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A Two-stage Adaptive Robust Model for
Residential Micro-CHP Expansion Planning

Fatemeh Teymoori Hamzehkolaei, Nima Amjady, and Bahareh Bagheri

Abstract——This paper addresses the planning problem of resi‐
dential micro combined heat and power (micro-CHP) systems
(including micro-generation units, auxiliary boilers, and ther‐
mal storage tanks) considering the associated technical and eco‐
nomic factors. Since the accurate values of the thermal and elec‐
trical loads of this system cannot be exactly predicted for the
planning horizon, the thermal and electrical load uncertainties
are modeled using a two-stage adaptive robust optimization
method based on a polyhedral uncertainty set. A solution meth‐
od, which is composed of column-and-constraint generation
(C&CG) algorithm and block coordinate descent (BCD) meth‐
od, is proposed to efficiently solve this adaptive robust optimiza‐
tion model. Numerical results from a practical case study show
the effective performance of the proposed adaptive robust mod‐
el for residential micro-CHP planning and its solution method.

Index Terms——Micro combined heat and power (micro-CHP)
planning, two-stage adaptive robust optimization model, block
coordinate descent method, polyhedral uncertainty set.

NOMENCLATURE

A. Indices and Sets

Ψ FSϒ

ΨUΘ

Ψ SSΞ

ΨMP

Ψ P1ΨP2

jgu

kln

rr′

Set of first-stage variables and associated
feasible region

Set of uncertain variables and polyhedral un‐
certainty set

Set of second-stage variables and associated
feasible region

Set of variables of master problem

Sets of variables of Problems 1 and 2 of
block coordinate descent (BCD) method

Indices of available capacities for micro
combined heat and power (micro-CHP) unit,
boiler, and storage tank

Indices of available technologies for micro-
CHP unit, boiler, and storage tank

Iteration indices for column and constraint
generation (C&CG) algorithm

ss′

tdh

v

B. Parameters

DLele
tdhDLThermal

tdh

Γ

α, β

δResistor

ρele
tdh, ρ

Gas
tdh

ρSell
tdh

η

ξ

ε

CcCHP
k

CcBoiler
l

CcTank
n

CpRatCHP
kj

CpRatBoiler
lg

CpRatTank
nu

EMU

ĒResistor

H MinTank

H MCharge

Scenario indices in out-of-sample analysis
and benchmark stochastic model

Indices for years, representative days, and
hours

Iteration index for block coordinate descent
(BCD) method

Variations of electrical and thermal loads
with respect to their forecasting values

Uncertainty budget

Electrical and thermal efficiencies of micro-
CHP unit

Electricity-to-heat converting efficiency of
electrical heating element

Electricity consumption tariff and gas con‐
sumption tariff

Price of electricity sold to upstream grid

Efficiency of boiler

Heat loss coefficient

Predefined tolerance parameter used for col‐
umn-and-constraint generation (C&CG) algo‐
rithm convergence

Investment cost coefficient of micro-CHP
unit with technology k

Investment cost coefficient of boiler with
technology l

Investment cost coefficient of storage tank
with technology n

Nominal capacity of micro-CHP unit with
technology k and capacity j

Nominal capacity of boiler with technology l
and capacity g

Nominal capacity of storage tank with tech‐
nology n and capacity u

The maximum capacity of electricity ex‐
change with upstream grid

The maximum electric power of electrical
heating element

The lower bound of heat stored in storage
tank

The upper bound of storage tank for charg‐
ing heat
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H MDis

I
-
L

ele

tdh
-
L

Thermal

tdh

McRCHP

McRTank

McRBoiler

Nd

NS

NS′

Ps

THR

UB, LB

w̄s, w̄s′

C. Variables

γ

λ(v)
tdhω

(v)
tdh

^
bCHP

kj bBoiler
lg 

bTank
nu

bDis
tdh

bu
tdh

C1(v)

C InvCHP

C InvBoiler

C InvTank

C operation
s′

C OpeCHP
t

C OpeBoiler
t

C Ele
t

C MT
t

C Sell
t

CSA

E CHP
tdh

E Utility
tdh

E Sell
tdh

E Resistor
tdh

The upper bound of storage tank for dis‐
charging heat

Interest rate

Forecasting values of electrical and thermal
loads

Maintenance coefficient of micro-CHP unit

Maintenance coefficient of storage tank

Maintenance coefficient of boiler

Number of days represented by day d

Number of scenarios in out-of-sample analy‐
sis

Number of scenarios in benchmark stochas‐
tic model

Probability of scenario s

Heating ratio

Upper and lower bounds of problem

Normalized probabilities of scenarios s and s′

Auxiliary continuous modelling variable

Dual variables associated with electrical and
thermal loads in iteration v of BCD method

Fixed value of variable

Binary investment variables of micro-CHP
unit, boiler, and storage tank from different
technologies/capacities

Binary variable indicating status of storage
tank (1: discharging; 0: charging)

Binary variable indicating status of exchang‐
ing electricity with upstream grid (1: pur‐
chasing; 0: selling)

Objective function value for Problem 1 of
BCD method at iteration v

Investment cost of micro-CHP unit

Investment cost of boiler

Investment cost of storage tank

Operation cost of in-sample scenario s′

Operation cost of micro-CHP unit in year t

Operation cost of boiler in year t

Cost of electricity purchased from upstream
grid in year t

Maintenance cost in year t

Revenue of selling electricity to upstream
grid in year t

Cost objective of benchmark stochastic mod‐
el

Electricity produced by micro-CHP unit

Electricity purchased from grid

Electricity sold to grid

Electricity consumed by electrical heating el‐
ement

H CHP
tdh

H Boiler
tdh

H Tank
tdh

H Charge
tdh

H Dis
tdh

H Resistor
tdh

Lele
tdhL

Thermal
tdh

Z ele
tdh Z

Thermal
tdh

Heat produced by micro-CHP unit

Heat produced by boiler

Heat stored in storage tank

Charged heat of storage tank

Discharged heat of storage tank

Heat produced by electrical heating element

Uncertain electrical and thermal loads

Continuous modeling variables used to mod‐
el Lele

tdh and LThermal
tdh

I. INTRODUCTION

THE micro combined heat and power (micro-CHP) sys‐
tems have presented an effective solution for providing

electrical and thermal energies for residential consumers. Mi‐
cro-CHP systems can bring considerable economic benefits
by recovering the heat wasted during the conversion of fos‐
sil fuels to electrical energy [1]. Micro-CHP systems are
flexible, efficient, and reliable systems [2]. Therefore, they
can be considered as a viable source of energy for residen‐
tial buildings in the future smarter systems. However, the
power and heat generated by micro-CHP systems have a re‐
ciprocal dependency, which determines the feasible operation
region of these systems [3]. The optimal planning and sched‐
uling of residential micro-CHP systems, considering their
feasible operation regions, are essential to attain lower opera‐
tion costs and higher energy efficiencies [4], [5]. Moreover,
the reliable operation of these systems in the presence of un‐
certainty sources should be taken into account [6]. On the
other hand, in a residential micro-CHP system, the thermal
inertia of the thermal load is an important flexibility re‐
source that can decrease the planning and operation cost [7].
In [7], the thermal inertia aggregation model (TIAM) has
been proposed to model the thermal dynamic characteristics
of the district heating network (DHN) and buildings. Simula‐
tion results have shown that TIAM can provide an accurate
model of the DHN and buildings for the planning and opera‐
tion of integrated energy systems, providing a basis for ana‐
lyzing and evaluating the operation flexibility of DHNs.

The feasibility of micro-CHP installations in residential
buildings requires a technical and economic viability study,
which is closely related to the sizing of devices [8]. In [8], a
linear programming model is developed to determine the de‐
sign and sizing of the micro-CHP unit, auxiliary boiler, and
thermal storage unit, considering the optimal operation strate‐
gy. The obtained results have shown that the optimal integra‐
tion and sizing of the micro-CHP components considerably
improve the economic, thermodynamic, and environmental
results. The techno-economic assessment and optimization of
Stirling engine micro-cogeneration systems in residential
buildings have been addressed in [9]. By comparing the per‐
formance of various system configurations and different op‐
eration strategies, the optimal strategies for the integration of
a Stirling-engine-based micro-cogeneration system into resi‐
dential buildings have been determined. Detailed results of
[9] have shown that an optimally operated micro-CHP sys‐
tem would result in a significant decrease in total cost, pri‐
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mary energy consumption, and CO2 emissions compared
with a conventional system. In [10], optimization models for
the capacity and dispatch planning of residential micro-CHP
systems have been developed. The numerical results of [10]
have shown that considerable economic savings in annual
costs can be obtained through an optimal sizing and opera‐
tion of a system consisting of a micro-CHP unit, a backup
boiler, and a storage tank.

For micro-CHP planning, the type and capacity of the mi‐
cro-CHP components (including, e.g., micro-generation unit,
auxiliary boiler, and thermal storage tank) should be selected
considering the associated techno-economic aspects. Al‐
though the generation and transmission expansion planning
of power system has recently attracted great attention in [11]-
[14], to the best of the authors’ knowledge, the generation
expansion planning of residential micro-CHP systems has
not been addressed in the previous literature.

The micro-CHP planning problem is subject to different
uncertainty sources in the planning horizon, such as thermal
and electrical load demand uncertainties. Therefore, it is nec‐
essary to develop non-deterministic micro-CHP planning
frameworks to appropriately model these uncertainty sourc‐
es. To address the impacts of the uncertainties in the plan‐
ning horizon, stochastic programming (SP) and robust opti‐
mization (RO) methods can be used, which are standard
tools to model uncertainties in different power system con‐
texts [15]-[21]. SP methods are based on the probability dis‐
tribution function (PDF) of uncertain variables. In [15], a sto‐
chastic optimization model has been proposed to jointly opti‐
mize the energy and reserve dispatches, and a set of scenari‐
os has been generated to characterize the uncertainty of
wind power. In [16], another SP method has been employed
to model the uncertainties in distributed generation planning
using scenario sampling. A multi-objective SP method has
been proposed for joint energy and reserve market clearing
in [17]. In this SP method, the uncertainties of unit and
branch unavailability as well as the load forecasting uncer‐
tainties have been explicitly modeled using scenario trees.

In SP methods, a large number of scenarios are usually re‐
quired to appropriately capture the uncertainty spectrum,
which typically increases the computation burden of such un‐
certainty modeling methods. These scenarios, which may be
generated from the PDF of uncertain variables, are intended
to simulate the possible realizations of uncertainties. There‐
fore, the solution of SP is optimal on average for these in-
sample scenarios. However, other out-of-sample realizations
of uncertainties, which are unseen for the SP method, may
occur in practice, and the SP method solution has no guaran‐
tee of optimality or even feasibility for these out-of-sample
scenarios. In addition, gathering sufficient historical data to
generate an adequate number of in-sample scenarios may not
be an easy task in practice. Especially when the optimization
problem involves multiple uncertainty sources, which is the
case of residential micro-CHP planning problem, the afore‐
mentioned disadvantages can be highlighted.

On the other hand, RO methods are based on bounded in‐
tervals to model uncertain variables and do not require the
exact PDF of uncertain variables. Thus, they need less histor‐

ical data compared with SP methods. In addition, RO meth‐
ods, which only consider the worst-case realization of uncer‐
tain variables, can provide a more tractable uncertainty mod‐
eling approach compared with SP methods. Besides, RO
methods immunize the solution against the worst-case real‐
ization of the uncertain variables and thus immunize the so‐
lution against any realization of uncertain variables within
the uncertainty set considered, while SP methods cannot
guarantee the robustness of the solution.

However, this feature may lead to over-conservativeness
of RO methods compared with SP methods. This over-con‐
servativeness problem can be solved by adding a so-called
degree of robustness to RO-based models [18]. Two-stage
adaptive RO is an extension of RO to optimize both here-
and-now decisions (which are made before the realization of
uncertainties) and wait-and-see decisions (which are made af‐
ter realization of uncertainties) [19]. An RO method has
been presented in [20] for generation and transmission ex‐
pansion planning of power system considering the uncertain‐
ties of estimated investment costs and forecasted electricity
demand. An adaptive RO model for the expansion planning
of a distribution system including distributed energy resourc‐
es has been proposed in [21] considering the uncertainties of
load demand and wind power.

The main contributions of this paper can be summarized
as follows.

1) In this paper, a new expansion planning model for a
residential micro-CHP system (consisting of a micro-genera‐
tion unit, auxiliary boiler, and thermal storage tank) is pro‐
posed to meet the future heat and electricity demands. The
proposed model is different from generation and transmis‐
sion expansion planning models of power system, such as
those presented in [11]-[14]. The reasons are that a residen‐
tial micro-CHP system should supply both thermal and elec‐
trical loads (considering their coordination constraints), and
its main components are different from those considered in
generation and transmission expansion planning models of
power system.

2) The proposed residential micro-CHP planning model is
implemented in the form of a two-stage adaptive RO frame‐
work considering the uncertainties of thermal and electrical
loads in the planning horizon. Moreover, to solve this two-
stage adaptive RO problem, a solution method is proposed,
which comprises the column-and-constraint generation
(C&CG) and block coordinate descent (BCD) methods. Us‐
ing the proposed solution method, this optimization problem
is efficiently solved without entailing bilinear terms or linear‐
ization techniques.

The rest of this paper is organized as follows. In Section
II, the uncertainty set is characterized. The proposed adap‐
tive RO model for the micro-CHP planning problem is intro‐
duced in Section III. The proposed solution method is pre‐
sented in Section IV. The numerical results obtained from
the proposed model and solution method are provided in Sec‐
tion V. Finally, Section VI concludes the paper.

II. UNCERTAINTY CHARACTERIZATION

As shown in Fig. 1, a typical residential micro-CHP sys‐
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tem consists of a micro-CHP unit, a backup boiler, and a
thermal storage tank [22]. The micro-CHP unit usually uses
natural gas as input fuel to generate electric power. The re‐
sultant high-temperature exhaust gases are utilized to supply
the thermal loads. If the produced heat is higher than the
thermal loads, the extra heat is stored in the thermal storage
tank for later use. In contrast, if the produced heat cannot
fully meet the thermal loads, the backup boiler and/or the
heat stored in the thermal storage tank can be employed.
Similarly, when the electric power generated by the micro-
CHP unit exceeds the electric demand of consumer, addition‐
al electric power can be sold to the upstream grid or used to
generate heat by an electrical heating resistor in the thermal
storage tank. Moreover, the shortage of electricity can be
compensated by purchasing electricity from the grid. Addi‐
tionally, the electrical heating resistor can be used to convert
some of the electricity purchased from the grid to heat,
when the electricity price is low.

Nowadays, various technologies with different characteris‐
tics are available for micro-CHP units, such as internal com‐
bustion engines, Stirling engines, Rankine cycle generators,
micro gas turbines, reciprocating engines, and fuel cells [2].
There are also a wide variety of technologies for boilers and
storage tanks [23] - [26]. The selection of the best technolo‐
gies for the residential micro-CHP system should be based
on the techno-economic aspects. In addition, some uncertain‐
ty sources affect the investment decisions in the residential
micro-CHP planning problem. In this paper, the uncertainties
of thermal load (including space and water heating demand)
and electrical load are considered. To characterize these un‐
certain variables, a polyhedral uncertainty set is defined
based on their forecasting values and bounded intervals. The
adaptive robust model proposed in this paper obtains a ro‐
bust investment plan that can withstand against the worst-
case realizations of the uncertain variables within the polyhe‐
dral uncertainty set, denoted as Θ={ΨU: (1)-(5)}.

Lele
tdh =

-
L

ele

tdh + Z ele
tdhDLele

tdh "t"d"h (1)

LThermal
tdh = -L

Thermal

tdh + Z Thermal
tdh DLThermal

tdh "t"d"h (2)

Z ele
tdh Î[01] "t"d"h (3)

Z Thermal
tdh Î[01] "t"d"h (4)

∑
h

Z ele
tdh + Z Thermal

tdh £Γ "t"d (5)

To extract the worst-case realization of the uncertain vari‐
ables within the polyhedral uncertainty set, thermal and elec‐
trical loads should increase as much as possible with respect
to their forecasting values. Therefore, one-side bounded inter‐
vals for the uncertain variables have been considered in the
uncertainty set Θ. In addition, unlike other adaptive RO
methods, the proposed BCD method does not require binary
modeling variables to construct the polyhedral uncertainty
set and can directly work with the continuous modeling vari‐
ables Z ele

tdh and Z Thermal
tdh as indicated in (3) and (4) [27]. In the

uncertainty set Θ, a pre-defined uncertainty budget in (5), i.e.,
Γ, has been used to control the robustness of the solution.

In the literature, for residential micro-CHP systems, the
electricity purchasing price is usually considered based on
the time-of-use (TOU) tariff [28]-[31]. Additionally, the natu‐
ral gas purchasing price and electricity selling price for resi‐
dential micro-CHP systems are considered based on tariffs
[28]-[31]. For instance, this is the situation that we practical‐
ly observe in Iran, where regulated prices based on tariffs
are applied for electricity purchasing, natural gas purchasing,
and electricity selling of residential micro-CHP systems. As
these prices are defined based on tariffs, no uncertainty has
been considered for them in the proposed model. However,
if these prices do not follow tariffs and have uncertainty in a
country, their uncertainties can be modeled similar to the
load uncertainties. In other words, since electricity prices are
continuous and uncertain variables, like the loads, we can
model their uncertainties using bounded intervals in the poly‐
hedral uncertainty set, as given in (1)-(5).

III. TRI-LEVEL ADAPTIVE ROBUST MODEL FOR MICRO-CHP
PLANNING

The proposed tri-level adaptive robust model for the plan‐
ning of the residential micro-CHP system is formulated as:

min
ΨFSÎϒ

(C InvCHP +C InvBoiler +C InvTank)+

max
ΨUÎΘ

min
ΨSSÎΞ

é

ë
êê

ù

û
úú∑

t

1

(1+ I)t
(C OpeCHP

t +C OpeBoiler
t +C Ele

t +C MT
t -C Sell

t )

(6)

The above min-max-min problem minimizes the worst-
case total cost of the residential micro-CHP system through‐
out the planning period, which consists of the investment
costs (C InvCHP C InvBoiler and C InvTank), the present operation
costs (C OpeCHP

t  C OpeBoiler
t  C Ele

t  and C MT
t ), and the negative val‐

ue of the present benefit obtained by selling electricity to the
grid (C Sell

t ). In the following subsections, these three optimi‐
zation levels are introduced.

A. The First Level

The first level of the adaptive robust model in (6) deter‐
mines the first-stage investment decisions, i.e., ΨFS =
{{bCHP

kj }"k"j{bBoiler
lg }

"l"g
{bTank

nu }
"n"u

}. The feasible region ϒ at the

first level is formulated as ϒ ={ΨFS: (7)-(13)}.
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Fig. 1. Schematic representation of a typical residential micro-CHP system.
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bCHP
kj £ 1

∑
l
∑

g

bBoiler
lg £ 1

∑
n
∑

u

bTank
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(7)

C InvCHP =∑
k
∑

j

(CcCHP
k ×CpRatCHP

kj × bCHP
kj ) (8)

C InvBoiler =∑
l
∑

g

(CcBoiler
l ×CpRatBoiler

lg × bBoiler
lg ) (9)

CInvTank =∑
n
∑

u

(CcTank
n ×CpRatTank

nu × bTank
nu ) (10)

bCHP
kj Î{01} "k"j (11)

bBoiler
lg Î{01} "l"g (12)

bTank
nu Î{01} "n"u (13)

Constraint (7) limits the number of installations of the mi‐
cro-CHP unit, auxiliary boiler, and storage tank. Here, one
installation has been considered for each component in the
planning horizon. However, any other number of installa‐
tions can be considered based on the planner’s preferences.
Constraints (8)-(10) define the investment costs to be includ‐
ed in the first level of the tri-level adaptive robust model
(6). Constraints (11)-(13) represent the binary investment de‐
cision variables.

B. The Second Level

The second level of the adaptive robust model in (6) deter‐
mines ΨU ={{Z ele

tdh Z
Thermal
tdh }"t"d"h} to extract the worst-case re‐

alization of the uncertain variables. The feasible region for
this level, i.e., the polyhedral uncertainty set Θ, has already
been defined in Section II.

C. The Third Level

The third level of the adaptive robust model in (6) deter‐
mines the second-stage operation decisions, i.e., Ψ SS =
{{bu

tdh} {E CHP
tdh } {H CHP

tdh } {H Boiler
tdh } {H Tank

tdh } {E Utility
tdh } {bDis

tdh}
{H Charge

tdh } {H Dis
tdh } {E Sell

tdh } {E Resistor
tdh } {H Resistor

tdh }}"t"d"h. The feasi‐
ble region Ξ for the second-stage variables can be described
as Ξ ={Ψ SS:(14)-(31)}.

0£E CHP
tdh £∑

k
∑

j

CpRatCHP
kj × bCHP

kj "t"d"h (14)

0£H Boiler
tdh £∑

l
∑

g

CpRatBoiler
lg × bBoiler

lg "t"d"h (15)

∑
n
∑

u

H MinTank × bTank
nu £H Tank

tdh £∑
n
∑

u

CpRatTank
nu × bTank

nu "t"d"h

(16)

0£H CHP
tdh £

βE CHP
tdh

α
"t"d"h (17)

0£E Resistor
tdh £ ĒResistor "t"d"h (18)

H Resistor
tdh = δResistor E Resistor

tdh "t"d"h (19)

E CHP
tdh +E Utility

tdh -E Sell
tdh -E Resistor

tdh = Lele
tdh "t"d"h (20)

0£E Utility
tdh £E MUbu

tdh "t"d"h (21)

0£E Sell
tdh £EMU (1- bu

tdh) "t"d"h (22)

H CHP
tdh +H Boiler

tdh +H Resistor
tdh +H Dis

tdh -H Charge
tdh = LThermal

tdh "t"d"h
(23)

0£H Dis
tdh £H MDisbDis

tdh "t"d"h (24)

0£H Charge
tdh £H MCharge (1- bDis

tdh ) "t"d"h (25)

H Tank
td(h+ 1) = (1- ξ)H Tank

tdh +H Charge
tdh -H Dis

tdh "t"d"h if h¹ 24
(26)

C OpeCHP
t =∑

d
∑

h

Nd E CHP
tdh

ρGas
tdh

α × THR
"t (27)

C OpeBoiler
t =∑

d
∑

h

Nd H Boiler
tdh

ρGas
tdh

η × THR
"t (28)

C MT
t =∑

d
∑

h

Nd (E CHP
tdh ×McRCHP +H Boiler

tdh ×McRBoiler +H Tank
tdh ×McRTank)

"t (29)

C Ele
t =∑

d
∑

h

Nd E Utiility
tdh ρele

tdh "t (30)

C Sell
t =∑

d
∑

h

Nd E Sell
tdh ρ

Sell
tdh "t (31)

In (14) - (16), E CHP
tdh , H Boiler

tdh , and H Tank
tdh are limited based on

the capacities selected at the first level. The generated heat
of the micro-CHP unit is restricted in (17). The electricity
consumed by the electrical heating element is limited in
(18). The heat produced by the electrical heating element is
calculated in (19). Constraint (20) represents the electric
power balance in the system. Constraints (21) and (22) limit
the electricity purchased from/sold to the grid, respectively.
The binary variable bu

tdh in (21) and (22) avoids simultaneous
purchasing and selling of electricity. The heat balance con‐
straint of the system is given in (23). Similarly, (24) and
(25) limit the discharging and charging of heat in the storage
tank. The binary variable bDis

tdh in (24) and (25) avoids simulta‐
neous discharging and charging of heat. Constraint (26) re‐
lates the heat stored in each hour to the stored heat (consid‐
ering heat loss coefficient ξ), charged heat, and discharged
heat in the previous hour. For the first hour of each day, the
previous hour is considered as the last hour of the previous
day. The annual operation costs of the micro-CHP unit and
the auxiliary boiler are calculated in (27) and (28), respec‐
tively. The annual maintenance cost of the components of
the residential micro-CHP system is calculated in (29). The
annual cost/revenue of purchasing/selling electricity from/to
the upstream grid are given in (30) and (31), respectively.

IV. SOLUTION METHODOLOGY

For solving the proposed tri-level adaptive robust model
presented in the previous section, it is first decomposed to a
“min” master problem and a “max-min” sub-problem using
C&CG algorithm. The master problem at iteration r of the
C&CG algorithm is formulated as:

{min
ΨMP

(C InvCHP +C InvBoiler +C InvTank)+ γ

s.t. (7)-(13)(33)-(35)
(32)

γ³ 0 (33)
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γ³∑
t

1

(1+ I)t
(C OpeCHP(r′)

t +C OpeBoiler(r′)
t +C Ele(r′)

t +C MT(r′)
t -C Sell(r′)

t )

r′ = 12...r - 1 (34)

(14)-(31): r′ = 12...r - 1 (35)

The master problem consists of constraints (7) - (13) per‐
taining to the first-stage investment decisions and a set of
primal cuts (33)-(35) added to the master problem at each it‐
eration of the C&CG algorithm. In other words, at each itera‐
tion, the set of primal cuts (33)-(35) is added to the master
problem based on the worst-case realization of uncertain
variables obtained from the sub-problem in the previous iter‐
ations, which is denoted by L̂ele(r′)

thd and L̂Thermal(r′)
tdh , where r′ =

12...r - 1. In the first iteration, no primal cut is added to
the master problem. The decision variables of the master
problem include the first-stage decision variables and also
the variables used to construct primal cuts as: ΨMP ={ΨFS, δ
{{bu(r′)

tdh } {E Sell(r′)
tdh } {E Utility(r′)

tdh } {H Dis(r′)
tdh } {bDis(r′)

tdh } {E CHP(r′)
tdh }

{H Boiler(r′)
tdh } {H Tank(r′)

tdh } {H Charge(r′)
tdh } {E Resistor(r′)

tdh }}"t"d"hr′= 12r - 1}}.
After solving the master problem, its results for the first-

stage decisions, i. e., ΨFS, are sent to the sub-problem, as
shown in the flowchart in Fig. 2.

The second step in solving the proposed tri-level adaptive
robust model is to extract the worst-case realization of uncer‐
tain variables in the sub-problem for the obtained first-stage
investment decisions (which are shown by b̂CHP

kj , b̂Boiler
lg , and

b̂Tank
nu ). Unlike the single-level master problem, the sub-prob‐

lem is a bi-level optimization problem. In this paper, the
BCD method is used to efficiently solve the sub-problem. In
the BCD method, the bi-level sub-problem is further decom‐
posed into Problem 1 for the operation variables, where the
uncertain variables are fixed, and Problem 2 for the uncer‐
tain variables, where the first-order Taylor series is used to
represent the cost objective function with respect to the un‐
certain variables. Problems 1 and 2 of the BCD method are
solved iteratively until the BCD method converges. In fact,
the BCD loop is inside the outer loop related to the C&CG
algorithm, as shown in Fig. 2.

1) Problem 1 of the BCD method: given the first-stage in‐
vestment decisions b̂CHP

kj , b̂Boiler
lg , and b̂Tank

nu obtained from the

master problem, and the values of the uncertain variables
L̂ele(v - 1)

tdh and L̂Thermal(v - 1)
tdh obtained from the previous iteration ν -

1 of the BCD method, Problem 1 at iteration ν is formulated
as:

{C1(v) = min
ΨP1 ∑

t

1

(1+ I)t
(C OpeCHP

t +C OpeBoiler
t +C Ele

t +C MT
t -C Sell

t )

s.t. (14)-(31)
(36)

Lele
tdh = L̂ele(v - 1)

tdh :λ(v)
tdh "t"d"h (37)

LThermal
tdh = L̂Thermal(v - 1)

tdh :ω(v)
tdh "t"d"h (38)

where ΨP1 ={Ψ SS{Lele
tdhL

Thermal
tdh }"t"d"h}. The dual variables λ(v)

tdh

and ω(v)
tdh indicate the sensitivity of the objective function

C1(v) with respect to uncertainties Lele
dht and LThermal

dht in iteration
ν of the BCD method, respectively. These dual variables are
used in Problem 2 of the BCD method for constructing the
first-order expansion of the Taylor series associated with the
objective function to obtain the worst-case realization of the
uncertain variables.

2) Problem 2 of the BCD method: given Ĉ1(v) λ̂(v)
tdh and

ω̂(v)
tdh obtained from the solution of Problem 1, and also

L̂ele(v - 1)
tdh and L̂Thermal(v - 1)

tdh obtained from the previous iteration ν -
1 of the BCD method, Problem 2 is formulated as:

ì

í

î

ï

ï
ïï

ï

ï
ïï

max
ΨP2 {Ĉ1(v) +∑

t
∑

d
∑

h

[λ̂(v)
tdh (Lele

tdh - L̂ele(v - 1)
tdh )+

}ω̂(v)
tdh (LThermal

tdh - L̂Thermal(v - 1)
tdh )]

s.t. (1)-(5)

(39)

where ΨP2 ={ΨU{Lele
tdhL

Thermal
tdh }"t"d"h}. Problem 1 for opera‐

tion variables and Problem 2 for uncertain variables are relat‐
ed to the third and second levels of the proposed tri-level
adaptive robust model, respectively. Considering the forecast‐
ing values

-
L

ele

dht and
-
L

Thermal

dht as the initial values for uncertain
variables, the BCD method starts to iteratively solve Prob‐
lems 1 and 2 until the value of C1(v) remains within a pre-de‐
fined interval in two successive iterations.

In the C&CG algorithm, the master problem and sub-prob‐
lem provide the lower and upper bounds for the problem. As
shown in Fig. 2, the C&CG algorithm terminates if UB and
LB values are within a predetermined tolerance.

The nested C&CG algorithm devised in [32] can also be
used to solve tri-level adaptive robust models with binary
variables at the second stage of the problem. However, this
method needs the transformation of the max-min problem at
the second stage to an equivalent single-level optimization
problem. The resulting single-level sub-problem will be a bi‐
linear mathematical programming problem including non-
convex product terms of the middle-level uncertain variables
and the lower-level dual variables. These bilinear terms need
to be linearized at the expense of introducing additional bina‐
ry variables pertaining to the polyhedral uncertainty set [33].
More importantly, to perform this linearization, we need to
set the lower and upper limits of the dual variables as the
big-M values for the linearization [34]. Assigning either too
low or too high values for the lower and upper limits of the
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Fig. 2. Flowchart of proposed solution method.
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dual variables can lead to low-quality solutions and even
convergence problems. Therefore, assigning appropriate big-
M values can be a challenging task. On the other hand, the
proposed BCD-based solution method does not have dualiza‐
tion or subsequent linearization, and, therefore, does not re‐
quire setting the big-M values for the lower and upper limits
of the dual variables [27], [34]. In addition, unlike the nest‐
ed C&CG algorithm that uses binary modeling variables to
construct polyhedral uncertainty sets (since these binary aux‐
iliary variables are required by the disjunctive programming
and linearization techniques), the BCD-based method uses
the real continuous form of uncertainties in the polyhedral
uncertainty set as indicated in (3) and (4). Thus, the BCD-
based method can efficiently solve the proposed adaptive ro‐
bust micro-CHP planning model as shown in the next sec‐
tion.

V. SIMULATION RESULTS

In this section, the proposed tri-level adaptive robust mod‐
el for micro-CHP planning is tested on a residential micro-
CHP system with the structure shown in Fig. 1. Four differ‐
ent types including internal combustion engine, Stirling en‐
gine, fuel cell, and Rankine cycle engine are considered as
the planning options for the micro-CHP unit. The techno-eco‐
nomic data of these types can be found in [23]-[26]. In addi‐
tion, two boiler types (including conventional boiler and sys‐
tem boiler) and two storage tank types (including Heat-Flo
storage tank and Hydroflex storage tank) are considered as
the boiler and storage tank planning options with the techni‐
cal and economic data given in [35]-[37]. For each type of
each micro-CHP component, 20 different capacities are as‐
sumed. The proposed model should also select the optimum
capacity of each component. Thus, there are totally (4 × 20)×
(2× 20)×(2× 20)= 1.28× 105 planning options for this residen‐
tial micro-CHP test system. This large solution space illus‐
trates the importance of the proposed model to optimize the
residential micro-CHP expansion plan. Other techno-econom‐
ic data of micro-CHP components, such as their electrical
and thermal efficiencies, can be found in [22], [23], and
[38]. In addition, the planning horizon is five years and the
annual interest rate is 10%.

The profile of hourly electrical and thermal loads during
one year has been constructed using Design-Builder software
[39]. Also, a 5% annual growth rate is assumed for the
loads. In this study, four representative days are selected for
each year using k-means clustering technique [40]. Typically,
the number of operation conditions considered increases
with the number of representative days, which leads to a
more accurate data modeling resulting in a lower cost, but at
the expense of a higher computation burden [21]. The fore‐
casting values of hourly electrical and thermal loads for the
representative day in different seasons of the first year are
shown in Fig. 3. Moreover, the electricity purchasing price
has been considered based on TOU tariff as shown in Table
I [28]. The natural gas purchasing price and electricity sell‐
ing price are assumed to be 0.273 $/m3 and 0.0897 $/kW, re‐
spectively, for the first year of the planning horizon [28]. Al‐
so, it is assumed that natural gas, electricity purchasing, and

electricity selling prices have a 5% increase in each of the
next years. The power exchange of the residential micro-
CHP system with the upstream grid is limited to 35 kW [28].

A. Optimal Solution Versus Degree of Robustness

Given two different types of loads (electrical and thermal)
and 24 operation hours in each representative day, the uncer‐
tainty budget Г in (5) can adopt different values between 0
and 24´ 2= 48. The results obtained from the proposed adap‐
tive robust micro-CHP planning model for different values
of Г are shown in Table II.

According to Table II, by increasing Г from 0 to 48, the
total cost of the proposed adaptive robust micro-CHP plan‐
ning model increases. The lowest cost is obtained by Г = 0
when none of the uncertain variables can deviate from its
forecasting value. In fact, the uncertainty of electrical and
thermal loads is not considered when the uncertainty budget
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Fig. 3. Forecasting values of hourly electrical and thermal loads for repre‐
sentative day in different seasons. (a) Spring. (b) Summer. (c) Fall. (d) Win‐
ter.

TABLE I
TOU TARIFF FOR ELECTRICITY PRICE

TOU tariff

Off-peak

Mid-peak

On-peak

Price ($/kWh)

0.0442

0.0866

0.2461

Hours in a day
(warm seasons)

23:00-07:00

08:00-19:00

20:00-22:00

Hours in a day
(cold seasons)

22:00-05:00

06:00-17:00

18:00-21:00

TABLE II
OPTIMAL SOLUTION VERSUS UNCERTAINTY BUDGET

Uncertainty
budget Г

0

12

24

36

48

Model
cost ($)

301352.4

318741.6

328007.8

340628.5

346381.7

Micro-CHP unit
capacity (kW)

44

47

48

50

51

Boiler capacity
(kW)

60

70

73

76

77

Storage tank
capacity (kW)

10

16

17

19

21

832
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equals 0 (similar to a deterministic model that does not con‐
sider uncertainty sources in its decision-making process). By
increasing Г from 0, a number of uncertain variables can de‐
viate from their forecasting values and adopt their worst-
case realizations within the polyhedral uncertainty set de‐
fined in (1) - (5). Thus, the proposed model can provide ro‐
bustness against these uncertain variables. A higher value of
Г leads to considering a higher number of uncertain vari‐
ables, which leads to a higher robustness level of the pro‐
posed model, but at the expense of a higher model’s cost. In
other words, this higher robustness against uncertainties
comes at a cost. As Table II illustrates, by increasing the
budget of uncertainty, the optimal capacities of the micro-
CHP unit, boiler, and storage tank increase to supply higher
electrical and thermal loads. As described in Section II, the
worst-case realization of the uncertain variables includes the
highest electrical and thermal load values based on the value
of Г, within the polyhedral uncertainty set.

However, from the results of the model’s cost, as shown
in Table II, we cannot observe the robustness worth of each
case and select the best investment decisions for the micro-
CHP planning. Therefore, an ex-post out-of-sample analysis
is required to truly evaluate the performance of each case
against unseen out-of-sample scenarios and to fine-tune the
uncertainty budget in the proposed tri-level adaptive robust
model for micro-CHP planning.

B. Evaluating Solutions Using Out-of-sample Analysis

The out-of-sample analysis can appropriately assess the ro‐
bustness worth, in addition to the robustness cost, of differ‐
ent cases in Section V-A with different uncertainty budgets.
To perform the out-of-sample analysis, 1000 various unseen
scenarios are first generated for the uncertain electrical and
thermal loads. These sample scenarios are generated using
the normal probability distribution function and unseen for
all models of Table IV to truly evaluate their performance.
To model the uncertainty of hourly load forecasting in the
micro-CHP planning, the continuous normal PDF has been
divided into 7 discrete intervals [41]. The mid-value of each
interval represents that interval. The probability of each out-
of-sample scenario has been normalized as:

w̄s =
Ps

∑
s= 1

NS

Ps

s= 12...NS
(40)

The sum of w̄s values for all out-of-sample scenarios is
equal to one.

Since the out-of-sample scenarios are unseen, i. e., they
have not been considered in the proposed model, the perfor‐
mance of each case in Table II can be truly evaluated by
these scenarios. To evaluate each case by the out-of-sample
analysis, the first-stage investment decision variables are
fixed on the investment results obtained from that case, and
the second-stage operation decision variables are optimized
for each out-of-sample scenario considering its realized un‐
certain variables. Finally, the costs of all out-of-sample sce‐
narios are aggregated based on their normalized probabilities
to obtain the out-of-sample cost for the considered case.
More details of the out-of-sample analysis can be found in

[27], [42].
The results of the out-of-sample analysis for different cas‐

es of Table II are presented in Table III. Table III shows that
the most conservative case (with the highest Г value) of the
proposed tri-level adaptive robust micro-CHP planning mod‐
el is not necessarily the best solution from the perspective of
the out-of-sample analysis. Indeed, as shown in Table III, Г =
12 leads to the best solution with the lowest out-of-sample
cost. In fact, the cases with the higher values of Г are exces‐
sively conservative. A high robustness cost, which is re‐
quired for installing a higher capacity of the micro-CHP
unit, boiler, and storage tank as illustrated in Table II, is in‐
curred in these over-conservative cases to be immunized
against less likely realizations of the uncertainties, while a
low robustness worth is obtained in return. The robustness
worth is reflected by decreasing the operation cost of the
proposed adaptive robust model, such as decreasing the cost
of extra energy purchased from the upstream grid encounter‐
ing various realizations of uncertainties. However, the robust‐
ness worth obtained from low-probability scenarios is low as
these scenarios have a minor impact on the out-of-sample
cost. Therefore, these over-conservative cases considering
both the robustness cost and the robustness worth lead to
higher out-of-sample costs than the case with the optimal un‐
certainty budget, i.e., Г = 12. On the contrary, the case with
Г = 0 is an under-conservative case as it cannot provide any
robustness against the uncertainties leading to a high out-of-
sample cost. Therefore, the fine-tuned uncertainty budget of
the proposed adaptive robust model for this residential micro-
CHP planning test case is Г = 12, which finds an appropriate
compromise between the robustness cost and the robustness
worth.

C. Comparison with Deterministic and Stochastic Models

In this section, the results of the proposed adaptive robust
micro-CHP planning model are compared with the results of
deterministic and stochastic micro-CHP planning models in
the test case of residential micro-CHP. This comparison is
carried out using out-of-sample analysis, and its results for
different planning models are given in Table IV. The com‐
pact formulation of the employed stochastic micro-CHP plan‐
ning model is given in Appendix A.

As shown in Table IV, while the deterministic micro-CHP
planning model has the lowest model’s cost (reported in the
second column), it obtains the highest out-of-sample cost (re‐
ported in the third column). Thus, the deterministic model
has the poorest performance encountering unseen out-of-sam‐
ple scenarios. This is because the deterministic model com‐

TABLE III
OUT-OF-SAMPLE COST FOR DIFFERENT UNCERTAINTY BUDGET VALUES

Uncertainty budget Г

0

12

24

36

48

Out-of-sample cost ($)

379448.89

361047.49

379582.21

381043.15

382718.22

833



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 4, July 2021

pletely ignores the uncertainty sources of the micro-CHP
planning, and only considers the forecasting values of uncer‐
tain thermal and electrical loads. Thus, its model’s cost is
unrealistically low, as other realizations of uncertain vari‐
ables (other than the forecasting values) can occur in prac‐
tice, which are not considered in the deterministic model.
Therefore, the deterministic model shows a poor perfor‐
mance encountering these realizations, leading to its highest
out-of-sample cost in Table IV. Table IV shows that the sto‐
chastic micro-CHP planning model has somewhat better out-
of-sample performance than the deterministic micro-CHP
planning model as it considers some different realizations of
uncertain variables using its in-sample scenarios. As shown
in Table IV, the proposed adaptive robust planning model
has the best out-of-sample performance with the lowest out-
of-sample cost, since the proposed model not only considers
the uncertain variables but also provides appropriate immuni‐
zation against them.

To better explain these comparative results, the two main
components of the out-of-sample cost including the invest‐
ment cost (which is the total investment cost of the micro-
CHP unit, boiler, and storage tank of the micro-CHP system)
and the out-of-sample operation cost (which is the aggregat‐
ed operation cost of all out-of-sample scenarios considering
their normalized probabilities) are reported for different plan‐
ning models in the fourth and fifth columns of Table IV.
These results indicate that the proposed tri-level adaptive ro‐
bust model with a slightly higher investment cost compared
with the deterministic and stochastic planning models (which
is incurred to provide robustness against uncertain variables)
leads to a significantly lower operation cost encountering un‐
seen out-of-sample scenarios. Thus, the proposed planning
model results in a lower out-of-sample cost (which is the
sum of the investment cost and the out-of-sample operation
cost) compared with the deterministic and stochastic plan‐
ning models.

The computation time of the deterministic, stochastic, and
proposed models is also presented in Table IV. It can be ob‐
served that the computation time of the proposed adaptive ro‐
bust model on the residential micro-CHP test system is
around 4 minutes, which is lower than the computation time
of the stochastic model and is close to that of the determinis‐
tic model. The low computation time of the proposed tri-lev‐
el adaptive robust model indicates its high computational ef‐
ficiency. In addition, it is worthwhile to note that the pro‐
posed tri-level adaptive robust model is for the residential

micro-CHP expansion planning with a five-year planning ho‐
rizon, and thus, a 4-minute computation time is completely
reasonable.

To statistically validate the results of the out-of-sample
analysis, the convergence coefficient [42] has been calculat‐
ed for each model in Table IV. All the convergence coeffi‐
cients of the out-of-sample analysis are well below 0.01,
which means that the out-of-sample analysis has sufficiently
converged for all models [42].

The results of the electricity/heat generated by the micro-
CHP unit and the heat generated by the boiler obtained from
the proposed model with Г = 12 are shown in Fig. 4 on the
representative day in winter season of the first year of the
planning horizon. Also, the results obtained from this model
for the electricity purchased from/sold to the upstream grid
on the representative day in fall season in the first year are
illustrated in Fig. 5.

From Fig. 4 and the hourly forecasted loads on the repre‐
sentative day in winter season illustrated in Fig. 3(d), it is
seen that both the micro-CHP unit and the boiler generate
heat in hours 1-17 with high heat load values. Moreover, in
hours 1-17 with low electricity load values, the excess elec‐
tricity generation of the micro-CHP unit can be sold to the
grid. Compared with these hours, the next hours 18-24 have
lower thermal load values and higher electric load values.
The micro-CHP unit supplies the electric loads of these

0
10
20
30
40
50
60
70
80
90

100
110
120
130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
en

er
at

ed
 e

ne
rg

y 
(k

W
h)

Time (hour)

Electricity generated by micro-CHP unit
Heat generated by micro-CHP unit
Heat generated by boiler

Fig. 4. Generated electricity and heat of micro-CHP unit and generated
heat of boiler on representative day in winter season of the first year.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ex
ch

an
ge

d 
en

er
gy

 (k
W

h)

Time (hour)

Electricity sold to the grid
Electricity purchased from the grid

Fig. 5. Electricity purchased from/sold to upstream grid on representative
day in fall season of the first year.

TABLE IV
COMPARISON OF PROPOSED ADAPTIVE ROBUST MODEL WITH

DETERMINISTIC AND STOCHASTIC MODELS

Model

Determin‐
istic

Stochastic

Proposed

Model’s
cost ($)

301352.41

303745.80

318741.62

Out-of-
sample
cost ($)

379448.89

377322.25

361047.49

Invest‐
ment cost

($)

212375

218400

228530

Out-of-sample
operation cost

($)

167074

158922

132517

Computa‐
tion time

(s)

212

505

238

hours, and, at the same time, its thermal generation supplies
the lower thermal loads of these hours. Thus, the heat gener‐
ation of the boiler is not needed in hours 18-24.

Figure 5 shows that the micro-CHP system purchases elec‐
tricity from the upstream grid at off-peak hours 22-24 with
low electricity purchasing prices (illustrated in Table I) and
high electric load values (illustrated in Fig. 3(c)). Lower
electricity purchase values are in the mid-peak hours 10 and
11 with higher electricity purchasing prices. In other hours
with lower electric load values, the micro-CHP system can
sell electricity to the grid as shown in Fig. 5.

In this paper, all simulations have been run using CPLEX
solver within the GAMS software package [43] on a Core i5
2.5 GHz computer with 6 GB of RAM. In this paper, the rel‐
ative duality gap is set to be 0.001%. The computation time
of the proposed adaptive robust micro-CHP planning model
on the residential micro-CHP test system is around 4 min‐
utes. This short computation time shows the high computa‐
tional efficiency of the proposed model.

VI. CONCLUSION

In this paper, a two-stage adaptive robust model has been
proposed for residential micro-CHP planning. The uncertain‐
ty sources of thermal and electric loads have been modeled
in this paper. C&CG algorithm and BCD method are used to
solve the proposed model. The proposed model and solution
method have been tested on a residential micro-CHP test sys‐
tem. The results have shown that a higher uncertainty budget
in the proposed adaptive robust micro-CHP planning model
leads to a higher capacity of the micro-CHP unit, boiler, and
storage tank resulting in a higher investment cost and a high‐
er model’s cost. In fact, a higher budget of uncertainty pro‐
vides a more robust solution, but at a higher robustness cost.
To properly evaluate each robustness level and select the
best investment decision for the planning problem, an ex-
post out-of-sample analysis using various unseen scenarios
of thermal and electric loads has been performed. Using the
out-of-sample analysis, the robustness worth of each robust‐
ness level, which is reflected as decreasing the operation
cost encountering unseen realizations of uncertainties, can be
evaluated in addition to the robustness cost. Thus, with the
aid of the out-of-sample analysis, the robustness level of the
proposed model can be fine-tuned leading to an appropriate
compromise between the robustness cost and the robustness
worth. Furthermore, it has been shown that the proposed
adaptive robust micro-CHP planning model outperforms de‐
terministic and stochastic micro-CHP planning models in the
out-of-sample analysis since it can provide appropriate im‐
munization against the uncertainties.

APPENDIX A

Appendix A presents the employed stochastic micro-CHP
planning model. To implement the model, at first, 1000 vari‐
ous scenarios have been generated for the uncertain electric
and thermal loads. The procedure of generating in-sample sce‐
narios for the stochastic model is the same as the procedure of
generating out-of-sample scenarios for the out-of-sample anal‐

ysis, as described in Section V-B. However, the out-of-sample
scenarios are different from the in-sample scenarios of the sto‐
chastic model. After generating 1000 in-sample scenarios, 10
most diverse and probable scenarios have been selected
among them using an efficient scenario reduction tool, named
SCENRED2, provided by the GAMS software [43]. The em‐
ployed stochastic model is two-stage stochastic programming
and it has been solved in unified form. Using decomposition
techniques does not change the computation time of the sto‐
chastic model significantly. Considering the 10 selected sce‐
narios, the compact formulation of the stochastic micro-CHP
planning model can be presented as (A1) and (A2), subject to
(7)-(31) for each scenario s′:

CSA =min ( )CInvCHP +CInvBoiler +CInvTank +∑
s′ÎNS′

w̄s′C
operation
s′ (A1)

C operation
s′ =∑

tÎ T

1

(1+ I)t
(C OpeCHP

ts′ +C OpeBoiler
ts′ +C Ele

ts′ +C MT
ts′ -C Sell

ts′ ) "s′

(A2)

The objective of the above stochastic model (CSA) consists
of investment costs (CInvCHP, CInvBoiler , and CInvTank), the net pres‐
ent value of operation costs (C OpeCHP

ts′  C OpeBoiler
ts′  C Ele

ts′  and C MT
ts′ ),

and the net present value of the benefit obtained from selling
electricity to the grid (C Sell

ts′ ). The operation cost of each in-sam‐
ple scenario s′ (C operation

s′ ) is included in (A1) considering its nor‐
malized probability w̄s′, which is computed similarly to w̄s giv‐
en in (40). Constraints (14)-(31) should be considered for each
in-sample scenario s′ of the stochastic micro-CHP planning
model.
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hours, and, at the same time, its thermal generation supplies
the lower thermal loads of these hours. Thus, the heat gener‐
ation of the boiler is not needed in hours 18-24.

Figure 5 shows that the micro-CHP system purchases elec‐
tricity from the upstream grid at off-peak hours 22-24 with
low electricity purchasing prices (illustrated in Table I) and
high electric load values (illustrated in Fig. 3(c)). Lower
electricity purchase values are in the mid-peak hours 10 and
11 with higher electricity purchasing prices. In other hours
with lower electric load values, the micro-CHP system can
sell electricity to the grid as shown in Fig. 5.

In this paper, all simulations have been run using CPLEX
solver within the GAMS software package [43] on a Core i5
2.5 GHz computer with 6 GB of RAM. In this paper, the rel‐
ative duality gap is set to be 0.001%. The computation time
of the proposed adaptive robust micro-CHP planning model
on the residential micro-CHP test system is around 4 min‐
utes. This short computation time shows the high computa‐
tional efficiency of the proposed model.

VI. CONCLUSION

In this paper, a two-stage adaptive robust model has been
proposed for residential micro-CHP planning. The uncertain‐
ty sources of thermal and electric loads have been modeled
in this paper. C&CG algorithm and BCD method are used to
solve the proposed model. The proposed model and solution
method have been tested on a residential micro-CHP test sys‐
tem. The results have shown that a higher uncertainty budget
in the proposed adaptive robust micro-CHP planning model
leads to a higher capacity of the micro-CHP unit, boiler, and
storage tank resulting in a higher investment cost and a high‐
er model’s cost. In fact, a higher budget of uncertainty pro‐
vides a more robust solution, but at a higher robustness cost.
To properly evaluate each robustness level and select the
best investment decision for the planning problem, an ex-
post out-of-sample analysis using various unseen scenarios
of thermal and electric loads has been performed. Using the
out-of-sample analysis, the robustness worth of each robust‐
ness level, which is reflected as decreasing the operation
cost encountering unseen realizations of uncertainties, can be
evaluated in addition to the robustness cost. Thus, with the
aid of the out-of-sample analysis, the robustness level of the
proposed model can be fine-tuned leading to an appropriate
compromise between the robustness cost and the robustness
worth. Furthermore, it has been shown that the proposed
adaptive robust micro-CHP planning model outperforms de‐
terministic and stochastic micro-CHP planning models in the
out-of-sample analysis since it can provide appropriate im‐
munization against the uncertainties.

APPENDIX A

Appendix A presents the employed stochastic micro-CHP
planning model. To implement the model, at first, 1000 vari‐
ous scenarios have been generated for the uncertain electric
and thermal loads. The procedure of generating in-sample sce‐
narios for the stochastic model is the same as the procedure of
generating out-of-sample scenarios for the out-of-sample anal‐

ysis, as described in Section V-B. However, the out-of-sample
scenarios are different from the in-sample scenarios of the sto‐
chastic model. After generating 1000 in-sample scenarios, 10
most diverse and probable scenarios have been selected
among them using an efficient scenario reduction tool, named
SCENRED2, provided by the GAMS software [43]. The em‐
ployed stochastic model is two-stage stochastic programming
and it has been solved in unified form. Using decomposition
techniques does not change the computation time of the sto‐
chastic model significantly. Considering the 10 selected sce‐
narios, the compact formulation of the stochastic micro-CHP
planning model can be presented as (A1) and (A2), subject to
(7)-(31) for each scenario s′:

CSA =min ( )CInvCHP +CInvBoiler +CInvTank +∑
s′ÎNS′

w̄s′C
operation
s′ (A1)

C operation
s′ =∑

tÎ T

1

(1+ I)t
(C OpeCHP

ts′ +C OpeBoiler
ts′ +C Ele

ts′ +C MT
ts′ -C Sell

ts′ ) "s′

(A2)

The objective of the above stochastic model (CSA) consists
of investment costs (CInvCHP, CInvBoiler , and CInvTank), the net pres‐
ent value of operation costs (C OpeCHP

ts′  C OpeBoiler
ts′  C Ele

ts′  and C MT
ts′ ),

and the net present value of the benefit obtained from selling
electricity to the grid (C Sell

ts′ ). The operation cost of each in-sam‐
ple scenario s′ (C operation

s′ ) is included in (A1) considering its nor‐
malized probability w̄s′, which is computed similarly to w̄s giv‐
en in (40). Constraints (14)-(31) should be considered for each
in-sample scenario s′ of the stochastic micro-CHP planning
model.
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