnet, and the details of these two subnets
are illustrated below.

A. Classification Subnet

To enhance the prediction accuracy of the stability index,
the input samples are pre-classified into different categories.
Each subclass of samples belongs to the same category with
similar characteristics, which enables the subsequent predic‐
tion subnet of each type more targeted to the samples of the

0 ia ib icr

VPEi

Trajectory
direction

Rotor
angle θ

θ θ θ

VPEi

=

Trajectory
direction

Rotor
angle θ

0 ia ib icrθ θ θ

(a) (b)

Fig. 1. Trajectories of VPEi under stable and unstable conditions. (a) Stable.
(b) Unstable.

TABLE II
THE MOST SEVERE FAULT IN ANTICIPATED CONTINGENCY SET

Operation
mode

Unstable mode

Stable mode

Fault

Fault M1



Fault Mi

Fault N1



Fault Nj

Index

S1

U1



Si

Ui

S1

U1



Si

Ui

Generator 1

Zero

Nonzero



Zero

Nonzero

Nonzero

Zero



Nonzero

Zero

…

…

…

…

…

…

…

…

…

Generator i

Zero

Nonzero



Zero

max(Ui)

Nonzero

Zero



min(Si)

Zero
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current class than the samples of other classes. Therefore, an
ensemble CNN-based classification subnet is proposed as
shown in Fig. 2.

n subclass CNNs are trained by each kind of CVPFI inde‐
pendently, and the optimal structural parameters are deter‐
mined by the particle swarm optimization (PSO) algorithm.
The obtained CNNs are different even with the same net‐
work structure because the initial weights and bias are ran‐
domly selected.

In practical applications, the training samples are always
unbalanced with fewer unstable samples than stable samples,
making the model insufficient for learning the features of un‐
stable samples. To avoid this problem, a weighted cross-en‐
tropy loss function LCE is adopted in the classification model
as shown in (4).

LCE =-
1
N
[ ]μyi lg ȳi + (1- yi)lg(1- lg ȳi) (4)

where N is the total number of training samples; and yi and
ȳi are the actual and predicted labels of the ith sample, re‐
spectively; and μ is the cost weight of the positive samples
(unstable samples), which is set as the ratio of the number
of stable samples to the number of unstable samples.

The output of each kind of classifier is the average of
probabilistic outputs for the corresponding subclass CNN:

P(Ck|X )=
∑

i = 1

n

pi (Ck|X )

n
k = 01

(5)

where pi (Ck|X ) is the probability of category Ck with respect
to sample X in the ith CNN. The evaluation result ypred (X ) of
each kind of classifier is:

ypred (X )= {0 P(C0|X )³ γ(P(C1|X )< 1- γ)
1 P(C0|X )< γ(P(C1|X )³ 1- γ)

(6)

where P(C0|X ) and P(C1|X ) are the probabilities that X is
identified as stable and unstable, respectively; and γ is the
discriminative threshold, which is normally set to be 0.5.

The integrated decision-making rules are defined as fol‐
lows: X will be classified as stable only when all the evalua‐
tion results are 0, and X will be classified as unstable only
when all the evaluation results are 1. Otherwise, the sample
is regarded as uncertain and needs to be further distin‐
guished. Therefore, the proposed classification subnet can
identify the credibly stable/unstable samples and uncertain
samples.

B. Prediction Subnet

The categorized samples received from the classification
subnet are further processed in the prediction subnet to pre‐
dict the generator stability indices under the anticipated con‐
tingencies, which is shown in Fig. 3.

With U-CVPFI as the input, the stable and unstable predic‐
tion subnets are trained by the corresponding samples, and
the L2 loss function shown in (7) is generally adopted in the
regression model.

L2 =
1

2N∑i = 1

N

( ȳi - yi)
2 (7)

After training with adequate number of samples, credibly
stable/unstable samples are sent to the corresponding predic‐
tion subnet, where the stability/instability indices are predict‐
ed.

Uncertain samples always contain both stable and unstable
characteristics, so it is more likely to be misjudged. To fur‐
ther improve the ability of the model to distinguish between
similar characteristics, these samples are sent to both the sta‐
ble and unstable prediction subnets. Considering the conser‐
vatism of power grid operation, the uncertain sample will be
judged as stable only when all instability indices equal zero.
If at least one of the instability indices is nonzero, this sam‐
ple will be defined unstable. Based on the cross checking
and cross-correction, these uncertain samples can be precise‐
ly classified into stable/unstable subsets, and their stability/
instability indices can be further predicted by the correspond‐
ing regression model.

The aforementioned method actually takes the intersection
of two prediction subnets to assess generator stability mar‐
gin. Therefore, the misjudgment of the model near the stabil‐
ity boundary is avoided as far as possible, and the accuracy
of TSA can be improved.

C. Assessment Process

The block diagram of TSA is shown in Fig. 4. It includes
two components: offline training and online application. The
detailed procedures are as follows:
1) Offline Training

Step 1: collect the historical data from different power sys‐
tem conditions to generate the corresponding CVPFIs which
are used as the input of the model.

Step 2: calculate the stability and instability indices under
the anticipated contingencies for each sample, and further se‐
lect the indices with the most severe faults as the output.

Step 3: construct the CNN-based comprehensive network
and train the model by using the back-propagation algorithm

CNN1 CNNn
… CNN1 CNNn

… CNN1 CNNn
…

Integration mechanism based on probable output

Transformation ruleGIS

Credibly stable Uncertain Credibly unstable

Steady-state measurement data

U-CVPFIQ-CVPFIP-CVPFI

Fig. 2. Ensemble CNN-based classification subnet.

CNN regression model CNN regression model

Uncertain

Stability
index

Instability
indexStability index

Check and correct

Credibly stable Credibly unstable

(stable index) (unstable index)

Fig. 3. Prediction subnet.
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to fine-tune all parameters in a supervised way.
2) Online Application

Step 4: obtain online steady-state data and convert it to
CVPFIs through GIS and the transformation rule.

Step 5: input CVPFIs into the trained model and predict
the generator stability indices online, which will provide the
dispatchers with operation reference.

It should be pointed out that several different topologies
of the power grid can be utilized to train the proposed mod‐
el and improve its adaptability to topological variations.
Through the above prediction method, the transient stability
margin under the anticipated contingencies can be accurately
predicted through the steady-state information online.

D. Model Performance

A useful tool to evaluate the ability of a neural network
and perform TSA is the confusion matrix, which is shown in
Table III, where TP and TN are the stable and unstable sam‐
ples that are correctly identified, respectively; FN are false
negative samples, i. e., the stable samples that are falsely
identified as unstable; FP are false positive samples, i.e., the
unstable samples that are falsely identified as stable.

The accuracy rate AC indicates the proportion of correctly
classified samples as shown in (8).

AC =
TP + TN

TP +FN +FP + TN
(8)

The false alarm rate FA indicates the proportion of false
negative samples, i. e., the stable samples that are falsely
identified as unstable, as shown in (9).

FA=
FN

TP +FN
(9)

The false dismissal rate FD indicates the proportion of
false positive samples, i. e., the unstable samples that are
falsely identified as stable, as shown in (10).

FD=
FP

FP + TN
(10)

In addition, the average error Err is used to evaluate the
prediction accuracy of the neural network, as shown in (11).

Err =
1
N∑i = 1

N

|| si - ri (11)

where si and ri are the predicted value and actual value of
the stability index in the ith sample, respectively.

IV. INTERPRETABILITY ANALYSIS OF CNN

Although CNN performs well, it remains a black box. It
is important to understand the reasons behind predictions,
which is the basis of engineering application. In this paper, a
linear surrogate model [21] is constructed to explain the pre‐
dictions of the stable regression model and help the dispatch‐
ers verify the credibility of the prediction results.

Although a linear model is difficult to explain globally, in
the local neighborhood, the surrogate model g(z) can be used
as a reasonable approximation of the original model f(x):

g(z)=ω0 +∑
i = 1

M

ωi zi » f (x) (12)

where x is the input of CNN; and z is M important variables
that have the greatest impact on stability. By optimizing the
objective function of g(z), ωi is obtained as the interpretation
result. The process is shown in Fig. 5.

contingencies

Transformation
rule

Original input
features based on

historical data

GIS CVPFIs

Trajectory
analysis

Stability and
instability indices

Training and 
test samples

Online data Predict indices with
the most severe fault

Online application

Offline training

contingencies

Anticipated

Model performance meets requirements
Comprehensive
neural network

Trained comprehensive
network for TSA

Anticipated 

(pre-fault)

Fig. 4 Framework of TSA.

TABLE III
CONFUSION MATRIX

Confusion matrix

Stable (actual)

Unstable (actual)

Stable (predicted)

TP

FP

Unstable (predicted)

FN

TN

End

Obtain sensitivity ωi

   

Train surrogate model g(z)

Select important variables z

Train sparse linear model g(x)

Input sampling data x

Start

Fig. 5. Construction of surrogate model.
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Firstly, the training set {x'1x'2...x'N} around (x0, y0) is sam‐
pled for interpretation, and {y1, y2, ..., yN} are the correspond‐
ing minimum stability indices in CNN. The sampling data
follow the multivariate Gaussian distribution N(x0Σ) and Σ
is the covariance matrix of the training data.

Then, based on the elastic network, a sparse linear model
g͂(x) is constructed to select the important variables, which
can highlight the main factors affecting the stability. The ob‐
jective function can be defined as:

min
ω

é
ë
ê

ù
û
úL(ω)+∑

i = 1

N

ρ(x'i)(yi - g(x'i))
2 (13)

where L(ω) is composed of L1 and L2 regularization, i. e.,

L(ω)= λ[ ]αω2
I + (1- α) ||ωi , and α is used to adjust the propor‐

tion of the two norms; g(x'i) is trained repeatedly by adjust‐
ing λ; and ρ(x'i) is the weight of the sampling data, which
can be calculated by the Gaussian kernel function:

ρ(x'i)= e
-

1

2δ2


 


x'i - x0

2

2 (14)

where δ is the free parameter related to the fitting range of
the linear model.

Finally, using the important feature set z as the input, the
linear ridge regression function is further used as the surro‐
gate model, and its objective function is the same as (13), in

which L(ω) adopts L2 regularization, i. e., L(ω)= λ∑
i = 1

M

ω2
i .

Hence, the parameter deviation will be reduced. The model
parameter ω can be obtained when g(z)» f (x), which repre‐
sents the sensitivity between the state variable and the stabili‐
ty status.

V. CASE STUDIES AND DISCUSSIONS

A. IEEE 39-bus System

1) Construction of Sample Set
The simulations and tests are implemented on a PC with

an Intel Core i7-8700 CPU and 16 GB of RAM, and the re‐
al-time measurement is replaced by the simulated data. As
shown in Fig. 6, the proposed method is tested with IEEE
39-bus system first, which is partitioned into 3 regions ac‐
cording to the directions of the power transfers.

Based on the partition, three-phase faults on 6 transmis‐
sion lines connecting different regions are used to construct
the anticipated contingency set. Each fault is simulated at
50% of the line length and is cleared in 0.2 s. For a certain
operation condition, the system load level is varied between
80% and 120% of the base load, and the most severe fault
in this operation mode can be further selected.

The steady-state characteristics of each sample are convert‐
ed into different CVPFIs, and the input and the stability or
instability indices of 10 generators in the fault mode are tak‐
en as the output. We generate an input space of 10200 sam‐
ples in various operation modes. A total of 9000 samples are
randomly selected from the 10200 samples as training set.
The remaining 1200 samples are used as testing set as
shown in Table IV.

2) Model Performance
Each CNN classifier in the classification subnet has two

convolutional and max pooling layers, two fully connected
hidden layers and a softmax layer at the end. The initial
learning rate, iteration numbers and batch sample numbers
of CNN are 0.001, 1000 and 100, respectively. The Adam
stochastic optimization algorithm with a variable learning
rate is adopted to minimize the loss function.

PSO is used to select the optimal convolution kernel num‐
ber (k1, k2) and size (l1, l2) of each subclass CNN. The accel‐
eration constants c1 and c2 are 0.5 and 1.5, respectively, and
the prediction error rate is taken as the fitness function. Af‐
ter optimization, the structural parameters of each subclass
CNN are shown in Table V.

The reasonability of the input features has a great influ‐
ence on the performance of the classifier, and the following
two feature sets are used as the inputs.

Feature set 1: the original features are arranged into a 2D
matrix sequentially.

1

9

8

7

6

39
5

10

11 13

12

1

2

14
4

3 18 17

15

16

25 26

27

28 29

19

24

21 22

23

20

35

5
342

31

32

36

38
9

8

6

4
7

3

37

30
10 Region 1

Region 2

Region 3

Fig. 6. IEEE 39-bus system.

TABLE IV
TRAINING AND TESTING SETS OF IEEE 39-BUS SYSTEM

Set type

Training

Testing

Number of
stable sample

5471

744

Number of
unstable sample

3529

456

Total number of
sample

9000

1200

TABLE V
STRUCTURAL PARAMETERS OF SUBCLASS CNNS

Subclass CNN

P-CVPFI

Q-CVPFI

U-CVPFI

k1

5

6

6

k2

10

12

12

l1

3

5

4

l2

3

5

4
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Feature set 2: the original features are converted into CVP‐
FIs by the proposed method.

The prediction accuracy of the classification subnet is
shown in Fig. 7.

The comparison results show that the accuracy of the mod‐
el with feature set 2 is significantly higher than that of the
model with feature set 1, indicating that the topology and
power flow information contained in CVPFIs can accurately
reflect the operation state of the system.

Then, U-CVPFI with the best classification performance
is taken as the input, and DT, SVM and MLP classifiers are
selected for comparison. DT selects the C5.0 algorithm, the
optimal structure parameters of SVM are determined by 5-
fold cross-validation, and the kernel sizes of the four fully
connected layers in MLP classifier are 100, 50, 10 and 2, re‐
spectively. Table VI shows the performance of different clas‐
sifiers for the testing datasets.

Table VI shows that CNN performs the best and has the
highest prediction accuracy, indicating that the local connec‐
tion and weight sharing features of the convolutional layer
in the CNN have a strong ability to extract features from im‐
ages. Moreover, different numbers of classifiers are selected
for integration, and the prediction accuracies of each sub‐
class CNNs for the testing datasets are shown in Fig. 8.

As the number of subclass CNNs increases, the prediction
performance improves rapidly. Only 4 individual integrated
CNN classifiers can achieve high accuracy. This is because
the misclassified samples can be corrected after comprehen‐
sive judgment by multiple classifiers. However, restricted by
the input feature information, the prediction performance is
basically similar when more than 6 classifiers are integrated.
Considering the calculation speed and prediction perfor‐
mance, n is set as 4 for each kind of CVPFI.

Besides, three different index prediction methods are con‐
sidered to further compare the effectiveness of the proposed
comprehensive network.

1) Method 1: the stable and unstable indices are predicted
directly for the original unclassified samples.

2) Method 2: the original samples are divided into the sta‐
ble and unstable categories through the classification net‐
work, and the corresponding indices are predicted.

3) Method 3: the indices of the samples are predicted by
the proposed comprehensive network in this paper.

The parameters of the CNN regression model in the pre‐
diction subnet are the same as those of the classification
model, and the predicted index error for each generator is
shown in Fig. 9.

Subclass CNN

95.0

95.5

96.0

96.5

97.0

97.5

Feature set 1; Feature set 2

AC
 (%

)

U-CVPFIQ-CVPFIP-CVPFI

Fig. 7. Prediction accuracy of subclass CNNs.

TABLE VI
ASSESSMENT RESULTS OBTAINED BY DIFFERENT CLASSIFIERS

Classifier

DT

SVM

MLP

CNN

AC (%)

95.42

96.08

96.25

97.33

FA (%)

3.76

3.36

3.23

2.28

FD (%)

5.92

4.82

4.61

3.29

1 2 3 4 5 6 7 8 9 10

AC
 (%

)

U-CVPFI
Q-CVPFI
P-CVPFI

No. of subclass CNNs

97.2

97.4

97.6

97.8

98.0

98.2

Fig. 8. Prediction accuracy of subclass CNNs.
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We can observe that the performances of method 2 and
method 3 are significantly better than that of method 1. The
main reason is that if the raw training samples are not classi‐
fied, they may not be sent into the subnet of the correspond‐
ing type. In contrast, method 2 and method 3 can make the
subnet of each type more targeted to the samples of the cur‐
rent class than method 1, and the learning efficiency of the
prediction subnets can be improved. The performances of
different methods are shown in Table VII.

We can observe that method 3 has the best performance,
and its false dismissal rate is substantially lower than that of
method 2. The reason lies in the cross-checking and cross-
correction of the uncertain samples, which can accurately
predict the stability indices of critical samples. As a result,
the proposed comprehensive network achieves great predic‐
tion performance.
3) Analysis of Model Adaptivity

Since the training and testing samples are randomly select‐
ed from a total dataset, the operation conditions in the test‐
ing set may exist in the training set. However, in practical
applications, the operation modes cannot be the same as
those of the offline simulation scenarios. Therefore, it is nec‐
essary to verify the adaptivity of the proposed model to dif‐
ferent scenarios.

Firstly, the new testing sets are constructed by setting dif‐
ferent load levels, simulating the variation in operation situa‐
tion. The performances of the proposed model for those new
testing sets are shown in Table VIII.

Table VIII shows that the proposed model performs well
when the operation condition changes. Then, the system load
level is set as 80%-120% of the base load, and the perfor‐
mances of the model with different network configurations
are shown in Table IX. Table IX shows that the model can
produce accurate prediction when the topology changes. In
particular, when region 1 has been split from the original
system (dataset 5), the accuracy of the model is still up to
97.42%, indicating that the proposed model has strong gener‐
alizability.

4) Analysis of Model Conservatism
Table X shows the comparison of the performances before

and after the improvement of the cross-entropy loss function.

After the improvement of the loss function, the classifier
performs better and has a lower false dismissal rate, indicat‐
ing that the correction of the weight coefficient can effective‐
ly enhance the ability of the model to fit unstable samples.

To further reduce the number of false positive samples,
the discriminative threshold γ of the classification model can
be adjusted, and the evaluation indices of the comprehensive
network with different values of γ are shown in Fig. 10.

As shown in Fig. 10, as γ increases, the number of false
positive samples decreases gradually. There are no false posi‐
tive samples (FD = 0) when γ increases to 0.85, indicating
the effectiveness in setting the threshold. A higher value of γ
also gives rise to more false negative samples, resulting in a
reduction of accuracy. However, the false negative samples
have little impact on the stability of the power system.
When γ is set to be 0.85, the accuracy only drops to
97.33%, which basically meets the requirement.

In an actual operation, the dispatcher can select a reason‐
able threshold. By paying attention to the prediction accura‐

TABLE IX
PREDICTION RESULTS OF TESTING SETS WITH DIFFERENT NETWORK

CONFIGURATIONS

Testing set

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Network configuration

All the lines are in service

Line 2-3 is out of service

Lines 2-3 and 6-11 are out of service

Lines 2-3, 6-11 and 4-14 are out of service

Lines 2-3, 8-9 and 26-27 are out of service

AC (%)

98.50

98.33

98.08

97.75

97.42

Err

0.2246

0.2521

0.2904

0.3157

0.3513
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Fig. 10. Assessment results with different discriminative thresholds.

TABLE VII
ASSESSMENT RESULTS OBTAINED BY DIFFERENT PREDICTION METHODS

Prediction method

Method 1

Method 2

Method 3

AC (%)

96.92

97.83

98.75

FA (%)

2.55

1.88

1.21

FD (%)

3.74

2.63

1.32

Err

0.9638

0.4371

0.2246

TABLE VIII
PREDICTION RESULTS OF TESTING SETS WITH DIFFERENT POWER FLOWS

Testing set

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Fluctuation range
of base load (%)

80-120

100-150

150-200

200-300

AC (%)

98.50

98.16

97.83

97.58

Err

0.2246

0.2597

0.3053

0.3374

TABLE X
COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS

Cross-entropy loss function

Before improvement

After improvement (μ= 1.56)

AC (%)

97.75

98.17

FA (%)

1.88

1.75

FD (%)

2.85

1.97
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cy, γ can be set to be a low value. Moreover, γ can be set to
be a high value to avoid unstable samples being falsely iden‐
tified as stable.
5) Analysis of Model Interpretability

The trained CNN regression model is taken as the object
to be explained. Um and θ are selected as the training set of
the surrogate model. The kernel parameter of the surrogate
model is δ= 3. By power grid searching, α= 0.5 and λ= 0.4
are finally obtained as the general parameters.

Firstly, 50 samples are randomly selected from the testing
set to construct the surrogate model, and the relative error
between the surrogate model and the original model is
shown in Fig. 11, where the horizontal axis is the neighbor‐
hood range ϕ of the samples that follow N(x0ϕΣ).

When ϕ is less than 1, the surrogate model with the larg‐
est M value has the highest fitting accuracy, which decreases
when ϕ increases further. On the whole, there is little rela‐
tive error, which proves the rationality of the proposed surro‐
gate model.

Then, the dataset Xc, whose loads in regions 1, 2 and 3
are 120%, 100% and 80% of the base load levels, respective‐
ly, is selected from the testing set. One of the data points is
selected from Xc for interpretation (M = 40, ϕ= 0.5), and the
variables with the greatest absolute sensitivity values are
shown in Table XI.

The load of region 1 is the largest in Xc and has a great
impact on the transient stability of the system. In Table XI,
the variables of region 1 have the greatest sensitivities to the

transient stability margin. Meanwhile, the power is transmit‐
ted from region 3 to region 1, where the transmission chan‐
nel is relatively important. Table XI shows that the influenc‐
es of bus voltage and line power (proportional to θ) on chan‐
nels are relatively large, which is consistent with the reality.
Therefore, the interpretable model reveals the influence of
the state variable on the stability, which enhances the accura‐
cy of the prediction results.

B. IEEE 118-bus System

IEEE 118-bus system is used to further verify the applica‐
bility of the proposed method in a complex power grid. The
created anticipated contingency sets are three-phase faults on
the main transmission lines, and the fault clearing time is
varied from 0.14 s to 0.18 s to obtain a total of 13460 con‐
tingencies. The ratio of the training samples to the testing
samples is approximately equal to that of IEEE 39-bus sys‐
tem, as shown in Table XII.

The construction method of the samples is the same as
that of IEEE 39-bus system, which includes three kinds of
CVPFIs and the stability or instability indices of 54 genera‐
tors with the most severe faults. The parameters of the pro‐
posed model are optimized by PSO, and the performance of
the model in different systems is shown in Table XIII.

We can observe that the model in IEEE 118-bus system
still achieves high prediction performance, which verifies
that the proposed method can be applied to more complex
power grids. Moreover, the conservatism of the model can
be further improved by adjusting the discriminative thresh‐
old γ. According to the test, there are no false positive sam‐
ples (FD = 0) when γ increases to 0.83. The accuracy is still
97.5%, which meets the operation requirements.

In addition, the testing time of IEEE 39-bus and IEEE
118-bus systems are 226.52 s and 372.08 s, respectively,
which is slightly long but still acceptable because the train‐
ing process is conducted offline. Considering the time delay
of data transmission (taking 50 ms as an example), the test‐
ing time of IEEE 39-bus and IEEE 118-bus systems for one
sample are 0.054 s and 0.055 s, respectively, which can
meet the requirements of online TSA. In practical applica‐
tions, the computation time can be reduced by using an opti‐
mized code in a lower-level programming language.
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Fig. 11. Error of surrogate models.

TABLE XI
INTERPRETATION RESULTS OF SURROGATE MODEL

Feature

Um30

Um18

θ25-26

θ1-39

θ14-15

Um37

θ6-11

Um39

ωi

0.026

-0.024

0.023

0.023

-0.022

0.020

-0.019

0.018

Feature

θ3-25

Um9

Um5

θ8-9

Um23

θ26-27

θ3-18

Um21

ωi

0.016

0.014

0.013

-0.011

0.009

-0.008

-0.007

0.006

TABLE XII
TRAINING AND TESTING SETS OF 118-BUS SYSTEM

Set type

Training

Testing

Number of
stable sample

7176

973

Number of
unstable sample

4684

527

Total number
of sample

11960

1500

TABLE XIII
ASSESSMENT OF PREDICTION RESULTS

System

IEEE 39-bus

IEEE 118-bus

AC (%)

98.75

98.67

FA (%)

1.21

1.34

FD (%)

1.32

1.52

Err

0.2246

0.2313
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VI. CONCLUSION

A novel methodology for online stability margin assess‐
ment is proposed in this paper. Based on a GIS, a computer-
vision-based power flow image is proposed as the input to
extract the power flow and topology information of the sys‐
tem. A comprehensive neural network is established to pre‐
dict the generator stability indices under the anticipated con‐
tingencies. Through the pre-classification of the input sam‐
ples and checking and correcting of the uncertain samples,
the prediction accuracy of the proposed model is improved
and the misjudgment near the stable boundary is avoided as
far as possible.

The major advantage of the proposed methodology is that
only steady-state information is used in the online stability
margin prediction process, which can avoid the time con‐
sumption of simulated calculations and provide the power
grid dispatchers with operation reference.

In future research, we will further investigate the essential
factors that affect generator stability indices, aiming to estab‐
lish practical and detailed strategies for preventive control.
Deep reinforcement learning is a potential measure to carry
out the studies on preventive control.
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