
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

Power System Flow Adjustment and Sample
Generation Based on Deep

Reinforcement Learning
Shuang Wu, Wei Hu, Zongxiang Lu, Yujia Gu, Bei Tian, and Hongqiang Li

Abstract——With the increasing complexity of power system
structures and the increasing penetration of renewable energy,
the number of possible power system operation modes increases
dramatically. It is difficult to make manual power flow adjust‐
ments to establish an initial convergent power flow that is suit‐
able for operation mode analysis. At present, problems of low
efficiency and long time consumption are encountered in the
formulation of operation modes, resulting in a very limited
number of generated operation modes. In this paper, we pro‐
pose an intelligent power flow adjustment and generation mod‐
el based on a deep network and reinforcement learning. First, a
discriminator is trained to judge the power flow convergence,
and the output of this discriminator is used to construct a value
function. Then, the reinforcement learning method is adopted
to learn a strategy for power flow convergence adjustment. Fi‐
nally, a large number of convergent power flow samples are
generated using the learned adjustment strategy. Compared
with the traditional flow adjustment method, the proposed
method has significant advantages that the learning of the pow‐
er flow adjustment strategy does not depend on the parameters
of the power system model. Therefore, this strategy can be auto‐
matically learned without manual intervention, which allows a
large number of different operation modes to be efficiently for‐
mulated. The verification results of a case study show that the
proposed method can independently learn a power flow adjust‐
ment strategy and generate various convergent power flows.

Index Terms——Deep reinforcement learning, power flow ad‐
justment, system operation mode, sample generation.

I. INTRODUCTION

THE operation modes of a power system are the overall
technical schemes for power system production and op‐

eration formulated by the power dispatching department. As
the scale of power grids, the proportion of renewable energy

access and the diversity of power generation have increased,
the modes of operation and other characteristics of power
systems have also undergone significant changes [1]. Given
the structural parameters and load conditions of a power
grid, a reasonable operation mode must be determined in
terms of the on-off modes of the generators, which must sat‐
isfy the requirement that the power flow calculation result is
convergent. For a complex power system, it is very difficult
to find a reasonable way to coordinate the outputs of the
generators [2], and an excessive load or an unreasonable pa‐
rameter configuration will usually lead to difficulty in reach‐
ing power flow convergence [3]. The traditional method of
operation mode formulation for a power system is based on
manual adjustment; specifically, each generator is manually
adjusted in accordance with the operator’s experience to ob‐
tain the initial power flow for an operation mode. However,
this method of power flow adjustment is labor-intensive and
inefficient, and cannot adapt to the complex and variable
conditions encountered during actual operation.

The basic premise of power system operation mode formu‐
lation is to achieve convergent power flow conditions, and
the purpose of power flow adjustment is to establish a con‐
vergent power flow state that basically satisfies the operation
requirements of the power system. Reference [4] has found
that as the load increases, the number of power system flow
solutions is reduced in pairs until there is no solution. It is
common to set initial values of active power and reactive
power for the generators before calculating the power flow.
If these initial values are set rationally, the power flow solu‐
tion will converge. The set of initial values that can yield a
convergent flow solution formulates the feasible region.
When there is no power flow solution, it is necessary to ad‐
just the power flow equation into the feasible region, i.e., ad‐
just the initial active and reactive power flows of the genera‐
tors. Therefore, the focus of power flow adjustment is to ad‐
just a power flow scenario with no solution to a solvable
one in as few steps as possible. Traditional power flow ad‐
justment methods include sensitivity methods and nonlinear
programming methods [5] - [10]. Reference [5] has proposed
and defined an index for measuring the degree of insolvabili‐
ty of the power flow equation. The sensitivity to various
means of adjustment can be calculated on the basis of this
index, and the power flow can then be adjusted in accor‐
dance with this sensitivity. The sensitivity adjustment meth‐

Manuscript received: April 17, 2020; accepted: September 22, 2020. Date of
CrossCheck: September 22, 2020. Date of online publication: November 26, 2020.

This work was supported by the Science and Technology Project of the State
Grid Corporation of China (No. 5400-201935258A-0-0-00), and the National
Natural Science Foundation of China (No. 51777104).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

S. Wu, W. Hu (corresponding author), and Z. Lu are with the Department of
Electrical Engineering, Tsinghua University, Beijing, China (e-mail: wus16@
mails. tsinghua. edu. cn; huwei@mail. tsinghua. edu. cn; luzongxiang98@tsinghua.
edu.cn).

Y. Gu, B. Tian, and H. Li are with State Grid Ningxia Electric Power Co.
Ltd., Yinchuan, China (e-mail: guyujia@nc.sgcc.com.cn; tianbei@nx.sgcc.com.
cn; lihongqiang@nx.sgcc.com.cn).

DOI: 10.35833/MPCE.2020.000240

1115

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

od proposed in [6] is applicable to voltage collapse caused
by a large disturbance or an increase in load power of node.
In [7], a sensitivity index similar to that in [5] is adopted,
and a method based on the left eigenvector is adopted to re‐
store the solution to the power flow equation. In [8], the
weak link of the system is first calculated, and the sensitivi‐
ty of the voltage phase angle to the injected power at a node
is also calculated. Then, the control method is selected in ac‐
cordance with this sensitivity. In [9], a power flow problem
with no solution is regarded as a nonlinear programming
problem, and a reduction of the active power levels of all
buses is used as the objective function. In this nonlinear pro‐
gramming problem, the power flow equation serves as an
equality constraint, and the control and state variable con‐
straints are imposed as inequality constraints. Finally, the
problem is solved using the interior point method. In [10],
the load level is first reduced, and the characteristic index of
the system is calculated to identify the weak link. Then, the
sensitivity of each generator and each reactive power com‐
pensation equipment to the power flow on the weak link is
calculated. The load level is restored by adopting adjustment
measures on the basis of this sensitivity.

The above studies serve as a reference for the manual ad‐
justment of power flows from the perspective of the power
system mechanism, but the following problems remain:

1) For a large-scale power grid, the parameters of the sys‐
tem model are complex, and a high proportion of renewable
energy access causes variable system characteristics, which
makes it extremely difficult to explicitly express the sensitiv‐
ity.

2) Using traditional methods, it is difficult to meet the
high demand for power system operation modes, i.e., to effi‐
ciently generate a large number of convergent power flow
samples.

References [11] and [12] propose approaches that can be
used to automatically generate and adjust power flows, but
limitations still remain. In [11], a DC flow model is used. In
actual tests, convergence occurs, and this phenomenon is
more obvious with the increasing scale of power grid. In
[12], the flow adjustment procedure consists of splicing the
flow in each region such that the flow of the whole system
converges. The basic flow data for each region serve as the
premise for this procedure. These approaches rely on system
model data, and the adjustment procedure is not intelligent.
Therefore, to overcome the problems posed by power flow
adjustment for the operation modes of the current and future
power systems, more intelligent and refined means of power
flow adjustment are urgently needed to cope with the actual
variable operation states of power systems.

As a comprehensive discipline and technology, artificial
intelligence has enabled remarkable achievements in many
research fields in recent years, and its performance is driven
by basic theoretical research on big data and high-quality
computer resources [13]. Deep learning, reinforcement learn‐
ing and their combination have become popular topics in cur‐
rent research. Deep learning has achieved remarkable suc‐
cess in image analysis [14], speech recognition [15], natural
language processing [16] and other fields, while deep rein‐

forcement learning has reached or even surpassed the human
performance in video games [17] and chess games [18].
With the development of smart grids and access to wind
power and photovoltaic power at high proportions, the envi‐
ronment of power system operation has become increasingly
uncertain and complex, and traditional analysis methods can‐
not meet the needs of future smart grid development [13].
As alternative approaches, deep learning and reinforcement
learning offer significant advantages in dealing with com‐
plex problems such as classification, prediction, control and
planning and have consequently received increasing attention
in the field of power systems [19] for applications such as
load forecasting [17] - [21], safety and stability control [22],
[23], and economic dispatching [24]. A deep belief network
(DBN) embedded with a parametric copula model is pro‐
posed in [20] for predicting hourly loads based on one-year
data in urban Texas, USA. In [21], two long short-term mem‐
ory (LSTM) models based on a neural network structure for
forecasting hourly and minute-level loads are proposed, and
the results show that an LSTM model based on the sequence-
to-sequence approach is superior to a standard LSTM model
for minute-level load prediction. In terms of security and sta‐
bility control, [23] combines deep learning and reinforce‐
ment learning and adopts dual Q-learning and competitive Q-
learning models to construct a cut-off strategy for power
grid emergency control. Reference [23] also addresses a con‐
trol problem. It proposes a practical semisupervised group
prelearning method for the control performance standard
(CPS) control strategy based on the Q-learning algorithm,
which solves the problem of excessively fast convergence
during the trial-and-error stage of the controller. In addition,
[24] uses a combination of a tracking method and reinforce‐
ment learning to solve the economic dispatching problem.
This algorithm has obvious advantages in terms of conver‐
gence flexibility and computation time. In recent studies,
some scholars have tried to apply deep reinforcement learn‐
ing method to power flow control and optimization. In [25],
a simple Internet of Things system composed of one base
station and multiple energy harvesting user equipment is
studied. An actor-critic deep Q-network is proposed to deal
with the access and continuous power control problem. This
paper does not focus on power system level, although it uses
state-of-art deep reinforcement learning. Aiming at the prob‐
lem of coordination of distribution networks, [26] uses deep
deterministic policy gradient method to manage power flow
and control voltage of distribution networks. However, the
scale of the case in this paper is small and it cannot prove
the universality of the method. In [27], adaptive mapping
strategy and Markov decision process (MDP) is formulated
to solve the operation state calculation problem. Deep rein‐
forcement method is trained to learn optimal adjustment
strategy. However, this method still needs much manual in‐
tervention, and reactive power constraints are not consid‐
ered. The proposed method can only deal with a certain tie-
line, and cannot deal with various operation modes.

Power system operation mode is based on power flow ad‐
justment. To realize the intelligent adjustment of power flow,
this paper proposes a whole framework of intelligent includ‐

1116

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

ing three parts: flow convergence discrimination, flow adjust‐
ment and flow generation, as shown in Appendix A Fig. A1.
During the entire flow adjustment process, the environment
model of power system is constructed. In flow adjustment
part, the adjustment policy is learned fully automatically,
and the same policy can also be used to generate convergent
flows without much change. The whole framework is con‐
structed combining the features of power system and artifi‐
cial intelligence. The details are discussed in the next section.

In this paper, a three-part power flow adjustment frame‐
work to address power flow convergence, automatic power
flow adjustment and sample generation is proposed. In all,
the proposed framework uses deep learning and reinforce‐
ment learning method to adjust power flow more intelligent‐
ly without much manual intervention, and can automatically
generate various converged power flow samples. The remain‐
der of this paper is organized as follows. Section II introduc‐
es the basic theories and models of deep learning and rein‐
forcement learning. Section III describes the proposed core
framework and analyzes the three parts of the framework in
detail. In Section IV, the China Electric Power Research In‐
stitute (CEPRI) 36-bus and IEEE 118-bus test systems are
used to demonstrate the proposed method. Finally, Section V
presents the conclusions of the paper.

II. DEEP LEARNING AND REINFORCEMENT LEARNING

A. Deep Learning and Neural Network

Deep learning is a specific learning method applied in arti‐
ficial intelligence. As a perceptron model with multiple hid‐
den layers, a deep neural network (DNN) is a typical model
used for deep learning. Compared with a single-layer percep‐
tron model, a fully connected neural network with multiple
hidden layers has a more complex expression capability. Fig‐
ure 1 shows the typical general structure of a DNN.

The information in the feedforward neural network is
transmitted from the uppermost layer to the lower layers,
and the output of each upper layer is the input to the next
lower layer. The different layers of a DNN can be divided in‐
to an input layer, several hidden layers, and an output layer.
The numbers of each layer and their neurons are specially
designed. Suppose that x l - 1 is the output of layer l - 1; W l is
the weight matrix between layers l and l - 1; bl is the bias
vector; and σ is the activation function. The output of layer l
is:

x l - 1 = σ (W l x l - 1 + bl) (1)

To enable neurons to process nonlinear data, continuous
nonlinear functions such as the ReLU function, are typically
used as activation functions. The activation function of the
output layer is selected in accordance with the problem type
(e.g., the sigmoid activation function is used for binary clas‐
sification problems, and the softmax activation function for
multiclass classification problems). Neural networks are gen‐
erally trained using the backpropagation algorithm. For some
deep-layer networks that are difficult to train, unsupervised
pre-training combined with supervised fine-tuning can be
used for further training [28]. In addition, the selection of
the loss function is also related to the activation function.

B. Fundamental Theory and Model of Reinforcement Learn‐
ing

Reinforcement learning is a kind of machine learning
method that is different from both supervised learning and
unsupervised learning. Unlike unsupervised learning, it con‐
siders reward values in addition to the data characteristics
rather than the data characteristics alone. However, the re‐
ward values considered in reinforcement learning are also
different from the labels used in supervised learning in that
they are not specified before training but rather are generat‐
ed only during the training process itself, after a certain de‐
lay. Table I summarizes the differences between reinforce‐
ment learning and supervised learning.

The basic elements of a reinforcement learning model in‐
clude the actions of the agent, the states of the environment
and the rewards from the environment. The agent determines
the current state of the environment and chooses an appropri‐
ate action in accordance with a certain strategy. The environ‐
ment will then change its state and provide the current re‐
ward that results from the action. Then, the agent repeats the
above process, thus interacting with the environment. Figure
2 shows a basic reinforcement learning model.

A reinforcement learning problem can be modeled as an
MDP, which consists of four elements:

M = {SAPR} (2)

Agent

Environment

State
st

Action
at

Reward rt

Fig. 2. Reinforcement learning model.

Input
layer

Hidden layer

Output
 layer

…

…

…

…

…

…

…

Fig. 1. Structure of a DNN: input layer, hidden layer, and output layer.

TABLE I
COMPARISON BETWEEN REINFORCEMENT LEARNING AND SUPERVISED

LEARNING

Supervised learning

Labels required

Static training process

No feedback

Used for decision-making

Reinforcement learning

Labels not required

Dynamic training process

Delayed feedback

Used for perception

1117

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

where S denotes the set of all states of the environment; A is
the set of actions that the agent can execute, with at denot‐
ing the action that the agent executes at time t; P is the prob‐
ability distribution function of the state transitions, with
P(st + 1|st,at) denoting the probability of the environment
transition from a state st to the next state st + 1 after the
agent executes action at; and R is the instantaneous reward,
with R(st,at) denoting the instantaneous reward provided to
the agent after it executes action at in state st. Reinforcement
learning constructs a mapping from environmental states to
actions, which allows the agent to obtain its maximum accu‐
mulative reward through its interaction with the environ‐
ment. R can be formulated as the accumulative reward from
the start time t to the end time T, as shown in (3), where γ is
a discount factor. Figure 3 illustrates the MDP concept.

Rt =∑
t' = t

T

γt' - trt (3)

The ultimate goal of reinforcement learning is to learn the
optimal strategy for executing actions, i. e., the probability
with which action a should be executed in state s, as shown
in (4). To solve for this optimal strategy, a state-action value
function is defined, as shown in (5). Gt is the sum of all re‐
wards (considering the discount factor) from a certain state
to the termination state, as shown in (6). According to the
expression for the state-action value function, a recursive for‐
mulation of this function, i.e., the Bellman equation, can be
deduced as shown in (7).

π (a|s)=P (at = a|st = s) (4)

Qπ (sa)=Eπ [|Gt st = sat = a] (5)

Gt =∑
i = 1

n

γi - 1 Rt + i (6)

Qπ (sa)=Eπ (Rt + 1 + |γQπ (st + 1at + 1) st = sat = a) (7)

where Eπ is the mathematical expectaion of the reward value
under policy π; and Qπ is the state-action value function of
this reinforcement learning model.

Solving the reinforcement learning problem is equivalent

to finding the optimal strategy π*, and the optimal state-ac‐
tion value function corresponds to the most valuable one of
all actions generated by all strategies. The optimal state-ac‐
tion value function and the optimal strategy based on the
state-action value function are shown in (8) and (9), respec‐
tively.

Qπ* (sa)= max
π

Qπ (sa) (8)

π* (a|s)= {1 a= argmax Q* ()sa
0 else

(9)

C. Temporal Difference Methods and State-action-reward-
state-action (SARSA) Algorithm

For practical reinforcement learning problems, it is unreal‐
istic to solve the state-action value function using the recur‐
sive iterative Bellman equation or a dynamic programming
method because the state space of the actual environment is
often very large, resulting in an enormous amount of calcula‐
tion. In addition, in most cases, the state transition model of
the environment, i.e., the state transition probability P, is un‐
known. Therefore, a model-independent method is usually re‐
quired in practical cases. Monte Carlo and temporal differ‐
ence are two typical kinds of model-independent methods.
Unlike temporal difference method, Monte Carlo method re‐
quires the final, complete sequence of states, without which
the problem cannot be solved. In addition, the variance of
the actual cumulative return G is relatively large. Although
the value obtained through temporal difference method is bi‐
ased, it has a small variance and can be obtained ahead of
the final result. In particular, it can be continuously learned
in the environment. Therefore, the quantitative status esti‐
mates can be updated more quickly and flexibly. The itera‐
tive expression for the value function in a temporal differ‐
ence method is shown in (10), where α∈ (0,1).

Q (sa)=Q (sa)+ α (G -Q (sa)) (10)

The SARSA algorithm is one example of a temporal dif‐
ference method. It includes five elements: S, A, R, γ, and the
exploration rate ε. First, an action a is selected for the cur‐
rent state s based on the ε-greedy method, and the environ‐
ment transitions to the next state s' and provides feedback in
the form of the instantaneous reward R. Then, again based
on the ε-greedy method, another action a' is selected for the
state s' to update the value function. The formulas for the
value function update and the ε-greedy method of the SAR‐
SA algorithm are shown in (11) and (12), respectively.

Q (sa)=Q (sa)+ α (R+ γQ (s'a')-Q (sa)) (11)

π (a|s)= {ε/m+ 1- ε a* = argmax Q* ()sa
ε/m else

(12)

where m = |A| is the number of actions in the action set; and
a* is the action that maximizes Q.

III. INTELLIGENT ADJUSTMENT OF POWER SYSTEM FLOW

A. Overall Framework

The overall framework for intelligent power system flow

S0

St

St+1

r2

r1

rt

rt+1

a1

at

a0

Rt

R2
R1

S1

S2

…

…

…

Fig. 3. MDP.

1118

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

adjustment designed in this paper includes three compo‐
nents: power flow convergence judgment, power flow adjust‐
ment, and power flow generation. The first component pro‐
vides the necessary information for power flow adjustment.
The second component provides an appropriate strategy for
adjusting a nonconvergent power flow scenario to achieve
convergence and guides the process of sample generation.
This component is the focus of this paper. The third compo‐
nent is power flow sample generation, which corresponds to
the final purpose of the framework. Figure 4 shows a sche‐
matic diagram of the overall framework.

The power flow convergence discriminator is trained with
the samples in a flow database to judge convergence. The
power flow adjustment component and the power flow gener‐
ation component are closely related. The power flow discrim‐
inator provides information for the adjustment component,
and the adjustment strategy trained by this component
guides the power flow generation process to supplement the
flow database with additional convergent power flow sam‐
ples. The remainder of this section will introduce each com‐
ponent of the framework in detail.

B. Power Flow Convergence Judgement Based on DNN

The essential goal of power flow convergence judgment is
to obtain a convergent solution to (13) with given initial
power flow settings.

Pi - jQi

U̇i

=∑
j = 1

n

YijU̇j i = 12...n (13)

where n is the number of buses in the system; Pi, Qi, and Ui

are the active power, reactive power, and voltage of bus i, re‐
spectively; and Yij is the admittance of buses i and j.

Currently, mature commercial software can quickly per‐
form power flow calculation and indicate whether power
flow is converged. For example, MATPOWER can calculate
the power flows for the IEEE standard test systems, and the
power system analysis software package (PSASP) can calcu‐
late the power flow of a real system with more than 40000
buses. However, when such a commercial software package
is fed with a set of initial power flow values, it can deter‐
mine only whether the power flow scenario is convergent.
For a nonconvergent flow scenario, this software cannot pro‐
vide much information about how to adjust the initial set‐
tings to achieve convergence. Although in a small system, in‐
cluding slack variables in the formula can help to roughly

identify the causes of nonconvergence, it is not realistic to
build such a formula to describe a whole large power sys‐
tem, and therefore, the necessary adjustments must usually
be made on the basis of the operator’s knowledge and expe‐
rience, not only with the assistance of commercial software.

If sufficient information can be obtained before flow con‐
vergence judgement, it will be more advantageous to set the
initial value so as to make the power flow calculation con‐
vergent. Therefore, to judge flow convergence and provide
additional information, this paper proposes the use of a
DNN as a flow discriminator. This is a suitable approach be‐
cause flow judgment is actually a binary classification prob‐
lem. The output of a DNN is usually used only for category
determination. However, since this output is probabilistic in
nature, it can provide additional information about the differ‐
ent categories. For a binary classification problem, the num‐
ber of dimensions of the DNN output layer is set to 1. As
one of the most commonly used activation functions in bina‐
ry classifiers, the sigmoid function is adopted here. The out‐
put result can be expressed as shown in (14).

fy (x)=
1

1+ e-x
(14)

The output is not a binary value but rather a continuous
value between 0 and 1. Therefore, it can be regarded as a
probability. This probabilistic output indicates how close the
input is to the target category. As a flow convergence dis‐
criminator, the DNN takes the initial settings X (i.e., the ac‐
tive power P, reactive power Q, and voltage V of each gener‐
ator) as input. The output of the DNN is the convergence
probability of the input flow sample, as shown in (15),
where probi is the output and fD is the DNN discriminator it‐
self. The probability can be used in the reinforcement learn‐
ing process.

probi = fD (X) (15)

Before training the discriminator, the flow samples should
be prepared in advance. In this paper, different basic flows
are obtained by randomly setting the active and reactive
power of generators and loads. Specifically, after selecting a
base power flow, the generator output is set to be between
80%-120% of the current level, while load level is set to be
60%-120% of the current level. The convergence of flow is
determined by flow calculation, and the flow sample is la‐
beled according to the calculation result.

In the training process of discriminator, the adaptive mo‐
ment estimation (Adam) optimization is used. The basic
steps are as follows:

Step 1: initialize parameters θ, m0, v0.
Step 2: set t = t + 1.
Step 3: update parameters:

gt =Ñθ ft (θ t - 1) (16)

mt = β1mt - 1 + (1- β1) gt (17)

vt = β2vt - 1 + (1- β2) g 2
t (18)

m̂t =
mt

1- β t
1

(19)

 Flow
generation

All samples

Convergence
discriminator

Convergent
flows

Flow
convergence

judgment

Intelligent
flow

adjustment

Intelligent adjustment model

Non-
convergent

flows

Flow samples

Fig. 4. Overall framework for intelligent flow adjustment.

1119

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

v̂t =
vt

1- β t
2

(20)

θ t = θ t - 1 - α
m̂t

v̂t + ε
(21)

where t is the timestep; mt is the element of the first-mo‐
ment vector; vt is the element of the second moment vector;
m̂t and v̂t are intermediate variables of the calculation; f (θ) is
cross entropy loss function with θ; and α, β1, and β2 are pre‐
set parameters.

Step 4: if θ converged, end; otherwise, return to Step 3.

C. Power Flow Adjustment Model Based on Reinforcement
Learning

Reinforcement learning is usually applied to solve optimi‐
zation problems for time-related multi-stage decision-making
processes. Power flow adjustment is not this kind of prob‐
lem because if two consecutive actions are performed, the
specific sequence of these two actions has no effect on the
result of the power flow calculation. However, if a time fac‐
tor is artificially introduced, power flow adjustment can also
be regarded as a multi-stage decision-making process, and
the final adjustment strategy can be obtained by combining
the step-by-step strategies with the whole process.

To build a power flow adjustment model based on SAR‐
SA, a reinforcement learning model of the power system is
required. Table II shows the correspondence between the ele‐
ments of the power flow adjustment model and the elements
of the reinforcement learning framework.

The environment in the reinforcement learning framework
corresponds to the power system itself, and the set of envi‐
ronmental states corresponds to the active and reactive pow‐
er settings of the generators in the power system. Since the
loads are constant for the power flow adjustment problem,
the loads can be considered invisible to the environment.
The state set is shown in (22), where k is the number of PQ
node generators and l is the number of PV node generators.

S = {P1Q1P2Q2...PkQkPk + 1Pk + 2...Pk + l} (22)

The action set corresponds to the possible increases or de‐
creases in the values of the controllable variables, such as in‐
creases in the active and reactive power of the PQ node gen‐
erators or decreases in the active power of the PV node gen‐
erators, as shown in (23), where m denotes the number of
variables; X denotes a variable; and the subscript of X repre‐
sents the concrete action applied to X. In a given action vec‐
tor, only one variable is set to 1, and the rest are 0. The ad‐

justment procedure consists of many steps, and in each step,
if X1,up = 1, a specified value will be added to the variable
X1. The final action is equal to the sum of all actions in all
steps.

A= {X1upX1downX2upX2down...XmupXmdown} (23)

In the process of power flow adjustment, the instanta‐
neous reward value provided as the environmental feedback
after each action depends on the result of the power flow
convergence judgment and the system state. The feedback re‐
ward is related to the output of the discriminator. The re‐
ward is greater if the discriminator gives a larger output. Fur‐
thermore, during power flow calculation, considering the in‐
fluence of the reactive power balance, it is difficult for the
power flow solution to converge when the difference be‐
tween the reactive power of the generators and the reactive
power of the loads is too large. Therefore, the degree of reac‐
tive power balance in the initial configuration should be con‐
sidered when determining the reward value. The definition
of the reactive power balance is shown in (24). The numera‐
tor is the total reactive power of the generators, and the de‐
nominator is the total reactive power of the loads.

Bq =
∑Qgen∑Qload

(24)

The instantaneous reward is shown in (25).

ì

í

î

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

R=R1 +R2 +R3

R1 =
ì

í

î

ïï
ïï

r11 prob< p1

r12 p1 £ prob< p2

r13 prob³ p2

R2 =
ì

í

î

ïï
ïï

r21 Bq < b1 or Bq > b2

r22 b3 £Bq < b4

r23 b4 £Bq < b2

R3 = {r31 beyond limit

r32 else

(25)

where R1 is the reward corresponding to the convergence re‐
sult; R2 is the reward corresponding to the reactive power
balance. If the reactive power is relatively well balanced, the
reward will be large; R3 is the reward corresponding to the
generator output limit. If the output of a generator exceeds
its limit, a negative reward is returned to punish the previ‐
ous action; and pi and bi are parameters depending on the
specific characteristics of the problem.

D. Power Flow Adjustment Strategy Based on SARSA

The input to the SARSA algorithm includes the number of
iterations T, the state set S, the action set A, the discount fac‐
tor γ, the step size α, and the exploration rate ε. The output
is the state-action value Q corresponding to all the states and
actions. The learning process is as follows:

Step 1: randomly initialize all state-action values Q(s,a).
Step 2: set i = 1. If i < T:
1) Initialize s as the first state and a as the action selected

via the ε-greedy method in state s;
2) Execute action a. The state s changes to s', and a re‐

TABLE II
CORRESPONDENCE BETWEEN FLOW ADJUSTMENT MODEL AND

REINFORCEMENT LEARNING

Reinforcement learning

Environment

State set

Action set

Reward

Flow adjustment

Power system

P and Q values of generators

Increases or decreases in controllable variables

Defined by the discriminator and other rules

1120

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

ward R is returned;
3) Select action a' in state s' in accordance with the ε-

greedy method;
4) Update the state-action value Q(s,a) according to (11);
5) Set s' as the current state s and a' as the current ac‐

tion a;
6) If s is the final state, end the current iteration and let i =

i + 1. Otherwise, return to 2).
The learning process for the power flow adjustment strate‐

gy is shown in Fig. 5.

E. Power Flow Generation Model Considering Uncertainty

The purpose of intelligent power flow adjustment is to
generate a large number of convergent power flow samples
by learning an appropriate adjustment strategy. In the field
of video games, the environment of reinforcement learning
is often uncertain or invisible. By contrast, for power flow
adjustment, every definite action will lead to a definite
change in the environmental state. Therefore, the reinforce‐
ment learning process may finally converge to a definite
strategy, and thus, to a definite power flow state. To use the
learned strategy to generate power flow samples, the power
flow adjustment model is fine-tuned, and two types of uncer‐
tainty factors are added as follows: ① uncertainty of the en‐
vironmental states; ② uncertainty of the actions.

Since the active and reactive power levels of the genera‐
tors in the system are continuous variables, the actual num‐
ber of environmental states is infinite. However, an infinite
number of states cannot be considered in the SARSA algo‐
rithm. Based on the actual operation conditions of the power
system, the output of each generator can be divided into
three states, as shown in (26), where si is the ith state vari‐
able dimension. The uncertainty of the actions is reflected in
Xi_up and Xi_down. We set each value in a range in the form (a,
b), e.g., (0.2,0.4).

si =
ì

í

î

ïï
ïï

si1 0£ si < 0.5smax

si2 0.5smax £ si < 0.8smax

si3 0.8smax £ si £ smax

(26)

By introducing uncertainty of the states and actions, the
following effects are achieved: ① the number of environ‐
mental states is reduced, allowing reinforcement learning to
be applied to the realistic situation; ② different instances of
the same nominal environmental state may correspond to dif‐
ferent actual operation states of the system; ③ the same
strategy can produce different effects on the system and gen‐
erate different power flow samples.

IV. CASE STUDY

A. Case of CEPRI 36-bus System

1) System introduction and sample database
In this paper, the proposed method is verified based on

the CEPRI 36-bustest system. A diagram of the CEPRI 36-
bus test system is shown in Fig. 6.

The system includes 8 generators, 32 lines and 10 loads.
The generator outputs and loads have been randomly sam‐
pled, and the results are taken as the initial power flow set‐
tings while keeping the total active outputs of the generators
and the loads approximately equal. A total of 81037 samples
are generated, including 13185 convergent samples and
67875 nonconvergent samples. Hence, the proportion of con‐
vergent power flow samples is 16.3%. These samples are
used to train the power flow convergence discriminator. The
model training time is 17.7 min. The computer configuration
is as follows: an i7-6700 CPU and 8 GB of RAM.

2) Power flow convergence discriminator
A total of 10000 convergent samples and 40000 noncon‐

vergent samples are selected as the training set, and 3000
convergent samples and 12000 nonconvergent samples are
selected as the test set. Tensorflow 1.3 is used to build the
network. The DNN consists of one input layer, four hidden
layers and one output layer. The numbers of neurons in each
layer are 36, 16, 16, 8, 8, and 1, respectively. The input di‐
mensions are determined by the numbers of generators and
loads, and the output is the convergence probability of the in‐

Temporarily
reduce action set

Initialize Q

Start

 i= 1

Is iteration
i ended?

Initialize s as
the first state

Select action a

Select action a'

i > T ?i = i + 1

End

Y

N

Y
N

N

Y

Is
production limit

exceeded?

Implement
action a

State change from s
to s' and return R

Q(S,A)
ε-greedy

Q(S,A)
ε-greedy

Update Q(S,A)
s=s', a=a'

Fig. 5. Learning process for flow adjustment strategy.

G

G

G

G G

GGG

1 24

23

2

22

3

9

11

51

25
26 12

52
27 28

6
13

14

20

21 19

4

7 8

30 31 33

5

18
34

50

16 29

Fig. 6. Diagram of CEPRI 36-bus test system.

1121

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

put flow sample. To prevent overfitting during the training
process, a dropout layer is included after each hidden layer.
The Adam algorithm is used to optimize the loss function.
The parameters are set to default values of Tensorflow. The
learning rate is set to 0.001, and β1 and β2 are set to 0.9 and
0.99, respectively. To visualize the output result of each lay‐

er of the DNN, the t-SNE method is used to map the high-
dimensional input space and the high-dimensional representa‐
tion space of each hidden layer to a two-dimensional plane,
as shown in Fig. 7. Figure 8 shows the changes in accuracy
and loss value that have occurred during the training of the
DNN.

It can be observed from Fig. 7 that the convergent and
nonconvergent samples are clustered together in the original
input space and are not naturally separated. However, in hid‐
den layers of increasing depth, the DNN continues to learn
increasingly high-dimensional features extracted from the
original input, and these features are helpful for distinguish‐
ing the two types of samples. Finally, in the output layer, the
two types of samples are almost completely separated. Thus,
it is demonstrated that a simple classifier can achieve great
results in the representation space. Figure 8 shows that with
an increasing number of training iterations, the classification
accuracy gradually increases, and the loss value gradually de‐
creases. The accuracy reaches 93.6% at the 25th iteration, af‐
ter which it no longer increases significantly. Thus, it is
proven that the trained power flow discriminator can effec‐

tively distinguish between the power flow convergence and
nonconvergence based on the initial settings.

3) Intelligence power flow adjustment
For this case study, two samples are randomly selected

from the nonconvergent samples in the sample database for
a power flow adjustment test. The specific data of these two
power flow samples are shown in Appendix A Table AI. For
the initial power flow settings, all voltage amplitudes are set
to 1, and the reactive power levels of all PV node generators
are not considered. Therefore, these parameters are omitted
in the table. The parameters of SARSA process are as fol‐
lows: initial step size α is set to 0.5; initial exploration rate ε
is set to 0.5; discount factor γ is set to 0.2. The exploration
rate gradually decreases in the training process.

For each nonconvergent power flow sample, the number
of training iterations is set to 2500, and the number of ac‐
tions required in each iteration of convergence adjustment is
recorded. Figures 9 and 10 show the first 500 iterations of
the training process, and Figs. 11 and 12 show the last 200
iterations of the training process. It can be seen from the
above figures that during the initial stage of training for the
power flow adjustment model, the numbers of actions re‐
quired to achieve convergence are very large and vary great‐
ly. As seen in Fig. 9, the number of actions at the 200th itera‐
tion is more than 1500; at the 201st iteration, it becomes ap‐

Convergence; Non-convergence

30

20

10

D
im

en
sio

n
2

Dimension 1
D

im
en

sio
n

2

D
im

en
sio

n
2

-10

-20

-30
-30-40 40-20 -10 10 20 300

Dimension 1
-30-50 -40 40 50-20 -10 10 20 300

Dimension 1 Dimension 1
-30-50 50-10 10 30 -30-50 40-10-40 -20 10 300 20

Dimension 1
-30-40 40-20 -10 10 20 300

Dimension 1
(a)

(d) (e) (f)

(b) (c)

-30-40 40-20 -10 10 20 300

0

30
40
50

20
10

D
im

en
sio

n
2

D
im

en
sio

n
2

D
im

en
sio

n
2

-10
-20

-40
-30

0

30
40

20
10

-10
-20

-40
-30

0

30

40

20

10

-10

-20

-30

0

30
20
10

-10
-20

-40
-30

0

30
20
10

-10
-20

-40

40

-30

0

Fig. 7. Projections of internal space of DNN onto a two-dimensional plane. (a) Layer 0. (b) Layer 1. (c) Layer 3. (d) Layer 4. (e) Layer 5. (f) Layer 6.

A
cc
ur
ac
y

A
cc
ur
ac
y

Step
51 10 15 20 25 30

Step
51 10 15 20 25 30

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Fig. 8. Changes in accuracy and loss value during training.

1122

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

proximately 800; and at the next iteration, it exceeds 1000
again, which indicates that the model still requires further
training.

During the final stage of the training process, however,
the number of actions remains relatively stable at approxi‐
mately 20, which indicates that the state-action value func‐

tion has converged and an appropriate adjustment strategy
has been learned.

Nevertheless, it can be seen from Fig. 11 and Fig. 12 that
at some iterations, the numbers of actions required are still
much greater than 20. This can be attributed to the uncertain‐
ty introduced into the model and the characteristics of the
ε -greedy algorithm itself. Although the uncertainty has some
detrimental influence on the learning process, it is beneficial
for the intelligent generation of convergent power flow sam‐
ples. Table III presents the action sequences selected in the
last three iterations of training for the adjustment model.
There are two reasons for the differences in these action se‐
quences: one is the ε-greedy method used in action selec‐
tion, and the other is that the state-action function values of
different actions may be the same.

Figures 13 and 14 show the change of average reward of
each turn during the training process of the proposed model.

According to (19) and the case, the parameters are set as
follows: p1 = 0.8, p2 = 0.9, r11 =-30, r12 = 30prob, r13 = 50;
b1 = 0.6, b2 = 1.4, b3 = 0.8, b4 = 1.2, r21 =-80, r22 =-20 ×(1-
Bq), r23 = 0; r31 =-100, r32 = 0. The setting of negative param‐
eters is to give penalty to reactive power imbalance or gener‐
ator over-limit output. Figure 13 shows that in the initial
stages of training, the reward fluctuates and is mostly nega‐
tive. Figure 14 presents that at the end of training, the re‐
ward is stable at a relatively high level, which means that

TABLE III
ACTION SEQUENCES SELECTED IN LAST THREE ITERATIONS

Iteration

2293

2294

2295

Action No.

7, 17, 14, 14, 14, 14, 7, 7, 11, 11, 6, 0, 16, 0, 0, 16, 16,
0, 16, 1, 1, 14, 15

7, 14, 14, 14, 2, 16, 16, 16, 16, 7, 1, 16, 0, 16, 14, 15

11, 7, 14, 14, 14, 17, 14, 14, 11, 0, 16, 16, 16, 16, 16,
17, 16, 16, 4, 2, 2, 15

N
o.

 o
f a

ct
io

n

Turn
0 100 200 300 400 500

500

1000

1500

2000

2500

3000

Fig. 9. First 500 iteration of sample 1.

N
o.

 o
f a

ct
io

n

Turn
0 100 200 300 400 500

500

1000

1500

2000

2500

3000

Fig. 10. First 500 iteration of sample 2.

N
o.

 o
f a

ct
io

n

Turn
2100 2150 2200 2250 2300

200

0

400

600

800

1000

Fig. 11. Last 500 iteration of sample 1.

N
o.

 o
f a

ct
io

n

Turn
2100 2150 2200 2250 2300

200

0

400

600

800

1000

Fig. 12. Last 500 iteration of sample 2.

Re
w
ar
d

Turn
0 25 50 75 100 150125 200175

-80
-100

-60
-40
-20
0
20
40
60

Fig. 13. Average reward for first 200 iterations.

Re
w
ar
d

-20

0

20

40

60

Turn
2300 2350 2400 2450 2500

Fig. 14. Average reward for last 200 iterations.

1123

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

most of the flows are adjusted to convergence. A few nega‐
tive rewards are due to the randomness introduced in Sec‐
tion V.

4) Power flow generation
As mentioned in the above sections, the uncertainty fac‐

tors of the actions and states in the power flow adjustment
model can be used to generate convergent power flow sam‐
ples. Specifically, samples can be generated by executing the
same action sequence, or adjustment strategy, learned by the
model multiple times. Due to the uncertainty factors intro‐
duced into the model, different applications of the same strat‐
egy will have slightly different effects on the controlled ob‐
jects, thus leading to different system states and power
flows. As the learning process advances, the action sequence
selected in each iteration gradually becomes shorter until it
remains nearly stable. Then, the action sequence generated
in each iteration is recorded as a strategy, and multiple pow‐
er flow samples can be obtained by executing the same strat‐
egy many times. The proportion of convergent power flow
samples among the samples generated in this way is shown
in Fig. 15 and Fig. 16.

It can be observed from the above figures that throughout
the training process, the proportion of the convergent power
flow samples obtained using the learned strategies increases.
As seen in Fig. 15, executing the strategy learned at the 50th

iteration yields approximately 72% convergent samples,
while the strategy learned at the 300th iteration yields nearly
90% convergent samples. For power flow sample 1, 6288
convergent samples and 840 nonconvergent samples are gen‐
erated using the strategy learned by the adjustment model,

corresponding to a convergence proportion of 88.2%. For
power flow sample 2, 6480 convergent samples and 330 non‐
convergent samples are obtained, corresponding to a conver‐
gence proportion of 95.2%. Compared with the 16.3% con‐
vergence proportion of random generation, the efficiency of
convergent sample generation can be significantly improved
by generating power flow samples based on the reinforce‐
ment learning model.

B. Case of IEEE 118-bus System

In this case, the proposed method is verified based on
IEEE 118-bus system. The system includes 54 generators,
177 lines and 91 loads. Based on the basic flow, flow sam‐
ples are generated by adjusting the scale factors of genera‐
tors and loads with some randomness. A total of 40000 sam‐
ples are generated, including 15428 convergent samples and
24572 nonconvergent samples. The proportion of convergent
power flow samples is 38.57%, which is slightly higher than
the case 1 due to the different way of sample generation.
The model training time is 8.2 min.

The training and testing process are similar to the first
case. In the training process, 80% of the samples are select‐
ed as the training set, and the remainder are used as testing
samples. The DNN consists of one input layer, four hidden
layers and one output layer. The numbers of neurons in each
layer are 36, 16, 16, 8, 8, and 1, respectively, which are the
same as case 1. After training the discriminator, one sample
selected from the nonconvergent samples is used to verify
the method. The specific data of the flow is shown in Appen‐
dix A Table AII. According to the capacity of the generator,
Appendix A lists only some of the key control objects. For
the nonconvergent power flow sample, the number of train‐
ing iterations is set to 2500, and the number of actions re‐
quired in each iteration of convergence adjustment is record‐
ed. Figure 17 shows the total training process, and Fig. 18
shows the last 200 iterations of the training process.

It can be seen from the above figures that during the ini‐
tial stage of training for the power flow adjustment model,
the numbers of actions required to achieve convergence are
very large and varied greatly. As seen in Fig. 17, the number
of actions at the 164th iteration is 209, and the 641st iteration
is 405. During the final stage of the training process, the
number of actions remained relatively stable at approximate‐
ly 10, indicating that the state-action value function has con‐

Ra
te

0.5

0.6

0.7

0.8

0.9

Turn
0 50 100 150 250 350300200

Fig. 15. Variation in convergence proportion for flow sample 1.

Ra
te

0.82

0.86

0.88

0.84

0.90

0.94

0.92

0.96

Turn
0 50 100 150 250 350300200

Fig. 16. Variation in convergence proportion for flow sample 2.

N
o.

 o
f a

ct
io

n

500

750

250

1000

2000

1500

1250

1750

Turn
0 500 1500 250020001000

Fig. 17. Iterations for power flow sample of total training process.

1124

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

verged and an appropriate adjustment strategy has been
learned. The minor fluctuation of the numbers is attributed
to the uncertainty introduced into the model. Table IV pres‐
ents the action sequences selected at the 2494th, 2495th, and
2496th iterations. The adjustment policies in these iterations
focus on actions 16 and 23, which lead to the adjustment of
reactive power of the generators on buses 103 and 25. The
reasons for the differences in these action sequences are: ①
the adoption of ε-greedy method; ② the state-action function
values of different actions may be the same. Figure 19
shows the proportion of convergent power flow samples ob‐
tained using the learned strategies.

Figures 20 and 21 show the number of actions and aver‐
age reward of each turn during the whole training process. It
can be seen that at the beginning stage of the training, the
curve fluctuates violently, while at the final stage the curve
becomes smooth, which means the model converges. Figures
22 and 23 show the average reward during the beginning
and final stages of training process.

V. CONCLUSION

This paper proposes an intelligent power flow adjustment
method based on a deep network and reinforcement learning,
and presents an intelligent adjustment framework comprising
power flow convergence judgment, power flow convergence
adjustment, and power flow generation. First, a DNN is built

Re
w
ar
d

-80

-100

-40

-60

-20

0

40

20

60

Turn
0 500 1000 1500 2000 2500

Fig. 21. Average reward for each turn during whole training process.

Re
w
ar
d

-20

0

40

20

60

Turn
2300 2350 2400 2450 2500

Fig. 23. Average reward for last 200 iterations.

N
o.

 o
f a

ct
io

n

0

20

60

40

Turn
2200 2250 2300 2350 2400

Fig. 18. Last 200 iterations for power flow sample.

TABLE IV
ACTION SEQUENCES SELECTED IN LAST THREE ITERATIONS

Iteration

2494

2495

2496

Action No.

16, 16, 16, 24, 23, 23, 8, 16, 23

16, 16, 7, 23, 23, 5

16, 16, 8, 23, 23, 23, 9

N
o.

 o
f a

ct
io

n

0.68

0.70

0.74

0.72

0.76

0.78

0.82

0.80

0.86

0.84

Turn
0 50 100 150 200 250 300 350

Fig. 19. Rate of convergent flow of first 300 iterations for power flow
sample.

Re
w
ar
d

-80

-100

-40

-60

-20

0

40

20

60

Turn
0 50 100 150 20025 75 125 175

Fig. 22. Average reward for first 200 iterations.

N
o.

 o
f a

ct
io

n

250

750

500

1000

1250

1750

1500

2000

Turn
0 500 1000 1500 2000 2500

Fig. 20. Number of actions of each turn during whole training process.

1125

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

to judge the convergence of power flow scenarios. Then, in‐
telligent adjustment is realized by using the SARSA algo‐
rithm. Finally, an intelligent method of generating conver‐
gent power flow samples is realized. The intelligence and ef‐
fectiveness of the method have been verified in a case study.
The following conclusions can be drawn.
① A three-part framework is proposed to address power

flow convergence, automatic power flow adjustment, and
sample generation. AI method is used to solve the problem
to satisfy the actual demand of power system engineering.
② The power flow convergence discriminator can determine
the convergence of power flows much faster than commer‐
cial software based on specified initial settings. It also pro‐
vides more useful information for training the adjustment
model. ③ The intelligent adjustment model can adjust a non‐
convergent power flow to a convergent one without any
manual intervention. ④ The learned adjustment strategy can
be used to generate a large number of different convergent
power flow samples, with much higher efficiency than that
of random generation.

In future research, the operation conditions and fault
checks should also be considered in the adjustment model
when generating power flow samples, which improves the ra‐
tionality of power flow generation and makes the results
more useful for practical operation.

APPENDIX A

Figure A1 shows the three parts of the framework. Tables
AI and AII show the specific power flow data of samples in
cases 1 and 2. Table AII lists only some critical features of
the flow sample.

Reinforcement
learning

Reinforcement
learning

Deep neural network

Flow convergence
discrimination

Flow adjustment Flow generation

Framework of power system
flow intelligent adjustment

Fig. A1. Three parts of whole framework.

TABLE AI
FLOW DATA OF CEPRI 36-BUS SYSTEM

System state

BUS2_gen_p

BUS3_gen_p

BUS4_gen_p

BUS5_gen_p

BUS6_gen_p

BUS7_gen_p

BUS8_gen_p

BUS2_gen_q

BUS4_gen_q

BUS5_gen_q

301_load_p

302_load_p

303_load_p

304_load_p

305_load_p

Flow sample 1

5.22

4.10

3.62

2.41

0.19

4.48

0.68

0.65

0.48

0.04

2.43

5.89

1.17

3.64

0.03

Flow sample 2

4.96

4.37

4.54

4.46

5.29

4.26

1.36

1.92

1.26

1.36

4.63

5.86

3.03

0.15

5.76

System state

306_load_p

307_load_p

308_load_p

310_load_p

300_load_p

301_load_q

302_load_q

303_load_q

304_load_q

305_load_q

306_load_q

307_load_q

308_load_q

310_load_q

300_load_q

Flow sample 1

1.07

1.86

1.96

0.89

5.83

1.94

0.11

0.67

0.26

0.44

2.82

2.50

1.85

1.46

0.02

Flow sample 2

3.31

1.95

2.68

0.38

2.45

0.73

1.85

0.12

1.04

2.86

2.70

0.77

0.90

1.19

1.09

TABLE AII
FLOW DATA OF IEEE 118-BUS SYSTEM

System state

BUS1_gen_p

BUS2_gen_p

BUS100_gen_p

BUS103_gen_p

BUS104_gen_p

BUS107_gen_p

BUS111_gen_p

BUS112_gen_p

BUS113_gen_p

BUS116_gen_p

BUS25_gen_p

BUS26_gen_p

BUS49_gen_p

Flow sample

1.00

4.50

2.52

0.40

0.19

-0.22

0.36

-0.43

1.00

-1.84

2.20

3.14

2.04

System state

BUS1_gen_q

BUS2_gen_q

BUS100_gen_q

BUS103_gen_q

BUS104_gen_q

BUS107_gen_q

BUS111_gen_q

BUS112_gen_q

BUS113_gen_q

BUS116_gen_q

BUS25_gen_q

BUS26_gen_q

BUS49_gen_q

Flow sample

0.00

2.00

1.55

4.46

0.40

0.00

10.00

0.00

0.00

1.00

1.40

10.00

2.10

System state

BUS1_load_p

BUS100_load_p

BUS101_load_p

BUS102_load_p

BUS103_load_p

BUS104_load_p

BUS105_load_p

BUS106_load_p

BUS107_load_p

BUS108_load_p

BUS109_load_p

BUS11_load_p

BUS110_load_p

Flow sample

0.51

0.20

0.37

0.23

0.38

0.28

0.31

0.43

0.28

0.02

0.08

0.70

0.39

System state

BUS1_load_q

BUS100_load_q

BUS101_load_p

BUS102_load_q

BUS103_load_q

BUS104_load_q

BUS105_load_q

BUS106_load_q

BUS107_load_q

BUS108_load_q

BUS109_load_q

BUS11_load_q

BUS110_load_q

Flow sample

0.27

0.09

0.18

0.16

0.25

0.12

0.26

0.16

0.12

0.01

0.03

0.23

0.30

1126

WU et al.: POWER SYSTEM FLOW ADJUSTMENT AND SAMPLE GENERATION BASED ON DEEP REINFORCEMENT LEARNING

REFERENCES

[1] S. Zhang, Y.Chen, F. Li et al., “Functional design and implementation
of collaborative system for power grid operation mode calculation,”
Power System Technology, vol. 36, no. 10, pp. 270-274, Oct. 2012.

[2] Z. Du, R. Zhang, Y. Wang, et al., “A constrained load flow method to
obtain power system operation mode,” Proceedings of the CSEE, vol.
35, no. 4, pp. 840-847, Apr. 2015.

[3] Z. Yan, X. Fan, W. Zhao et al., “Improving the convergence of power
flow calculation by a self-adaptive levenberg-marquardt method,” Pro‐
ceedings of the CSEE, vol. 35, no. 8, pp. 1909-1918, Aug. 2015.

[4] Y. Tamura, Y. Nakanishi, and S. Iwamoto, “On the multiple solution
structure, singular point and existence condition of the multiple load-
flow solutions,” IEEE Transactions on Power Systems, vol. 99, no. 4,
pp. 1322-1322, Feb. 1980.

[5] J. T. Overbye, “A power flow measure for unsolvable cases,” IEEE
Transactions on Power Systems, vol. 9, no. 3, pp. 1359-1365, Aug.
1994.

[6] T. V. Custsem, “An approach to corrective control of voltage instabili‐
ty using simulation and sensitivity,” IEEE Transactions on Power Sys‐
tems, vol. 10, no. 2, pp. 616-622, May 1995.

[7] L. V. Barboza, A. A. P. Lerm, and R. Salgado, “Unsolvable power
Flow–restoring solutions of the electric power network equations,” in
Proceedings of IEEE International Symposium on Circuits and Sys‐
tems (ISCAS), Kobe, Japan, Jul. 2005, pp. 5294-5297.

[8] M. Li, J. Chen, H. Chen et al., “Load flow regulation for unsolvable
cases in a power system,” Automation of Electric Power Systems., vol.
30, no. 8, pp. 11-15, Aug. 2006.

[9] S. Granville. J. C. O. Mello, and A. C. G. Melo, “Application of interi‐
or point methods to power flow unsolvability,” IEEE Transactions on
Power Systems, vol. 11, no. 2, pp. 1096-1103, May 1996.

[10] F. Hong, “Research on the power flow automatic adjustment methods
in power system,” Ph. D. dissertation, Department of Electrical Engi‐
neering, Huazhong University of Science and Technology, Wuhan, Chi‐
na, 2011.

[11] Y. Lin, H. Sun, W. Wu et al., “A schedule power flow auto generating
technology in day-ahead security validation,” Automation of Electric
Power Systems, vol. 36, no. 20, pp. 68-73, Oct. 2012.

[12] Y. Wang, J. Hou, S. Ma et al., “A method of automatic integration
and regulation of power flow data for security and stability check of
generation scheduling analysis,” Power System Technology, vol. 34,
no. 4, pp. 100-104, Apr. 2010.

[13] D. Zhang, X. Han, and C. Deng, “Review on the research and practice
of deep learning and reinforcement learning in smart grids,” CSEE
Journal of Power and Energy Systems, vol. 4, no. 3, pp. 362-370,
Sept. 2018.

[14] O. Russakovsky, J. Deng, H. Su et al., “Image net large scale visual
recognition challenge,” International Journal of Computer Vision, vol.
115, no. 3, pp. 211-252, Apr. 2015.

[15] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proceedings of International Con‐
ference on Acoustics, Speech, and Signal Processing, New York, USA,
Apr. 1998, pp. 1-5.

[16] K. Cho, B. V. Merrienboer, C. Gulcehre et al., “Learning phrase repre‐
sentations using RNN encoder-decoder for statistical machine transla‐
tion,” in Proceedings of 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, Oct. 2014, pp.
1724-1733.

[17] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529-533, Feb. 2015.

[18] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game of
Go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484-489, Jan. 2016.

[19] N. Zhou, J. Liao, Q. Wang et al., “Analysis and prospect of deep
learning application in smart grid,” Automation of Electric Power Sys‐
tems, vol. 43, no. 4, pp. 180-191, Feb. 2019.

[20] T. Ouyang, Y. He, H. Li et al., “Modeling and forecasting short-term
power load with copula model and deep belief network,” IEEE Trans‐
actions on Emerging Topics in Computational Intelligence, vol. 3, no.
2, pp. 127-136, Apr. 2019.

[21] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load
forecasting using deep neural networks,” in Proceedings of Annual

Conference of the IEEE Industrial Electronics Society (IECON), Flor‐
ence, Italy, Oct. 2016, pp. 1-6.

[22] W. Liu, D. Zhang, X. Wang et al., “A decision making strategy for
generating unit tripping under emergency circumstances based on deep
reinforcement learning,” Proceedings of the CSEE, vol. 38, no. 1, pp.
109-119, Jan. 2018.

[23] T. Yu, B. Zhou, K. Chan et al., “Q-learning based dynamic optimal
CPS control methodology for interconnected power systems,” Proceed‐
ings of the CSEE, vol. 29, no. 19, pp. 13-19, Jul. 2009.

[24] E. A. Jasmin, T. P. I. Ahamed, and V. P. J. Raj, “Reinforcement learn‐
ing approaches to economic dispatch problem,” International Journal
of Electrical Power & Energy Systems, vol. 33, no. 4, pp. 836-845,
May 2011.

[25] M. Chu, X. Liao, H. Li et al., “Power control in energy harvesting
multiple access system with reinforcement learning,” IEEE Internet of
Things Journal, vol. 6, no. 5, pp. 9175-9186, Jul. 2019.

[26] J. Gong and Y. Liu. “Coordinated optimization of active distribution
network based on deep deterministic policy gradient algorithm,” Auto‐
mation of Electric Power systems, vol. 44, no. 6, pp. 114-120, Mar.
2020.

[27] H. Xu, Z. Yu, Q. Zheng et al., “Deep reinforcement learning-based tie-
line power adjustment method for power system operation state calcu‐
lation,” IEEE Access, vol. 7, pp.156160-156174, Oct. 2019.

[28] L. Zheng, W. Hu, Y. Zhou et al., “Deep belief network based nonlin‐
ear representation learning for transient stability assessment,” in Pro‐
ceedings of IEEE PES General Meeting, Chicago, USA, Jul. 2017, pp.
1-5.

Shuang Wu received his B. S. degree in electrical engineering from Hua‐
zhong University of Science and Technology, Wuhan, China, in 2016, and
he is now a Ph.D. candidate at Tsinghua University, Beijing, China. His re‐
search interests include power system analysis and control as well as appli‐
cations of big data and artificial intelligence technology in power systems.

Wei Hu received his B.S. and Ph.D. degrees in electrical engineering from
Tsinghua University, Beijing, China, in 1998 and 2002, respectively, and he
is now an Associate Professor with Tsinghua University. His research inter‐
ests include power system analysis and control, applications of big data tech‐
nology in power systems, multitype power generator-grid coordination and
control, and optimized control of renewable energy and energy storage sys‐
tems.

Zongxiang Lu received his B.S. and Ph.D. degrees in electrical engineering
from Tsinghua University, Beijing, China, in 1998 and 2002, respectively.
Since 2002, he has been with Tsinghua University, Beijing, China, where he
is currently an Associate Professor of electrical engineering. He is the Fel‐
low of IET, and the Senior Member of IEEE and CSEE. His research inter‐
ests include large-scale wind power/PV station integration analysis and con‐
trol, energy and electricity strategy planning, power system reliability, DG,
and microgrid.

Yujia Gu received his master’s degree in electrical engineering from China
Agricultural University, Beijing, China in July 2011. From August 2011 to
the present, he has been engaged in power system analysis and simulation
at the Power Research Institute of State Grid Ningxia Electric Power Co.,
Ltd., Yinchuan, China. His research interests include power system analysis
and control.

Bei Tian received her master’s degree from Northeast Electric Power Uni‐
versity, Jilin, China, in 2000. Since July 2000, she has worked at the Power
Research Institute of State Grid Ningxia Electric Power Co., Ltd., Yinchuan,
China, and has been engaged in power system simulation analysis and vari‐
ous scientific and technological innovations. Her research interests include
power system operation and control.

Hongqiang Li received his master’s degree in electrical engineering from
Southwest Jiaotong University, Chengdu, China, in 2014. From August
2014 to the present, he has been working in Power Research Institute of
State Grid Ningxia Electric Power Co., Ltd., Yinchuan, China. His research
interests include power system analysis and simulation.

1127

