
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

Optimal Control of Microgrids with Multi-stage
Mixed-integer Nonlinear Programming Guided

Q-learning Algorithm
Yeliz Yoldas, Selcuk Goren, and Ahmet Onen

Abstract——This paper proposes an energy management system
(EMS) for the real-time operation of a pilot stochastic and dy‐
namic microgrid on a university campus in Malta consisting of
a diesel generator, photovoltaic panels, and batteries. The objec‐
tive is to minimize the total daily operation costs, which include
the degradation cost of batteries, the cost of energy bought
from the main grid, the fuel cost of the diesel generator, and
the emission cost. The optimization problem is modeled as a fi‐
nite Markov decision process (MDP) by combining network
and technical constraints, and Q-learning algorithm is adopted
to solve the sequential decision subproblems. The proposed algo‐
rithm decomposes a multi-stage mixed-integer nonlinear pro‐
gramming (MINLP) problem into a series of single-stage prob‐
lems so that each subproblem can be solved by using Bellman’s
equation. To prove the effectiveness of the proposed algorithm,
three case studies are taken into consideration: ① minimizing
the daily energy cost; ② minimizing the emission cost; ③ mini‐
mizing the daily energy cost and emission cost simultaneously.
Moreover, each case is operated under different battery opera‐
tion conditions to investigate the battery lifetime. Finally, per‐
formance comparisons are carried out with a conventional Q-
learning algorithm.

Index Terms——Cost minimization, energy management sys‐
tem, microgrid, real-time optimization, reinforcement learning.

I. INTRODUCTION

DISTRIBUTED energy resources (DERs) such as wind
power, solar power, and energy storage system (ESS)

are viewed as a solution due to the reduction in primary en‐
ergy reserves and ever-increasing load demand. Thus, mi‐

crogrid plays a crucial role in the integration of DERs into
the future electric power grids. Despite many advantages of
microgrid [1], there are several technical challenges such as
stability and reliability issues due to the natural uncertainty
and unpredictability of renewable energy sources (RESs) [2].
The management of power system operation is already quite
complex because instability and unreliability make it very
difficult to maintain a balance between supply and demand
of energy in real-time operation. When integrating RESs into
the power systems, the complicated systems get even more
complex, rendering the management of power systems in‐
cluding DERs a real challenge. It is crucial to have an appro‐
priate energy management in place for the success of such
complicated power systems. A microgrid energy manage‐
ment system (EMS) plays a critical role in economic, sus‐
tainable and reliable operation by providing the optimal coor‐
dination between conventional energy resources, RESs, ES‐
Ss, and consumers [3].

The existing studies in the literature can be classified ac‐
cording to the objectives of EMSs or the optimization ap‐
proaches used. Microgrid energy management has been stud‐
ied for many purposes such as operation cost reduction [4]-
[7], maximization of battery life and renewable energy pene‐
tration [8], environmental pollution and operation cost reduc‐
tion [9]-[11], and improvement of stability and reliability of
the system [12], [13]. For example, while the main objective
in [5] is to minimize the total operation cost of microgrid in‐
cluding the fuel cost of power generators, the cost of opera‐
tion and maintenance, the cost of purchasing electricity from
main grid and penalties on the curtailment of renewable ener‐
gy and load shedding, [8] intends to maximize the reliability
and customer satisfaction.

The intermittent nature of RESs and nonlinear characteris‐
tics of other devices make it inevitable to have an optimiza‐
tion process in place: trivial straightforward decisions result
in severely suboptimal management systems. In this regard,
mixed-integer linear programming (MILP) and mixed-integer
nonlinear programming (MINLP) are frequently employed
[14], [15]. Unfortunately, even though the algorithms to get
exact solutions to integer programming problems have im‐
proved significantly through the years, the state-of-the-art so‐
lution algorithms still rely on implicit enumeration, which
has large computational burden for practical problems.
Hence, several heuristic algorithms such as metaheuristic al‐
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gorithms [16], [17], model predictive control (MPC) algo‐
rithms [18] - [20], and artificial intelligence algorithms [21],
[22] are proposed to find near-optimal solution. In [23], a
stochastic MPC algorithm is proposed to cope with the un‐
certainties in both supply and demand. In [24], a scenario-
based stochastic particle swarm optimization (PSO) algo‐
rithm is employed. The authors claim that the balance be‐
tween the solution accuracy and the computational burden is
improved using scenario modeling and scenario reduction
methods. Scenario reduction methods are used to make the
algorithm faster, thus the system performance may depend
on the scenario reduction method used. One of the common‐
ly used methods as a metaheuristic is the genetic algorithm
(GA). In [25], the author develops a memory-based GA
(MGA) that tries to share the demand among several power
generation sources with minimum production cost. The main
limitation of these heuristic algorithms is that they cannot
guarantee optimality, nor can they provide bounds on the
amount of suboptimality, i.e., the optimality gap.

The determination of the optimal operation involves a se‐
quential decision-making process to tackle the uncertainty in
weather-related generation units, demand, electricity price,
and problem arising from the integration of variable power
sources into the main grid. Thus, energy management for a
microgrid becomes unavoidable to enable stable and reliable
operation, seek optimal dispatch and maximize its perfor‐
mance. To solve these issues, the adaptive and intelligent
methods are essential, especially for a large-scale microgrid.
Reinforcement learning (RL) is a promising computational
method to solve the stochastic sequential decision-making
problems, in which a learning agent learns what actions to
take by interacting with its environment to maximize a re‐
ward signal [26]. In this method, the agent is not told what
to do in the current state, but instead needs to try the actions
to find out which one gives the maximum reward. However,
the RL suffers from “curse of dimensionality” as the com‐
plexity of microgrid system increases. Due to the fact that
coarse-grained discretization causes information loss, fine-
grained discretization is required, and that causes the “curse
of dimensionality” problem. Several studies have been pub‐
lished in the literature with RL. In [27], an RL-based opti‐
mal control method is proposed to improve the transient per‐
formance of hybrid microgrid systems. In [28], a well-
known batch RL, i. e., fitted Q-iteration, for residential de‐
mand response is suggested. In [29], the fitted Q-iteration is
also used on a residential scale to minimize the amount of
imported power from the main grid.

In [30], a dynamic pricing strategy using Q-learning (QL)
algorithm is proposed by considering hierarchical electricity
market. The aim is to find a financial balance between prof‐
its of service providers and costs of customers. However,
customers, service providers and main grids constitute the
whole system. In [31], a strategic bidding is proposed by us‐
ing QL algorithm. In this study, customers need a bidding
strategy to maximize their long-term profit. In [32], a two-
step ahead RL method is proposed for a simple microgrid
system to plan battery schedules without considering the de‐

tailed mathematical model of devices. In [33]-[35], a multi-
agent RL method is applied to a microgrid considering the
uncertainties. Moreover, operation cost reduction is targeted
with RL method in [36], [37].

This paper proposes an EMS that employs an MINLP
guided QL algorithm for microgrid operation in a stochastic
and dynamic environment to tackle the aforementioned chal‐
lenges. The main feature of the proposed algorithm is that
the “curse of dimensionality” can be handled without coarse-
grained discretization. The proposed algorithm decomposes
the multi-time horizon optimization problem into sub-prob‐
lems based on consecutive time-indexed periods. Then each
sub-component at each time is solved by MINLP method.
The purpose of the study is to minimize the total daily opera‐
tion costs which include the degradation cost of batteries,
the cost of energy bought from the main grid, the fuel cost
of the diesel generator (DG), and the emission cost. Com‐
pared with prior studies, e.g., [10], [30], [38], the main con‐
tributions of the paper are as follows:

1) The proposed real-time EMS is formulated as a Mar‐
kov decision process (MDP) problem, where the solar ener‐
gy, DG and battery are considered. The proposed algorithm
has been developed to provide efficient energy management
of a real microgrid pilot of the Malta College of Arts, Sci‐
ence and Technology (MCAST) by considering constraints
of the network model and technical model.

2) This paper tackles the problem with multiple smaller
sub-problems by decomposing multiple time period opera‐
tion cost optimization over a finite horizon. Thus, MINLP
sub-problems can be solved effectively.

3) In order to reduce the dependency on the forecasted in‐
formation, the historical data are used offline to deal with un‐
certainties of load demand and photovoltaic (PV).

4) The proposed algorithm enables finding optimal solu‐
tions without applying an approximation method, which en‐
hances the performance of QL-based optimization with large
state space.

The remainder of this paper is organized as follow. Sec‐
tion II presents the mathematical model description of the
microgrid model and the devices used. Section III formu‐
lates the real-time operation problem of microgrid as an
MDP. The proposed algorithm and the QL algorithm are giv‐
en in Section IV. The simulation environment using real data
and result analysis are shown in Section V. Finally, Section
VI draws the conclusions.

II. MICROGRID MODEL DESCRIPTION

The structure of the microgrid system is illustrated in Fig.
1, where PCC stands for point of common coupling and SS
stands for substation. The system is comprised of solar PV
arrays (63 kW in total), a DG (300 kW), lithium-ion batter‐
ies (300 kWh capacity in total) and loads. This paper as‐
sumes that the microgrid operates in grid-connected mode. A
finite time horizon of the microgrid operation is considered
as t = {0Dt2DtΤ -DtΤ}, where Δt = 5 min is the time
interval and T = 24 hours.
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A. Battery Model

The ESS is one of the core parts of the microgrid system,
which can improve the performance of the microgrid system.
Since the initial investment cost of batteries is high, it is cru‐
cial to extend the battery life. The battery cycle life is direct‐
ly related to the depth of discharge (DoD). The cycle life da‐
ta are given by the battery manufacturer in the form of total
cycle number with respect to the DoD. The relationship be‐
tween expected cycle life and DoD is exponential for the
lithium-ion battery as given in (1).

L (D)=Daeb (1)

where D is the DoD in percentage at which the battery is cy‐
cled; L (D) is the average cycle number at that particular D;
and a and b are the battery dependent coefficients. From the
logarithmic fitted curve between DoD and cycle life speci‐
fied in the data sheet of the battery used, these coefficients
are found as a =-1.24, b = 7.043. From the fitted curve, the
battery wear cost can be calculated as

CW =
Cinv

2Emax L ( )D Dηdηc (2)

where Cinv is the capital cost of battery; Emax is the total ca‐
pacity of battery; and ηc and ηd are the charging and dis‐
charging efficiencies, respectively.

The operation cost of battery based on wear cost is writ‐
ten as

Cbatt =CW PbattDt (3)

where Pbatt is the charging or discharging power of the bat‐
tery at time t.

At any given time, the state of charge (SOC) of the lithi‐
um-ion battery system should be within a certain range. It
can be expressed as

SOCmin £ SOCt £ SOCmax (4)

where SOCmin and SOCmax are the lower limit and upper limit
of SOC, respectively. The charging and discharging states,
charging and discharging power limits, and SOC formulation
of the lithium-ion battery are given respectively as follows:
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where uc
batt and ud

batt are the charging and discharging states
of the battery, respectively; P c

batt and P d
batt are the charging

and discharging power of the battery, respectively; and P c
max

and P d
max are the maximum charging and discharging power of

the battery, respectively. ηc and ηd are both assumed to be 95%,
according to the practical situation of the MCAST system.

B. DG

The hourly fuel consumption FCt of a DG is modeled as
a linear function, which is based on data provided by the
manufacturer.

FCt =F1 Prated +F2 Pdgt (9)

where F1 and F2 are the coefficients of fuel consumption
function, which are set as 0.0183 and 0.22, respectively; and
Prated and Pdg,t are the rated power and the actual output pow‐
er of DG, respectively.

The power limits of DG are imposed as

kPrated £Pdgt £Prated (10)

where k is set to be 0.3 based on the suggestion of manufac‐
turers.

The fuel cost of DG at time step t can be calculated as

Cdgt =Cfuel ×FCt × Dt (11)

where Cfuel is the fuel cost.

C. Main Grid

The power transaction between main grid and microgrid
should be constrained as

-P max
grid £Pgridt £P max

grid (12)

where Pgridt is the active power exchange between microgrid
and main grid at time t; and P max

grid is the maximum active
power that can be exported to and imported from the main
grid.

The cost related to the power transaction at time step t is

Cgridt = prct ×PgridtDt (13)

where prct is the real-time electricity price at time step t.

D. AC Power Flow

The power flow limits in each branch ij are considered as

Pijt =
||V 2

it cos ( )θ ij

|| Zij

-
||Vit ||Vjt cos ( )δ it - δ jt + θ ij

|| Zij

(14)

Qijt =
||V 2

it sin ( )θ ij

|| Zij

-
||Vit ||Vjt sin ( )δ it - δ jt + θ ij

|| Zij

(15)

P 2
ijt +Q2

ijt £ (S max
ij ) 2

(16)

where i, j ∈ {12Nb}, and Nb is the total number of bus‐

es; Pij,t and Qij,t are the active and reactive power flows of
branch ij, respectively; ||Vit and δ i, t are the voltage ampli‐
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Fig. 1. Schematic diagram of microgrid.
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tude and angle at bus i, respectively; || Zij and θ ij are the im‐

pedance magnitude and corresponding phase angle of branch
ij, respectively; and S max

ij is the maximum complex power
flow of branch ij.

The transmission capacity limit of power cables is also
considered as

Pijt £P max
ij (17)

where P max
ij is the maximum power flow limit from bus i to

bus j.
The voltage amplitude limit is bounded by

V min
i £ |Vit |£V max

i (18)

where V min
i and V max

i are the minimum and maximum voltage
magnitudes of bus i, respectively.

The power balance equation is also considered as

Ppvt +Pgridt +Pdgt +P d
batt +P c

batt =Pijt +PLt (19)

where Ppvt is the total active power output of PV arrays; and
PLt is the total active load demand.

E. Emission Cost Calculation

Toxic gas externalities including CO2, NOx and SO2 must
be considered as cost function to reduce the greenhouse gas
effect. The mass of the three gases are calculated with math‐
ematical equation of the generated power of the DG and
electricity grid as

Cemt =∑
k = 1

Nem∑
i = 1

Nps

ECk × EFik ×Pit (20)

where Nem is the number of emission types (CO2, NOx, SO2);
Nps is the number of power sources that release the toxic gas‐
es (main grid and DG); ECk is the externality cost of emis‐
sion type k; EFi,k is the emission factor of power source i
and the emission type k; and Pi,t is the power output of pow‐
er source i.

III. MDP MODEL FOR REAL-TIME SCHEDULING OF

MICROGRID

In the MDP model, there are four components: state vari‐
ables, decision (action) variables, state transitions and re‐
wards. The state variables denote the current state of the sys‐
tem and the basis for making operation decisions. The deci‐
sion variables identify the choices and the agent selects an
action from a set of available actions, which is then sent to
the environment. A time step later, the agent receives a re‐
ward which is an evaluation of taken actions, and the environ‐
ment responds to these actions as a new state transition. Clear‐
ly, MDP allows us to predict the next state and reward given
the current state and action. The next state depends only on the
states and actions at time t instead of the previous history.

The centralized EMS collects two types of information to
make optimal decisions: the first is the historical data of PV
generation and demand at the annual, monthly, daily, hourly
and minute levels, and the second is the real-time informa‐
tion from microgrid assets including SOC of the battery,
electricity price and the output of the battery and DG. Based
on this information, EMS decides the power outputs of DG,
PV and battery, and the power exchange between main grid

and microgrid to achieve the objectives.

A. State Variables and Decision (Action) Variables

The state variables St at time t include SOCt, available ac‐
tive power outputs of PVs P a

pv1tP a
pv2tP a

pv3t, total active load
demand PLt and real-time electricity price prct. Hence, St

can be given as

St = {SOCtP a
pv1tP a

pv2tP a
pv3tPLtprct} (21)

The decision variable xt at time t of the problem can be
given as

xt = {P d
battP

c
battPdgt} (22)

The transition function for the battery SOC can be formu‐
lated as

SOCt +Dt = SOCt + (P d
batt

ηd
-P c

battη
c) Dt (23)

B. Objective Function

The total cost of microgrid is considered as a trade-off be‐
tween power generation cost and emission cost caused by
the grid and DG. In this study, three case studies are consid‐
ered including individual minimization of power generation
cost, individual minimization of emission cost, and simulta‐
neous minimization of power generation cost and emission
cost. Thus, the objective function can be expressed as

Ct (Stxt)=Cbatt (Stxt)+Cdgt (Stxt)+Cgridt (Stxt)+
Cemt (Stxt) (24)

where xt is an action variable; and (Stxt) is the state-action

pair.

IV. PROPOSED OPTIMIZATION MODEL

A. QL Algorithm

QL algorithm is an efficient algorithm of RL to solve the
MDP-based optimization problem (24) without an explicit
environment model. The objective of the QL algorithm is to
seek the optimal policy by maximizing the expected dis‐
counted reward of actions based on the given states. The out‐
put of the Q-value table for a state variable St and an action
variable xt is represented as Q(St,xt). In the QL algorithm, the
Q-values of each action xt performed in a state St can be up‐
dated recursively using Bellman’s action-value function as
follows:

Q (Stxt)¬Q (Stxt)+ α (Rt +Dt + γ max
x′ÎA

Q (St +Dtx′)-Q (Stxt))
(25)

where γÎ[01) is a discount parameter; α is the learning pa‐
rameter, which decreases over time interval Dt in the suit‐
able way; Rt +Dt is the immediate reward when the agent
takes action xt at state St; and A is the set of feasible actions.
The immediate reward is defined as the daily cost of the mi‐
crogrid system.

The basic principle behind the QL algorithm is that the
agent takes an action based on the ε-greedy policy, which is
a way to choose an action from a set of feasible actions. The
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agent selects the best action with probability 1- ε or takes ac‐
tions randomly with probability ε to discover new actions.
The taken action gives rise to a change of the environmental
state, thus the agent makes a transition to a new state and
observes the immediate reward from taking action xt in state
St. Then, Q-value for a given state St and action xt is updat‐
ed. The optimal value of a state at each iteration is obtained
by computing the maximum value, as shown in (26).

Q* (Stxt) max
xÎA

Q (Stx) (26)

B. Proposed Algorithm

The main advantage of the QL algorithm is that it does
not need any environment model and can handle uncertain‐
ties and stochastic transitions without requiring full informa‐
tion of the system. However, it can be inefficient for large
state-action space and cannot be applied easily to continuous
state-action spaces involved in our problem. The simplest so‐
lution to continuous working space is to discretize the space.
Making discretization at smaller intervals can compensate
the changes of the system, but state-action pair number will
increase exponentially. In this study, after making discretiza‐
tion with larger intervals, each subproblem at each time step
is solved by MINLP method using DICOPT solver of Gener‐
al Algebraic Modeling System (GAMS) to get precise re‐
sults. Thus, the problem can be handled with MINLP guided
QL algorithm without discretization in smaller way. By this
way, it can overcome the challenges and find a more precise
solution instead of an approximated value.

The complete training process of the proposed algorithm
using a combination of QL algorithm and MINLP optimiza‐
tion is presented in Fig. 2.

Y

Y

N

N

Start

Initialize a discrete state, the whole action space and
the Q-value table with instant reward 

Compute feasible actions according to
current state by (4)-(8) and select an action

according to ε-greedy policy

Solve the problem using MINLP
optimization by DICOPT solver

of GAMS using (1)-(20) and (24)

Get optimal actions from GAMS and
perform the obtained actions to the system

Calculate the operation cost by (24)
and move to next state (23)

Update the Q(st, xt) using (25)

t<T?

n<N?

End

t=t+Δtn=n+1

Fig. 2. Flowchart of training process.

In the flowchart, at the beginning, a discrete state, the
whole action space of the system and Q-value table are ini‐
tialized. Instead of storing every state-action pair of the sys‐
tem, iteration is started by choosing only a discrete state. Ad‐
ditionally, the Q(St, xt) values of each state-action pairs are
initialized with total discounted reward r0 with γ= 0 to re‐
duce the convergence time, which can be obtained as the in‐
stant reward at time step 0 before the learning process starts
[36]. Then, the iteration starts by finding feasible actions at
that state. An action is then selected from the feasible action
set using ε-greedy policy. The selected actions are sent to
the GAMS to solve the economic dispatching problem as
MINLP. Thus, GAMS that uses the discretized actions at
large intervals as inputs will give us optimal actions that
minimize the cost function. The obtained optimal actions are
then performed in the microgrid system. In the next step, the
objective function at time t is calculated using (24). Then, Q
(St, xt) value and time are updated, respectively. Finally, the
number of episode n is updated and if n < N, where N is the to‐
tal number of episodes, the system goes to the next episode.

V. NUMERICAL AND RESULT ANALYSIS

A. Simulation Environment

The microgrid is equipped with a 300 kW/375 kVA DG,
3×21 kW solar generators, and 150 kW/300 kWh battery, as
shown in Fig. 1. Moreover, the profiles of load demand and
the electricity price are shown in Figs. 3 and 4, respectively.
The parameters of DG and lithium-ion battery are given in
Tables I and II, respectively. The parameters of distribution
lines are given in Table III.
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Fig. 3. Profiles of load demand.
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TABLE I
PARAMETERS OF DG

Parameter

Prated (kW)

F1 (L·h-1·kW-1)

F2 (L·h-1·kW-1)

Value

300

0.0183

0.22

Parameter

k

Cfuel (€/L)

Value

0.3

1.1
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For all simulation cases, since the SOC changes from
40% to 60%, it is discretized into 70 to 130 states. The dis‐
charging/charging power of the battery, the output power of
DG, the generated PV power and the load demand are dis‐
cretized into 10/8 states, 7 states, 5 states, 60 states, respec‐
tively. Table IV demonstrates the externality costs and emis‐
sion factors of main grid and DG. The optimization horizon
of all simulations is set to be 24 hours, and Δt = 5 min. Al‐
though the time interval is 5 min in the operation of the al‐
gorithm, the results in all cases are drawn with a time inter‐
val of 1 hour so that the graphics can be clearly seen. All
studies have been simulated using MATLAB 2020 and
GAMS 24.9.2 on 64-bit Linux based computer with 250 GB
of RAM and 2.10 GHz Intel® Xeon® processor.

B. Case Studies

1) Case 1: Minimize Operation Cost Without Emission Cost
In this case, the main objective is to minimize the opera‐

tion costs of battery, DG and main grid. Emission costs are
not considered. When the battery is operated at SOC of
50%, the simulation results are illustrated in Fig. 5.

It can be observed from Fig. 5 that the battery stores ener‐
gy during 0th-4th hour. Then the power generated by PV is
dispatched. When operation cost of DG is less than electrici‐
ty price, DG is turned on between 11th-13th hour. Since DG
is operated at minimum 90 kW, the power can be bought
from the main grid in that situation. Table V shows the ef‐
fect of battery SOC on the average daily operation cost.

When the battery is operated at SOC of 40%, the average
daily operation cost is €547.3606, while it goes up to
€558.2421 at SOC of 60%. According to this table, the pro‐
posed algorithm performs better than the QL algorithm on
the average daily operation cost. If we assume that the bat‐
tery is operated at that power level as average during a year,
by changing SOC level from 40% to 60%, the battery life in‐
creases from 6.71 years to 9.65 years. In this way, the capi‐
tal cost of battery is deferred as 2.94 years, if we assume the
lithium-ion battery life as average ten years and the total cap‐
ital cost of battery as (300×220) €66000. The annual cost
during the whole battery life is €6600. Thus, the net saving
of battery renewal is (2.94×6600) €19404.

TABLE II
PARAMETERS OF LITHIUM-ION BATTERY

Parameter

Emax (kWh)

Cycle life

ηd, ηc

SOCmin (%)

SOCmax (%)

Value

300

2700 (50% DoD)

0.95, 0.95

50

100

Parameter

P d
max (kW)

P c
max (kW)

a

b

Battery cost (€/kWh)

Value

50

40

-1.24

7.043

220

TABLE III
PARAMETERS OF DISTRIBUTION LINES

Line

From

Bus 0

Bus 1

Bus 3

Bus 3

Bus 4

Bus 5

Bus 5

Bus 5

Bus 6

Bus 6

Bus 6

Bus 6

Bus 6

To

Bus 1

Bus 2

Bus 4

Bus 5

Bus 6

N1

N2

N3

N4

N5

N6

N7

N8

Resistance
(mΩ)

129.000

19.737

11.536

3.770

3.770

3.770

3.770

3.770

9.048

9.048

4.901

6.786

6.786

Reactance (mΩ)

78.225

11.969

12.208

3.989

3.989

3.989

3.989

3.989

9.550

9.550

5.186

7.181

7.181

TABLE IV
PARAMETERS OF EXTERNALITY COSTS AND EMISSION FACTORS OF DG AND

MAIN GRID

Emission type

CO2

SO2

NOx

Externality
cost (€/kg)

0.0308

2.1810

9.2527

Emission factor
of DG (kg/kWh)

0.7430000

0.0004045

0.0093600

Emission factor of
main grid (kg/kWh)

0.922000

0.003583

0.002295
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Fig. 5. Output power of all sources for Case 1.

TABLE V
SIMULATION RESULTS OF PROPOSED ALGORITHM COMPARED WITH QL

ALGORITHM FOR CASE 1

SOC
(%)

40

45

50

55

60

Algorithm

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Total emission
(kg/kWh)

2139.0457

2161.4613

2150.2869

2161.5040

2153.6972

2163.9308

2163.8568

2165.2087

2171.6735

2178.3315

Emission
cost (€)

129.6250

130.8125

130.2584

132.0833

133.8653

134.1898

134.1640

135.3101

136.1739

137.3908

Battery
throughput

(kWh)

150.0000

142.0833

150.0000

142.0833

142.9167

142.0833

129.5833

128.2500

115.4167

114.0000

Daily energy
cost (€)

547.3606

554.4926

550.6309

556.9808

555.4273

558.2455

555.6116

558.5268

558.2421

561.9658
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2) Case 2: Minimize Operation Cost with Emission Cost
DG is not used in this case, because the total cost of DG

including fuel cost and emission cost is higher than that of
the main grid. The simulation results are illustrated in Fig. 6.
As in the Case 1, the battery charges at low electricity price
intervals and discharges at peak price intervals to support
the load demand. Table VI shows the results of the proposed
algorithm and QL algorithm according to different SOC val‐
ues. It can be seen from Table VI that the proposed algo‐
rithm works better than QL algorithm. Comparing Table VI
with Table V, it can be seen that for the proposed algorithm,
the emission cost decreases by 5.68% (7.97%), while the dai‐
ly energy cost increases by 0.66% (0.37%) with SOC of
40% (60%).

3) Case 3: Minimize Emission Cost
Figure 7 shows the dispatched power by the proposed al‐

gorithm considering the goal of reducing the emission cost.
According to figure, the microgrid system uses the maxi‐
mum capacity of renewable sources since they have no emis‐
sion. Since the emission cost of main grid is less than that
of DG, the whole day demand is supplied by the main grid,
and the battery also contributes to supply the demand. It can
be observed clearly from Fig. 7 that the battery charging and
discharging states are constantly changing, which adversely
affects battery life. Based on Table VII, the battery lifetime
can be calculated, which varies from 5.32 to 7.03 years as

the SOC value of the battery increases. Thus, the capital
cost of the battery renewal is deferred for 1.71 years and the
net saving is (1.71×6600) €11286. Comparing the net sav‐
ings of Case 3 with that of Case 1, the net saving decreases
by 41.84%.

Table VIII shows the emission cost and daily energy cost
comparison of the three cases for with SOC of 50% the pro‐
posed algorithm.

It can be seen that the emission cost in Case 3 decreases
by 10.364% compared with that of Case 1. However, in
Case 3, the daily energy cost is higher than those of other
cases since only the emission cost is taken into consider‐
ation. Case 2 gives a relatively balanced result compared
with other two cases in terms of daily energy cost and emis‐
sion cost. As both emission cost and energy cost are tried to
be minimized, the total operation cost is the lowest in
Case 2.

TABLE VII
SIMULATION RESULTS OF PROPOSED ALGORITHM COMPARED WITH QL

ALGORITHM FOR CASE 3

SOC
(%)

40

45

50

55

60

Algorithm

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Total emission
(kg/kWh)

2102.0332

2108.0267

2120.3695

2124.4356

2129.7326

2137.0311

2147.7348

2152.8422

2162.6823

2165.4063

Emission
cost (€)

118.4323

118.7715

119.4620

119.6959

119.9896

120.4056

121.0038

121.2964

121.8460

122.0151

Battery
throughput

(kWh)

189.0191

187.2234

181.2250

177.4557

184.4583

172.8813

169.3868

162.4661

158.3448

148.6896

Daily energy
cost (€)

555.8055

557.9767

559.4833

560.4852

561.9195

562.8523

563.6109

564.7938

565.7577

568.3321

TABLE VIII
EMISSION COST AND DAILY ENERGY COST COMPARISON FOR THREE CASES

WITH SOC OF 50%

Case

Case 1

Case 2

Case 3

Emission cost (€)

133.8633

123.4897

119.9896

Daily energy cost (€)

555.4273

556.5094

561.9195

Total cost (€)

689.2906

679.9991

681.9090

50

60

70

80

90

100

0 105 15 20 25
Time (hour)

0

50

-35

100

150

200

Po
w

er
 (k

W
)

SO
C 

(%
)

Battery
Main grid
PV1
PV2
PV3
SOC

Fig. 6. Output power of all sources for Case 2.

TABLE VI
SIMULATION RESULTS OF PROPOSED ALGORITHM COMPARED WITH QL

ALGORITHM FOR CASE 2

SOC
(%)

40

45

50

55

60

Algorithm

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Proposed

QL

Total emission
(kg/kWh)

2167.8582

2192.7543

2179.9132

2194.6874

2189.6389

2199.1335

2202.1638

2208.6829

2211.7894

2220.3729

Emission
cost (€)

122.2626

123.6544

122.9418

123.7633

123.4897

124.0138

124.1954

124.5518

125.3180

125.7182

Battery
throughput

(kWh)

150.0000

141.6667

150.0000

141.6667

142.9167

141.6667

129.5000

128.2500

115.8333

114.0000

Daily energy
cost (€)

550.9850

557.6795

554.5246

558.7408

556.5094

559.6482

558.7096

560.8216

560.3257

563.0461
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Fig. 7. Output power of all sources for Case 3.
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VI. CONCLUSION

This paper proposes an MINLP guided QL algorithm for
the real-time energy management of the stochastic and dy‐
namic microgrid in Malta. The AC power flow equations
and constraints, the battery wear cost and constraints, the fu‐
el cost and the emission cost are considered for the econom‐
ic and environment-friendly operation of the microgrid sys‐
tem. Three different cases are considered with three different
objective functions: ① minimization of daily operation cost
regardless of emission cost; ② minimization of both daily
energy cost and emission cost; ③ minimization of emission
cost without considering daily energy cost. The simulation
results using real pilot data of MCAST prove the cost effec‐
tiveness of the proposed algorithm compared with the tradi‐
tional QL algorithm. In case studies using the proposed algo‐
rithm, there is a 1.348% reduction in the daily total opera‐
tion cost in Case 2 compared with Case 1. The daily total
operation cost of the proposed algorithm is up to 1.25% low‐
er than that of the QL algorithm. From the simulation re‐
sults, we can also find that the battery lifetime is affected by
the adjustment of SOC value of the battery.
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