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Online Pattern Recognition and Data Correction
of PMU Data Under GPS Spoofing Attack
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Abstract——Smart grids are increasingly dependent on data
with the rapid development of communication and measure‐
ment. As one of the important data sources of smart grids, pha‐
sor measurement unit (PMU) is facing the high risk from at‐
tacks. Compared with cyber attacks, global position system
(GPS) spoofing attacks (GSAs) are easier to implement because
they can be exploited by portable devices, without the need to
access the physical system. Therefore, this paper proposes a
novel method for pattern recognition of GSA and an additional
function of the proposed method is the data correction to the
phase angle difference (PAD) deviation. Specifically, this paper
analyzes the effect of GSA on PMU measurement and gives two
common patterns of GSA, i.e., the step attack and the ramp at‐
tack. Then, the method of estimating the PAD deviation across
a transmission line introduced by GSA is proposed, which does
not require the line parameters. After obtaining the estimated
PAD deviations, the pattern of GSA can be recognized by hy‐
pothesis tests and correlation coefficients according to the statis‐
tical characteristics of the estimated PAD deviations. Finally,
with the case studies, the effectiveness of the proposed method
is demonstrated, and the success rate of the pattern recognition
and the online performance of the proposed method are ana‐
lyzed.

Index Terms——global position system (GPS); GPS spoofing at‐
tack (GSA), phasor measurement, pattern recognition, data cor‐
rection, line parameter.

I. INTRODUCTION

PHASOR measurement units (PMUs) are one of the im‐
portant data sources of smart grids and are even called

as the “grid-eye”. A large number of applications have been
developed based on PMU data for power system situation
awareness, analysis and even control [1]-[3] such as parame‐
ter identification [4] - [6], state estimation enhancement [7],

[8], system monitoring and control [9]-[11].
With the development of smart grids, the grid monitoring

and control are dependent on the real-time PMU data heavi‐
ly, thus making PMU data potential attack targets [12]. For
attackers, it is attractive to attack the grid and drive the grid
away from the optimal dispatch to gain potential economic
benefits or cause grid security issues. For power systems, at‐
tacks have serious effects on many applications such as line
parameter identification, state estimation, disturbance loca‐
tion, real-time voltage stability detection, system security
control, etc., and could even lead to cascading faults and
large-scale blackouts [13]-[17].

Currently, the attacks against PMU data can be divided in‐
to two types: one is the cyber attacks and the other is the
global position system (GPS) spoofing attacks (GSAs). The
former needs to access the physical network of the system.
Besides, to bypass the existing detection mechanism of bad
data, attackers need a full knowledge of the system which
makes the implementation of cyber attacks more difficult. In
contrast, the latter does not need to access the physical net‐
work, which makes GSAs more feasible. On the other hand,
the PMU maintains synchronization via the clock signal pro‐
vided by the GPS satellites. The phase angle errors can be
introduced by time synchronization problem [18], [19]
which makes the GPS signal vulnerable to attacks. The
PMU receives a civilian GPS signal, which is easier to pre‐
dict than an encrypted military signal, making the attacks
less difficult. Therefore, GSAs are easier to be implemented.
It can be exploited by portable devices without the need to
access the system network, and it is difficult for existing
GPS receivers to detect forged GPS signals [14]-[17]. In ad‐
dition, it should be noted that bad weather can interfere the
receiver of GPS signal and result in timing error in PMU de‐
vice [20]. Because of the deviation of the crystal oscillator
frequency, a linear deviation in the phase angle measurement
could be introduced when GPS signal is lost [21].

The detection of GSA attracts a lot of research interests
due to its high risk. Currently, the research on the detection
of GSA can be divided into two categories: one is the meth‐
ods based on GPS receiving device or GPS signal (physical
level), and the other is the methods based on measurement
data of power system (data level).

The first category of methods starts from the GPS receiv‐
er or GPS signal, and detects the GSA by analyzing the GPS
carrier-to-noise ratio (C/No), the number of visible satellites,
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and the observed signal statistics [22], [23]. Most of these
methods require improvements to the existing GPS receiver
or additional equipment.

The second category of methods takes the GSA as one
type of false data injection attack from the viewpoint of pow‐
er system. Compared with the first category of methods, the
second category of methods generally only needs to embed
the program in the wide area measurement system (WAMS)
or the control center, which is convenient to implement. In
this category, the detection methods for the PMU data at‐
tacks and the bad data can be divided into four types accord‐
ing to the data used: ① the methods using individual PMU
measurement data [24], [25]; ② the methods using PMU da‐
ta at both ends of the line [26]- [28]; ③ the methods using
multi-terminal PMU data [29]-[32]; ④ the methods based on
system modeling or state estimation [33]-[37].

The first type of methods detects the attacks and bad data
by analyzing the statistical features of individual PMU data
[24], [25] and generally does not require the system topolo‐
gy and parameters. It should be noted that the effect of GSA
is mainly reflected in the change of the relative amount for
the phase angle between different buses. Local phase angle
data could not reflect the change of the relative amount.
Therefore, this type of methods is not suitable for the detec‐
tion of GSA.

The second type of methods generally detects the attacks
and bad data through the relationship between electrical
quantities of the two ends of the transmission line based on
the line model [26]-[28]. In detail, [26] solves the correction
factors of PMU measurements based on the line model, thus
realizing the detection and correction of PMU error, but it re‐
quires accurate line parameters which are difficult to acquire
in practice [28]. Reference [27] proposes a detection sched‐
ule based on the screening of equivalent impedances of the
transmission line. However, the data correction after the de‐
tection of attacks is not considered. Reference [28] proposes
a density-based spatial clustering approach for online detec‐
tion, classification, and data recovery for the manipulation at‐
tacks to PMU measurements. However, this type of attacks
could not be automatically classified since only some criteria
instead of specific steps are given. The advantage of this
type of methods is that it is independent of system topology
as the line is decoupled from the system by installing PMUs
at the both ends. However, in this case, high observability re‐
dundancy is needed for the monitor system.

The third type of methods uses the multi-terminal PMU
data in the system to mine the similar features between the
normal PMU data to detect attacks and bad data. For exam‐
ple, [29] and [30] detect PMU bad data using the local outli‐
er factor algorithm based on spatiotemporal similarity, which
is made up by the standard deviation of different measure‐
ments. Reference [31] achieves the detection of GSAs based
on the difference of frequency measurements of PMUs. Ref‐
erence [32] utilizes the artificial neural network in associa‐
tion with the feature extraction technique based on principal
component analysis to classify the bad data. The key of this
type of methods is to use appropriate similar features to dis‐

tinguish the normal data from the bad data or attacks. Thus,
it may be difficult to detect the ramp attack with a small
slope using the similar feature based on standard deviation.

The fourth type of methods detects the data attacks at the
system level. It generally detects the bad data or attacks by
state estimation or system modeling. For example, [33] and
[34] develop the PMU data detection methods based on state
estimation. Besides, [35] uses the cumulative sum algorithm
to detect network attacks based on system modeling and
state estimation. Reference [36] uses the supervisory control
and data acquisition (SCADA) data, load forecasts, genera‐
tion schedules, and PMU data to achieve online anomaly de‐
tection. However, the accuracy of the method is heavily
based on the load forecasting which has high uncertainty it‐
self. Reference [37] realizes the detection of GSAs by con‐
structing a measurement matrix and using hypothesis tests to
judge the detection. In summary, this type of methods gener‐
ally requires a full knowledge of system configuration,
which is difficult in practice. On the other hand, this type of
method is difficult to be adaptive to the constantly changed
topology and the state of power system.

In this paper, a method for recognizing the pattern of
GSAs which belongs to the second type is proposed. The ad‐
ditional function of the method is the data correction of
phase angle difference (PAD) of phasors. Specifically, this
paper analyzes the effect of GSAs on PMU measurement
and introduces two common patterns of GSA and the prob‐
lem of GSA detection. Then, the method for estimating the
PAD deviation introduced by GSA is proposed. Using the π-
equivalent model of the transmission line, an estimation
model suitable for time-varying deviation cases is estab‐
lished, which does not require the line parameters. Based on
the estimation model, the PAD deviations can be obtained
and the correction of PAD data can be realized. Based on
the estimated PAD deviations, the pattern of GSAs can be
automatically recognized by the hypothesis tests and correla‐
tion coefficients according to the statistical characteristics of
PAD deviations.

The main contributions of this paper are summarized as
follows:

1) A data correction method for the PAD deviation intro‐
duced by GSA is proposed using the PMU measurements
from both ends of the transmission line.

2) An automatic pattern recognition method of GSA is pro‐
posed based on the hypothesis tests and correlation coeffi‐
cients.

3) The proposed method does not require the knowledge
of line parameters, which is more practical.

II. GSA AND PROBLEM STATEMENT

This section briefly presents the effect of GSAs on PMU
and introduces two common patterns of GSA and the prob‐
lem of GSA detection.

When a GPS receiver of PMU is spoofed, the GPS receiv‐
er would track the forged GPS signal instead of the real sig‐
nal. The existing research has shown that GSA can be imple‐
mented in two steps with low-cost and portable devices [14]-
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[17]. In the first step, the GPS spoofer sends certain interfer‐
ence causing the GPS receiver to lose track of the real sig‐
nal. Then, when the GPS receiver searches for signal, it
sends a forged GPS signal. Since the characteristics of
forged GPS signal is initially consistent with those of real
GPS signal, the GPS receiver will track the forged GPS sig‐
nal when the power of the forged signal increases. Thus, the
GPS receiver has been spoofed. The effect of GSAs can be
stated as follows.

A. Effect of GSAs on PMU

The synchronization of PMU is maintained via the clock
signal provided by the GPS satellites. The phase angle errors
can be linearly introduced by time synchronization deviation
[18], [19]. If a PMU is subjected to GSA, the time stamp of
the PMU could be modified and it will cause a mismatch
with other PMUs. For a transmission line with PMUs in‐
stalled at both ends, if a GSA is launched on one of the
PMUs, it can cause a synchronization deviation ΔtGSA be‐
tween PMUs, and the PAD deviation δ across the line can
be obtained.

δ = δU = δI = 2πfDtGSA (1)

where δU is the PAD deviation of voltage measurements; δI

is the PAD deviation of current measurements; and f is the
frequency of power system.

B. Two Patterns of GSA

In this paper, two patterns of GSA are considered: the
step attack and the ramp attack.

1) Step attack: when the GPS receiver is subjected to a
step attack, the PAD deviation will suddenly increase from 0
to a certain value, and then remain approximately un‐
changed. This attack pattern can be described as follows:

δ = {0 t < t1  t > t2

a t1 £ t £ t2

(2)

where t1 and t2 are the start time and end time of the attack;
and a is a constant PAD bias error introduced by the attack.

2) Ramp attack: when the GPS receiver is subjected to a
ramp attack, the PAD deviation will increase or decrease lin‐
early with time. This attack pattern can be described as fol‐
lows:

δ = {0 t < t1  t > t2

b(t - t1) t1 £ t £ t2

(3)

where b is the slope of PAD deviation.

C. Problem Statement

The mathematical formulation of the pattern recognition
and data correction of GSAs using PMU data at both ends
of the transmission line, could be stated as follows. For a
transmission line with PMUs installed at both ends, given
the measured PMU data (current and voltage phasors), the
PAD deviation caused by GSAs is estimated and the GSA
is recognized if one of the PMUs is subjected to GSA.

III. ESTIMATION AND CORRECTION OF PAD DEVIATION

In [38], a method for estimating constant PAD bias error
is proposed. This section extends the proposed method in
[38] to obtain the time-varying PAD deviation which may be
caused by a ramp attack.

A. Brief Review of Estimation Model of Constant PAD Devi‐
ation

The positive-sequence π-equivalent model of a transmis‐
sion line is shown in Fig. 1, where Z is the impedance of
the transmission line; Y is the admittance of the transmission
line; and U̇m, İm, U̇n and İn are the positive-sequence voltage
and current phasors at both ends of the transmission line, re‐
spectively. The voltage and current phasors of the two ends
of the transmission line satisfy (4) and (5).

İm =
(U̇m - U̇n)

Z
+ U̇m

Y
2

(4)

İn =
(U̇n - U̇m)

Z
+ U̇n

Y
2

(5)

From (4) and (5), the admittance can be expressed as (6).
Note that in general, the double-circuit transmission line can
be equivalent to two parallel π-equivalent models through
some simplifications. Therefore, the admittance calculation
formula for single-circuit lines is applicable to double-circuit
lines in most cases.

İm + İn

U̇m + U̇n

=
Y
2

(6)

Assume that there is a constant PAD bias error δ of the
PMUs and the measurements are noiseless. By compensating
the PAD deviation on the measured PMU data of bus m, the
current and voltage phasor measurements satisfy:

ì

í

î

ï
ïï
ï

ï
ïï
ï

U̇m = U̇mMe-jδ

İm = İmMe-jδ

İmMe-jδ + İnM

U̇mMe-jδ + U̇nM

=
Y
2

(7)

where U̇mM, İmM, U̇nM and İnM are the measured voltage and
current phasors, respectively. Furthermore, assume that the
admittance is constant in a short time, with the data of two
snapshots, we have:

İ ′mMe-jδ + İ ′nM

U̇ ′mMe-jδ + U̇ ′nM

=
İ″mMe-jδ + İ″nM

U̇ ″mMe-jδ + U̇ ″nM

=
Y
2

(8)

m n

Um

Z

2
Y

· Un
·

Im
· In

·

2
Y

Fig. 1. π-equivalent model using lumped parameters.
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where U̇ ′mM, İ ′mM, U̇ ′nM, İ ′nM and U̇ ″mM, İ″mM, U̇ ″nM, İ″nM are the
PMU measurements at two snapshots.

Equation (8) contains the PMU measurements and the con‐
stant PAD bias error δ which could be estimated.

B. Estimation Model for Time-varying PAD Deviation at Dif‐
ferent Time

The PAD deviation introduced by GSA could be time-vary‐
ing. Assume the PAD deviations at snapshots t1 and t2 are δ1

and δ2, respectively. The PAD deviations δ1 and δ2 satisfy:

δ2 = δ1 +Dp (9)

where ∆p is a constant, i.e., the difference between δ1 and δ2.
Let δ1 = δ, and assume that the line admittance Y does not

change in a short time. Thus, with the PMU measurement
data of t1 and t2 with GSA, (10) can be obtained when the
active power and reactive power do not change abruptly
within the synchronization time frame.

İ ′mMejδ + İ ′nM

U̇ ′mMejδ + U̇ ′nM

=
İ″mMej(δ +Dp) + İ″nM

U̇ ″mMej(δ +Dp) + U̇ ″nM

=
Y
2

(10)

Note that in order to ensure that (10) can be solved, the
PMU data of two snapshots should not be same. It is recom‐
mended to use PMU data with different operation conditions
at t1 and t2. Equation (10) can be rewritten as:

(İ ′mMU̇ ″mM - İ″mMU̇ ′mM)ej(2δ +Dp) + (İ ′nMU̇ ″mM - İ″mMU̇ ′mM)ej(δ +Dp) +

(İ ′mMU̇ ″nM - İ″nMU̇ ′mM)ejδ + (İ ′nMU̇ ″nM - İ″nMU̇ ′mM)= 0 (11)

Then, the real and imaginary parts of (8) can be rewritten
as (12) and (13).

f1 = k1 cos(2δ +Dp)- k2 sin(2δ +Dp)+ k3 cos(δ +Dp) -
k4 sin(δ +Dp)+ k5 cos δ - k6 sin δ + k7 = 0 (12)

f2 = k1 sin(2δ +Dp)+ k2 cos(2δ +Dp)+ k3 sin(δ +Dp)+
k4 cos(δ +Dp)+ k5 sin δ + k6 cos δ + k8 = 0 (13)

where k1 to k8 are coefficients given by:

ì

í

î

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï
ïïï
ï

k1 = real(İ ′mMU̇ ″mM - İ″mMU̇ ′mM)

k2 = imag(İ ′mMU̇ ″mM - İ″mMU̇ ′mM)

k3 = real(İ ′nMU̇ ″mM - İ″mMU̇ ′mM)

k4 = imag(İ ′nMU̇ ″mM - İ″mMU̇ ′mM)

k5 = real(İ ′mMU̇ ″nM - İ″nMU̇ ′mM)

k6 = imag(İ ′mMU̇ ″nM - İ″nMU̇ ′mM)

k7 = real(İ ′nMU̇ ″nM - İ″nMU̇ ′mM)

k8 = imag(İ ′nMU̇ ″nM - İ″nMU̇ ′mM)

(14)

With the measured data containing measurement noise,
the nonlinear quantities (

-
f

1
 -f

2
) will not be exactly zero,

where the symbol “ - ” indicates that the variable considers
measurement noise.

It will be beneficial to have many measured data to elimi‐
nate the effect of the noise. With PMU measurements at 2k
different time points, k sets of nonlinear equations
( f̄ 1

1 f̄ 1
2 f̄ k

1 f̄ k
2 ) can be obtained. Thus, the estimation of

the optimal value of the unknown PAD bias error δ can be
formulated as:

ì

í

î

ïï
ïï

min
δDp

JA =∑
i = 1

k

( )( f̄ i
1 )2 + ( f̄ i

2 )2

s.t. -π< δ +Dp£ π
-π< δ £ π

(15)

The objective function in (15) is the sum of squares of
mismatches due to measurement noises. When the objective
function is minimum, the optimal PAD deviation can be ob‐
tained. After a lot of tests, we found that the objective func‐
tion is a unimodal function locally.

C. Process of Estimation and Correction of PAD Deviation

1) Estimation of PAD Deviation Using Moving Data Window
The average PAD deviation of two periods can be ob‐

tained separately by the PAD estimation method as stated in
Section III-B. Then, when the GSA is detected, the PAD de‐
viation is estimated by using moving data window as shown
in Fig. 2.

In Fig. 2, the PAD deviations δT1
and δT2

can be estimated

separately from the two windows T1 and T2, and then the da‐
ta window will move backward each time after the estima‐
tion procedure is executed (the moving distance is the same
as the data window length). The average is taken as the final
estimated result for the time window which is estimated re‐
peatedly. Finally, the PAD deviations δT1

, δT2
, ..., δTn

can be

obtained. For ramp attack, the PAD deviation of each snap‐
shot can be obtained by linear fitting through the mean val‐
ue of PAD deviation of each period.
2) Start and Stop Criteria of Estimation Algorithm

In order to reduce the amount of calculation, the start and
stop criteria of the estimation algorithm are used to avoid
the estimation algorithm running all the time.

1) Start criterion. The start criterion can use the existing
attack detection methods such as methods in [27], [28] and
so on. In this paper, the attack detection method in [28] is
used. It can realize the attack detection based on monitoring
the change of estimated reactance caused by the attack.

Note that in [28], a check filter is designed based on expo‐
nential transformation: σc = eX (t + c)−X (t), where X(t) denotes the
estimated reactance of transmission line at time t; and c is
length of the data window. When there is no attack, the line
parameters can be regarded as constants in a reasonably
short period of time and the σc will be around 1 (0.95-1.05)
as X(t+c) ≈ X(t). When the attack occurs, the σc will be in‐
fluenced and the attack can be identified when σc ≠ 1.

When a GSA occurs, the estimated reactance can be affect‐
ed by the PAD deviation [13]. It can be detected by the

T1 T2 T3 T4 Tn

PAD deviations
of different time windows

δT1
, δT2

, … , δTn

Moving data
window

PMU data

�

Fig. 2. Estimation of PAD deviation using moving data window.
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check filter, and the estimation algorithm for PAD deviation
starts.

2) Stop criterion. When the estimated PAD deviations of
successive l periods are close to 0, e. g., smaller than 0.1° ,
the estimation algorithm stops.
3) Process of Estimation of PAD Deviation

According to the above discussion, the flow chart of the
online estimation of the PAD deviation is shown in Fig. 3,
where l is set to 2.

Through the above steps, the PAD deviation can be esti‐
mated, and the correction of PAD deviation of the measured
data at both ends can be realized.
4) Comments on Proposed Method

The advantage of the proposed method is that it does not
need to know the value of transmission line parameters. It
only uses the PMU measurements at both ends of the trans‐
mission line to estimate the PAD deviations. Thus, the meth‐
od is practical and simple.

Although the proposed method only shows the case where
one of the substations at both ends of the transmission line
suffers GSA, it is still effective in the case where the substa‐
tions at both ends of the transmission line are all attacked,
because the amount estimated by the proposed method is the
PAD deviation, which is a relative quantity. The phase angle
deviation introduced by GSAs at both ends of the transmis‐
sion line can be converted into PAD deviation which could
be estimated.

For the proposed method, it is assumed that the admit‐
tance is constant during a short time. However, it will stand
for a lot of situations.

In addition, to ensure that (10) can be solved, the PMU
data of two snapshots should not be same. It is recommend‐
ed to use PMU data with different operation conditions, i.e.,
different operation conditions of t1 and t2.

IV. PATTERN RECOGNITION OF GSA

A. Hypothesis Tests for PAD Deviations

Once the PAD deviations are obtained with the proposed
method over a number of time windows, the statistical char‐
acteristics of the PAD deviation can be analyzed. As stated
in Section II-B, if it is subjected to a step attack, the PAD
deviation will be almost constant, thus the obtained PAD de‐
viations will have a mean value deviated from zero and a
small variance. If it is subjected to a ramp attack, the PAD
deviations can change linearly with time. The mean value
and variance of PAD deviations will deviate from zero. If it
is subjected to a random attack or hybrid attack, the mean
value and/or the variance may be large. In this paper, the tra‐
ditional t-test and χ2-test are used to analyze the property of
mean and variance, and the correlation coefficient is used to
measure the linearity of PAD deviations.
1) Test 1: Test of Mean Value of PAD Deviations (t-test)

From the central limit theorem, the PAD deviations ap‐
proximate a normal distribution without attack under the con‐
dition that the sampled data are sufficiently large. Assume
that normal PAD deviations satisfy the normal distribution
N(μ0σ 2

0 ), where μ0 = 0, σ0 is the standard deviation of nor‐
mal phase angle measurement determined by PMUs. Then,
the t-distribution as (16) can be used to test the mean value.
The hypothesis test can be given as (17), and the decision
rule is shown in (18) with a determined significance level α.

ts =
X̄s - μ0

S/ ns

(16)

{H0: μ= μ0

H1: μ¹ μ0

(17)

ì

í

î

ï

ï
ïï

ï

ï
ïï

H0: || t =
|

|

|
||
|

|

|

|
||
| X̄s - μ0

S/ ns

< λ1 = tα/2 (ns - 1)

H1: || t =
|

|

|
||
|

|

|

|
||
| X̄s - μ0

S/ ns

³ λ1 = tα/2 (ns - 1)

(18)

where ts is the test statistic of test 1; X̄s is the mean value of
the PAD deviation samples; S is the standard deviation of
the samples; ns is the number of the samples; μ is the mean
value of the t-distribution; and tα/2 (ns - 1) is available in the
t-distribution table.

As shown in Fig. 4, if the observation falls into the rejec‐
tion domain at a certain significance level, the PMU for that
period is considered to have a high probability of being at‐
tacked. Otherwise, it may not be attacked or is subjected to

 Read PMU data of Ti, Ti+1 time windows,
and estimate PAD deviation δTi

, δTi+1

Y

N

Y

N

Obtain PMU data at both ends of transmission line 

Estimate X and check with σc

Y

N

Y

 Are δTi and δTi+1 less than 0.1°
for the current time window?

Are δTi-1
, δTi-2

, … ,�δTi-l less than 0.1°
for the previous l time windows?

i=i+1

Start

 Are all PMU data checked? 

End

N

σc=1?

Fig. 3. Flow chart of GSA detection and PAD deviation estimation.
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other types of attacks with a mean value close to zero.

2) Test 2: Test of Variance of PAD Deviations (χ2-test)
As mentioned earlier, the variance of normal PAD devia‐

tions should be close to a constant σ 2
0 determined by PMUs.

When it is not attacked or during a step attack, the variance
of PAD deviations will be close to 0 which is quite different
from subjecting to ramp attack or hybrid attack. Therefore, a
unilateral hypothesis test as (19) can be used to test the vari‐
ance. The hypothesis test can be given as (20), and the deci‐
sion rule is shown in (21) with the determined significance
level α.

χ2 = (ns - 1)S 2 /σ 2
0 (19)

{H0: σ
2 < σ 2

0

H1: σ
2 ³ σ 2

0

(20)

{H0: (ns - 1)S 2 /σ 2
0 < λ2 = χ 2

α (ns - 1)

H1: (ns - 1)S 2 /σ 2
0 ³ λ2 = χ 2

α (ns - 1)
(21)

where χ2 is the test statistic of test 2; σ is the standard devia‐
tion of the χ2-distribution; and χ 2

α (ns - 1) is available in the
χ2-distribution table.

As shown in Fig. 5, if the observation falls into the rejec‐
tion region at a certain significance level, then it is believed
that the PAD deviations of PMUs fluctuate greatly. There is
a high probability of being subjected to a ramp attack or a
hybrid attack; otherwise, it may not be attacked or is subject‐
ed to step attack.

3) Test 3: Detection of Linearity of PAD Deviations
With the ramp attack, the PAD deviation linearly corre‐

lates with the time. Therefore, the correlation coefficient can
be used to test whether the PAD deviation is linear with
time. The definition of the correlation coefficient is as fol‐
lows:

ρ(xy)=
Cov(xy)

Var(x)Var(y)
(21)

where Cov(x, y) is the covariance of variables x and y; and
Var(x), Var(y) are the variances of x and y, respectively.

In practical problems, when ρ(x,y) is greater than 0.8,
there is a linear relationship between the two variables.
Therefore, we select 0.8 as the threshold for linearity detec‐
tion. If the correlation coefficient between PAD deviations
and time is greater than 0.8, there is a greater probability be
subjected to ramp attack.

B. Process of Pattern Recognition of GSAs

Based on the characteristics of PAD deviations under
GSAs in Section II-B, the pattern of GSA can be recognized
with the tests. The corresponding results are shown in Table
I. The recognition process of GPAs is shown in Fig. 6.

As shown in Fig. 6, in the recognition process, tests 1 and
2 can be performed simultaneously. If the test result is one

0 ts

Probability
density

Acceptance region
1−α

−tα/2(ns−1) tα/2(ns−1)

Rejection region
α/2

Rejection region
α/2

O

Fig.4. Schematic diagram of test 1.

O

 

2 χ2

Probability
density

Acceptance region
1−α

χα(ns−1)

Rejection
region α

Fig. 5. Schematic diagram of test 2.

Calculate mean and variance of
PAD deviation samples

Test hypothesis of mean and variance

Obtain PAD deviations of
different periods

No attack

ρ(X,Y )≥0.8?Y

Ramp attack Other attack

μ=μ0
σ2<σ0

2
μ=μ0
σ2≥σ0

2
μ≠μ0
σ2>σ0

2
μ≠μ0
σ2≤σ0

2

Other attacks Step attack

N

Test of linearity

Fig. 6. Flow chart of GSA recognition.

TABLE I
RECOGNITION OF GSA PATTERNS

Case

1

2

3

4

5

Test result

μ= μ0σ
2 < σ 2

0

μ= μ0σ
2 ³ σ 2

0

μ¹ μ0σ
2 < σ 2

0

μ¹ μ0σ
2 ³ σ 2

0, | ρ (XY ) |³ 0.8

μ¹ μ0σ
2 ³ σ 2

0, | ρ (XY ) |< 0.8

GSA pattern

No attack

Other attacks

Step attack

Ramp attack

Other attacks
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of cases 1-3, no subsequent detection is performed and the
result can be directly output. If the result is μ¹ μ0, σ

2⩾σ 2
0 , the

test 3 is performed to determine whether the attack is ramp
attack or other attack.

In summary, the recognition of GSA and the correction of
PAD deviations can be realized by the proposed method.

V. CASE STUDY

In this section, a 500 kV single-circuit transmission line is
modeled in PSCAD. The step attack and ramp attack are per‐
formed to verify the proposed method. Besides, the success
rate of the pattern recognition with different degrees of at‐
tacks and the online performance of the whole scheme are
analyzed.

A. Model Setting and Data Acquisition

A 500 kV single-circuit transmission line is modeled in
PSCAD where the length is 200 km, the resistance is 2.666
Ω, the reactance is 40.4408 Ω, and the susceptance is 46.542
μS. The system frequency is 50 Hz. The sampling period of
PMU data is 20 ms. Multiple sets of steady-state measure‐
ments (each set contains 10 s data) under different power
flow conditions are obtained by changing the load. The data
contains the amplitudes and phase angles of voltage and cur‐
rent at both ends of the transmission line.

B. Estimation of PAD Deviations

For the step attack and ramp attack described in Section
II, two cases are set to verify the estimation method. In this
paper, the length of the time window is set to 10 s (data of
500 snapshots).

1) Case 1: assume that the PMU at bus m is subjected to
step attack with 25 μs synchronization deviation, so the
phase angle error 0.450º is added to the phase angles of volt‐
age and current at bus m of the transmission line. Besides, a
Gaussian distribution noise with mean value of zero and a
standard deviation of 0.2% is added to the amplitude; and a
Gaussian distribution noise with mean value of zero and a
standard deviation of 0.05° is added to the phase angle. The
estimated results in the first 5 time windows, the average,
median, and maximum error of the results of all 20 time
windows are shown in Table II, and the overall estimated re‐
sults are shown in Fig. 7.

In Fig. 7, the estimated results of each period are closer to
the set value with noise added, i.e., the proposed method can
effectively estimate the PAD deviation of PMUs at both
ends of the line.

2) Case 2: assume that the PMU at bus m is subjected to
ramp attack. The first-snapshot phase angle error ζ at bus m
of the time window 1 is 0.252° (14 μs synchronization devia‐
tion), the slope of the ramp attack is 0.0036 °/s (0.2 μs/s).
Besides, the noise which is the same to that in case 1 is add‐
ed. The estimated results of the first 5 time windows, the
first-snapshot phase angle error ζ and the slope of the attack
are shown in Table III and the overall estimated results are
shown in Fig. 8. Note that the result of PAD deviations dur‐
ing a time window is the estimation for the average of PAD
deviations during the time window.

As shown in Table III, without noise, the PAD deviations
can be accurately estimated. With noise added, though the es‐
timated results deviate from the actual value, they are within
the acceptable range.
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Fig. 7. Estimated result of PAD deviation with noise under step attack.

TABLE III
ESTIMATED RESULTS OF PAD DEVIATION UNDER RAMP ATTACK

Time window

1

2

3

4

5

ζ (°)

Slope (°/s)

Set value (°)

0.270

0.306

0.342

0.378

0.414

0.2520

0.00360

Estimated result (°)

No noise

0.270

0.306

0.342

0.378

0.414

0.2520

0.00360

Noise added

0.251

0.344

0.336

0.371

0.409

0.2384

0.00348
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Fig. 8. Estimated results of PAD deviation with noise under ramp attack.

TABLE II
ESTIMATED RESULTS OF PAD DEVIATIONS UNDER STEP ATTACK

Time window

1

2

3

4

5

Average value

Median value

Maximum error

Set value (°)

0.450

0.450

0.450

0.450

0.450

0.450

0.450

Estimated result (°)

No noise

0.450

0.450

0.450

0.450

0.450

0.450

0.450

0

Noise added

0.4338

0.4374

0.4140

0.4482

0.4464

0.4433

0.4455

0.0360
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C. Pattern Recognition for GSA

In this subsection, the estimated results of cases 1 and 2
in Section V-B are used to verify the effectiveness of the
proposed GSA recognition method.

In this case study, the number of samples ns is 20; the sig‐
nificance level α is set to 0.05; μ0 is set to 0 in test 1; σ0 is
set to 0.10 in test 2. Thus, the threshold of the rejection re‐
gion can be determined: λ1 = 2.093 (test 1), λ2 = 30.144 (test
2). The recognition results are shown in Table IV.

As shown in Table IV, the recognition of step attack only
requires tests 1 and 2, and can be completed without test 3.
The recognition of ramp attack requires tests 1, 2 and 3. Be‐
sides, it is shown that the difference of the statistical charac‐
teristics between step attack and ramp attack is obviously
distinguishable. The GSA can be recognized by the proposed
method accurately.

D. Success Rate Test of Pattern Recognition

In this subsection, the success rate of the pattern recogni‐
tion with different degrees of GSAs is tested.

The noise which is the same as that in case 1 in Section
V-B is added and different degrees of attacks are performed.
In order to fully test the success rate, the stop criterion of
the estimation algorithm does not work in the test. The setup
of the recognition is the same as that in Section V-C. Each
attack has been tested 100 times (different noises in the
same distribution are added at each time) and the success
rate of recognition are shown in Tables V and VI. Note that
in the ramp attack, the first-snapshot PAD deviation of the
first time window is 0.252° (14 μs synchronization devia‐
tion), which is the same as that in case 2 in Section V-B.

In Tables V and VI, the success rate of the proposed pat‐
tern recognition for step attack is 100% even with 2 μs step
attack. For the ramp attack, when the slope of the ramp at‐
tack is 0.100 μs/s, the deviation of PAD caused by the attack

is basically the same as that caused by the noise, resulting in
a small standard deviation of some estimation results of
PAD deviations. Therefore, some ramp attacks are misrecog‐
nized as step attacks. With the increase of the slope, the suc‐
cess rate increases. For the ramp attack with a slope of
0.150 μs/s and above, the success rate reaches 100%. In sum‐
mary, for the step attacks and most of the ramp attacks
whose slope is equal to or greater than 0.15 μs/s, the success
rate of the proposed pattern recognition is very high.

E. Online Performance Analysis

In this subsection, the online application performance of
the whole scheme is analyzed.

In the proposed scheme, the time cost can be divided into
four parts, i.e., the attack detection delay part, the data acqui‐
sition part, the PAD deviation estimation part and the pattern
recognition part. Among them, the data acquisition and the
PAD deviation estimation can run in parallel.

The simulations are performed on the computer with Intel
Core i5-8400 2.8 GHz, running in the environment of MAT‐
LAB. Multiple tests show that: the average delay of the at‐
tack detection for the ramp attack is about 0.8 s, while it is
less than 0.1 s for the step attack; the time cost of data ac‐
quisition is equal to the length of the moving time window
(500 snapshots) which is 10 s; the average execution time of
PAD deviation estimation for each time window is 1.38 s;
the average execution time of pattern recognition is about
0.006 s.

As mentioned above, after the attack is detected, the PAD
deviation estimation can be completed before the data of
next time window come. Thus, the application of the pro‐
posed method could be “online” with a time delay of sec‐
onds (limited to 2 s in the simulations).

VI. CONCLUSION

For GSAs on the PMU, this paper proposes a method for
online pattern recognition of GSAs with the additional bene‐
fit of PAD data correction. In the paper, the effect of GSA
on PMU measurement is analyzed and two common patterns
of GSA are described. Besides, a method for estimating the
time-varying PAD deviations introduced by GSA is present‐
ed. The value of the parameters of transmission line could
be ignored and only the PMU measurements at both ends of
the transmission line are used to estimate the PAD devia‐
tions. With the estimated PAD deviations of different time
windows, the pattern of GSA can be recognized by hypothe‐
sis tests and correlation coefficients. In the case studies, the

TABLE V
SUCCESS RATE OF RECOGNITION UNDER DIFFERENT DEGREES OF

STEP ATTACKS

Step value (μs)

2

4

6

8

Success rate of recognition (%)

Ramp attack

0

0

0

0

Step attack

100

100

100

100

Other attacks

0

0

0

0

TABLE IV
RECOGNITION RESULTS OF GSAS

Test

Test 1

Test 2

Test 3

Test result

Threshold

2.093

30.144

0.800

Recognition result

Case 1

151.01

0.32

Step attack

Case 2

12.04

85.71

0.93

Ramp attack

TABLE VI
SUCCESS RATE OF RECOGNITION UNDER DIFFERENT DEGREES OF RAMP

ATTACKS

Slope (μs/s)

0.100

0.125

0.150

0.200

Success rate of recognition (%)

Ramp attack

34

79

100

100

Step attack

66

21

0

0

Other attacks

0

0

0

0
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estimation effectiveness and reliability of the PAD deviation
are demonstrated and the success rate of the pattern recogni‐
tion and the online performance of the method are analyzed.
The results show that the success rate of the proposed pat‐
tern recognition is high for the step attack whose step value
is greater than 2 μs, and also for the ramp attacks whose
slope is greater than 0.15 μs/s. The application of the pro‐
posed method could be “online” with a time delay of sec‐
onds. Besides, the corrected PMU data can be used for the
power system analysis and control application such as line
parameter identification, state estimation.

In the proposed method, the practically acceptable assump‐
tion that the line admittance is unchanged during a short pe‐
riod is assumed. Besides, in the proposed method, the deter‐
mination of the attack position of GSA could not be
achieved by one line as the effect of GSA is measured by
PAD, which is a relative value. With other information, e.g.,
another line without attack connecting the same bus, the at‐
tack position of GSA may be determined by comparing the
PAD deviations of two lines.
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