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Abstract——With the rapid development of power-electronics-
enabled power systems, the new converter-based generators are
deteriorating the small-signal stability of the power system. Al‐
though the numerical differentiation method has been widely
used for approximately calculating the eigenvalue sensitivities,
its accuracy has not been carefully investigated. Besides, the ele‐
ment-based formulation for computing closed-form eigenvalue
sensitivities has not been used in any commercial software due
to the average efficiency, complicated formulation, and error-
prone characteristics. Based on the matrix calculus, this paper
proposes an easily manipulated formulation of the closed-form
eigenvalue sensitivities with respect to the power generation.
The distinguishing feature of the formulation is that all the for‐
mulas consist of vector and matrix operations, which can be
performed by developed numerical algorithms to take full ad‐
vantages of architectural features of the modern computer. The
tests on WSCC 3-machine 9-bus system, New England 10-ma‐
chine 39-bus system, and IEEE 54-machine 118-bus system
show that the accuracy of the proposed formulation is superior
to the numerical differentiation method and the efficiency is al‐
so greatly improved compared to the element-based closed-form
formulation. The proposed formulation will be helpful to per‐
form a more accurate and faster stability analysis of a power
grid with converter-based devices.

Index Terms——Closed-form formulation, converter-based de‐
vices, eigenvalue sensitivity, matrix calculus, small-signal stabili‐
ty.

I. INTRODUCTION

AS more and more power electronic converter-interfaced
devices are integrated into the network on both the sup‐

ply and demand sides, the power system is changing into the
power-electronics-enabled system. Displacing synchronous
machines with large inertia by converter-based generators

with low inertia will result in a significant decrease in the
system total inertia [1]. Incidents of oscillation induced by
the integration of converter-interfaced generators have been
reported [2], [3]. These instability phenomena indicate that
the small-signal stability is deteriorating in the power-elec‐
tronics-enabled system.

Technically, eigenvalue analysis is a dominant method to
small-signal stability problems of the power system. The par‐
ticipation factor formed by eigenvectors can help identify
the dynamic variables that significantly affect a given mode
or eigenvalue and has been widely used in commercial soft‐
ware for power system analysis [4]. However, it cannot de‐
termine the increment or decrement of system parameters
[5]. By contrast, the eigenvalue sensitivities with respect to
system parameters can provide this critical information for
both offline study and real-time control, which can help coor‐
dinate controller tuning or take remedial actions to suppress
oscillations [6] - [12]. Besides, eigenvalue sensitivities can be
treated as derivatives in each iteration when used in a mathe‐
matical optimization method [9], [10], [13]. The numerical dif‐
ferentiation method has been widely used for calculating ei‐
genvalue sensitivity. It is easy to implement and can obtain an
approximate solution [6] - [8], [10], [11], [14]. However, it is
time-consuming due to the repetitive procedures. More impor‐
tantly, it cannot obtain the eigenvalue sensitivities with respect
to some operation parameters such as the power generation of
the slack bus because the perturbation of them is invalid.

Alternatively, the closed-form eigenvalue sensitivity
(CFES) only needs to be derived once and thus has higher
efficiency. However, solving eigenvalue sensitivity needs to
differentiate a complex implicit function in some cases,
which makes the formulation of the closed-form very chal‐
lenging. In [15], an element-based closed-form formulation
is proposed for eigenvalue sensitivities with respect to any
arbitrary system parameter. The CFES has been applied to
generation re-dispatch [9], [12], parameter optimization of
power system stabilizer (PSS) [6], and stochastic analysis of
grid-connected photovoltaic (PV) systems [16]. To the best
of our knowledge, however, this formulation has not been
used in any commercial software for eigenvalue analysis due
to the average efficiency, complicated formulation, and error-
prone characteristics. In addition, neither the special consid‐
eration for PV buses or the slack bus nor the evaluation of
accuracy and efficiency between the numerical eigenvalue
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sensitivity (NES) and CFES has been discussed in the previ‐
ous studies.

In this paper, an easily manipulated formulation of the
CFES with respect to any power system parameter is pro‐
posed. The major contributions of the proposed formulation
include: ① reformulating all the eigenvalue sensitivity for‐
mulas as combinations of only vector and matrix operations
based on the matrix calculus, which can be performed by
well-developed numerical algorithms to get high computa‐
tion efficiency owing to reuse of data in the computer cache;② transforming a three-dimensional matrix to a two-dimen‐
sional matrix by multiplying a constant vector preliminarily
when formulating derivatives of state matrix with respect to
variables, which can greatly improve the computation effi‐
ciency and make the formulation more intuitive. The pro‐
posed formulation also makes the derivation less error-prone
owing to avoiding complex index in all formulas. Further‐
more, a comprehensive comparison is performed between
the CFES and the NES to show some interesting findings,
such as the accuracy of NES declining as the size of the sys‐
tem increases.

All codes and detailed results of three benchmark systems
and the test data have been made publicly available in
GitHub [17], which can be used to verify the correctness of
the solutions.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the small-signal stability model. Section
III discusses the NES and the CFES and performs a theoreti‐
cal comparison between them. Section IV describes the gen‐
eral mathematical formulation of the CFES based on matrix
calculus. A detailed formulation through an example for cal‐
culating eigenvalue sensitivity with respect to the active pow‐
er generation is presented. In Section V, the comparative
analysis of CFES with the NES is performed on three bench‐
mark systems. Finally, the conclusion is drawn in Section VI.

II. SMALL-SIGNAL STABILITY MODEL

A. State-space Analysis Model for Converter-fed Power Sys‐
tems

The state-space approach is widely used for small-signal
stability analysis for which the system is described by a set
of differential algebraic equations (DAEs). The dynamic de‐
vices, which include synchronous machines and their regula‐
tors, converter-based devices such as flexible AC transmission
system (FACTS) devices, high-voltage direct current (HVDC)
devices and wind turbines, can be expressed as [18]:

ẋ =Fd (xyu) (1)

0=Gd (xy) (2)

where Fd is the vector of the differential equations; Gd is the
vector of the algebraic equations; x is the vector of the de‐
vice state variables; y is the vector of device algebraic vari‐
ables; and u is the vector of the device input. For example,
the internal current Id at d-axis, Iq at q-axis and internal volt‐
age Vd at d-axis, Vq at q-axis are often selected as algebraic
variables for rotating machines such as synchronous ma‐
chines and doubly-fed asynchronous wind turbines. Then

they can be modeled as [19]:

ẋ =Fd (xIdIqVdVqu) (3)

0=Gd (xIdIqVdVq) (4)

As the model of individual converters or rotating ma‐
chines is referring to its own rotating frame, a common refer‐
ence frame is needed for all converters and rotating ma‐
chines. An interface block is usually used to reflect the ma‐
chine (converter)-network transformation. The transformation
is defined as [18]:

é
ë
ê

ù
û
ú

FD

FQ

= é
ë
ê

ù
û
ú

sin δ cos δ
-cos δ sin δ

é
ë
ê

ù
û
ú

Fd

Fq

(5)

where F may be either I or V. Thus

0=VI* sin (δ- θI)-Vd (6)

0=VI* cos (δ- θI)-Vq (7)

where * denotes Hadamard product; δ is the vector of the ro‐
tor angle; and VI and θI are vectors of the voltage magnitude
and phase angle for interface buses in common reference
frame, respectively. Moreover, the power injection for the in‐
terface can be obtained through the following equations [19]:

Gp =PI -Vd*Id -Vq*Iq (8)

Gq =QI -Vq*Id +Vd*Iq (9)

where PI and QI are the active and reactive power injections
from the interface, respectively; Gp is the vector of the ac‐
tive power injector equations; and Gq is the vector of the re‐
active power injector equations.

Therefore, on a common reference frame, the network
equations are given as:

PI -PL (V)- diag (V) (Y* cosφ)V = 0 (10)

QI -QL ( )V - diag ( )V ( )Y* sin φ V = 0 (11)

where PL (V) and QL (V) are the vectors of active and reac‐
tive load of all buses, respectively, which may relate to bus
voltage amplitude V; Y is the admittance matrix of the sys‐
tem; diag (V) converts vector V into a diagonal matrix; and
φ is the matrix of the composite phase angle. The element
of φ is φij = θi - θj - αij, where αij is the admittance angle of
branch j connecting i bus, and θi and θj are the bus voltage
angles of bus i and bus j, respectively.

For small-signal stability analysis of conventional power
systems, the axis transformation equations (6) and (7) for ro‐
tating machines can be substituted into (3) and (4) to obtain
(12) and (13).

ẋ =Fg (xIdIqVIθIu) (12)

0=Gg (xIdIqVIθI) (13)

where Fg is the vector of the differential equations of the
generator; and Gg is the vector of the algebraic equations of
the generator.

Substituting the axis transformation equations (6) and (7)
into (8) and (9), (14) and (15) can be obtained.

PI -VI* sin (δ- θI)*Id -VI* cos (δ- θI)*Iq = 0 (14)
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QI -VI* cos (δ- θI)*Id +VI* sin (δ- θI)*Iq = 0 (15)

At last, combining the dynamic device equations (1) and
(2), the power interface equations (14) and (15) for rotating
machines and network equations (10) and (11), the state
space model for conventional power system analysis can be
described by the following DAEs:

ẋ =F (xyu) (16)

0=G (xy) (17)

where F is the vector of the differential equations for all the
devices; and G is the vector of the algebraic equations for
the devices, interface and network.

B. Linearization Technique and Initial Conditions

The key step in small-signal stability analysis is the linear‐
ization of DAEs. Linearizing (16) and (17), (18) can be ob‐
tained.

é
ë
ê

ù
û
ú

Dẋ
0

=
é

ë
êê

ù

û
úú

A͂ B͂

C͂ D͂

é
ë
ê
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Dy

+ é
ë
ê

ù
û
ú

E
0

Du (18)

where A͂, B͂, C͂, and D͂ are matrices of all numbers with the
values calculated under the initial conditions; Dx is the vec‐
tor of the state variables after linearization; Dy is the vector
of the algebraic variables after linearization; Du is the vector
of the input variables after linearization; and E is the identi‐
ty matrix.

Eliminating Dy, (19) can be obtained.

Dẋ =ADx +EDu (19)

where A is commonly known as the state matrix and is giv‐
en as:

A= A͂- B͂D͂-1C͂ (20)

Similar to (17), setting the ẋ of (16) to be zero, (21) can
be obtained.

0=F (xyu) (21)

Then the initial conditions of the variables for the small-
signal stability model are calculated at an equilibrium point.

If all the real parts of the eigenvalues of A are negative,
the system is stable in small-signal stability sense according
to Lyapunov theory. Usually, an index η called spectral ab‐
scissa is introduced to describe the security margin:

η ( )A =max{ }Re ( )λ :λÎ λ ( )A =Re ( )λη (22)

where λ (A) represents all of the eigenvalues of A; Re ( )λ is
the real part of an eigenvalue λ; and λη is the eigenvalue
with the largest real part.

III. NES AND CFES

A. NES

According to the numerical differentiation method, eigen‐
value analysis is performed to obtain the eigenvalue λ ( )A of
the state matrix at the equilibrium point and then a system
parameter P is varied by a small quantity ε to get the per‐
turbed state matrix Aε and its eigenvalue λ (Aε). The NES

with respect to parameter P can be approximated by:

¶λ
¶P

»
λ ( )Aε - λ ( )A

ε
(23)

Generally, the NES only cares about spectral abscissa sen‐
sitivity. It is the real part of the eigenvalue sensitivity, i.e.,

¶η
¶P

=Re ( ¶λ¶P ) (24)

B. CFES

In fact, the CFES is a mathematical eigenvalue derived at
an equilibrium point. Its formulation should base on the fol‐
lowing formula in the mathematical theorem [14], [20], [21]:

¶λi

¶P
=
ψ T

i

¶A
¶P

ϕ i

ψ T
i ϕ i

(25)

where λi is the ith eigenvalue; ψ i and ϕ i are the left and right
eigenvectors of λi at the equilibrium point, respectively,
which can be calculated with the λi.

Furthermore, if the state matrix A is the explicit function
of the parameter P, the CFES with respect to the parameter
can be calculated directly based on (25). The parameters of
converters fall into this category, including the integral gain
of the current control, time constant of the voltage control
loop in wind turbines and photovoltaic cell regulator [22].
Conversely, if the state matrix A is the implicit function of
the parameter P, the formulation based on the chain rule will
be a complicated process. Some operation parameters such
as the active power output of the generators should be for‐
mulated according to this rule.

C. Comparison Between Numerical Spectral Abscissa Sensi‐
tivity and Closed-form Spectral Abscissa Sensitivity

Here the CFES with respect to a system parameter is com‐
pared with the numerical sensitivity. The spectral abscissa
can be expressed with a function of the parameter vector P
as η (P), where P consists of independent variables. Accord‐
ing to the Taylor series expansion, the following relationship
is obtained:

Dη=∑
iÎ S

¶η
¶Pi

DPi +
∑
iÎ S

¶2η

¶P 2
i

2!
DP 2

i ++
∑
iÎ S

¶nη

¶P n
i

n!
DP n

i +
(26)

where S is the index set of the parameter vector. If the ith pa‐
rameter Pi is varied by a small quantity while the other pa‐
rameters remain unchanged, then (27) can be obtained.

Dη=
¶η
¶Pi

DPi +

¶2η

¶P 2
i

2!
DP 2

i ++

¶nη

¶P n
i

n!
DP n

i +
(27)

Dividing DPi on both sides of (27), (28) can be obtained.

Dη
DPi

=
¶η
¶Pi

+

¶2η

¶P 2
i

2!
DP 2

i ++

¶nη

¶P n
i

n!
DP n- 1

i + (28)

In fact, Dη DPi is the NES, while the mathematical eigen‐

value derivative ¶η ¶Pi is the CFES in general. From (28),

the NES which only considers the first-order Taylor series
expansion in this case is just an approximation of the CFES.
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Another case is that when one parameter is varied, it will
cause changes in another two or more parameters. For in‐
stance, if the active power output of the ith generator is var‐
ied with a small quantity, the active power output of the
slack bus will also change in order to guarantee the power
balance. Meanwhile, the reactive power output of the slack
bus and all PV buses will also have slight variations. Thus,
(29) can be obtained.

Dη
DPGi

=
¶η
¶PGi

+
¶η
¶PGs

DPGs

DPGi

+
¶η
¶QGs

DQGs

DPGi

+∑
jÎ SPV

¶η
¶QGj

DQGj

DPGi

+

(29)

where DPGs and DQGs are the active and reactive power
changes of the slack bus, respectively; and SPV is the set of
PV buses. In this situation, the NES will have a bigger dif‐
ference with the CFES.

Overall, the NES is calculated based on the numerical
method, while the closed-form sensitivity is derived based
on rigorous mathematical formulation. The NES is just an
approximation of the closed-form sensitivity. However, the
approximation may cause the optimality and convergence
problem in optimization due to the inaccurate descent direc‐
tion, which is shown in Section V. The accuracy is very impor‐
tant for controller parameter coordination and power genera‐
tion redispatch.

IV. MATHEMATICAL FORMULATION OF CFES
BASED ON MATRIX CALCULUS

With the advent of numerical programming, a set of well-
developed algorithms for performing common linear algebra
operations such as vector addition, scalar multiplication, Had‐
amard products, linear combinations, and matrix multiplica‐
tion are becoming the de facto standard routines for linear al‐
gebra [23], [24]. These algorithms leverage the idea of block‐
ing to limit the amount of bus traffic in favor of high reuse
of the data that is presented at a higher level and in faster
memories. Therefore, they have extremely high computation
efficiency. To take advantage of the architectural features,
they force our engineers to reformulate our models to the
new ones with only vector or matrix operations.

A. General Formulation of CFES

The proposed formulation of CFES with respect to param‐
eter vector based on matrix calculus is first described gener‐
ally. Depending on whether or not the state matrix A is the
explicit function of the parameter vector P, two ways to cal‐
culate the CFES are presented.
1) A is Explicit Function of P

According to (25), the eigenvalue sensitivity with respect
to parametric vector P is expressed as:

¶λi

¶P
=
ψ T

i

¶A
¶P

ϕ i

ψ T
i ϕ i

(30)

To solve ¶λi ¶P, the most important procedure is to for‐

mulate ¶A ¶P in (30). By substituting (20) into (30), (31)
can be obtained.

¶A
¶P

=
¶A͂
¶P

-
¶B͂
¶P

D͂-1C͂ + B͂D͂-1 ¶D͂
¶P

D͂-1C͂ - B͂D͂-1 ¶C͂
¶P

(31)

Equation (31) converts the derivative of state matrix A,
whose elements are hard to represent, to that of some avail‐
able block matrices, whose elements are easy to be derived
from (18). In element-based formulation in [15], the deriva‐
tive for A with respect to the jth parameter Pj is calculated
by (32).

¶A
¶Pj

=
¶A͂
¶Pj

-
¶B͂
¶Pj

D͂-1C͂ + B͂D͂-1 ¶D͂
¶Pj

D͂-1C͂ - B͂D͂-1 ¶C͂
¶Pj

j = 12k (32)

where k is the dimension of the parameter vector P; ¶A͂ ¶Pj,

¶B͂ ¶Pj, ¶C͂ ¶Pj, and ¶D͂ ¶Pj are all two-dimension matrices

and the calculation of ¶A ¶Pj will need matrix operations of

these two-dimensional matrices. Then the result of ¶A ¶Pj

will be substituted into (25) to get ¶λi ¶Pj. To get ¶λi ¶P,

the calculation of ¶A ¶Pj in (32) and ¶λi ¶Pj in (25) have to

be executed for k times. The element-based formulation can
be implemented directly when it is programmed. But its per‐
formance is barely satisfactory as the formulation involves
loops of matrix operations.

If ¶λi ¶P could be directly calculated instead of the loop

calculation of ¶λi ¶Pj, the calculation efficiency will be in‐

creased sharply. However, ¶A ¶P is a three-dimension ma‐
trix, whose operations cannot be supported by the low-level
routines. Since a row of left eigenvectors which are further
obtained after the calculation of the λi could be treated as a
constant [15] during the derivation, they are multiplied by
the state matrix A to make ψ T

i A become a row vector.
Hence, as a two-dimensional matrix, ¶ ( )ψ T

i A ¶P is easy to

express. Then (30) can be rewritten as:

¶λi

¶P
=

¶ ( )ψ T
i A

¶P
ϕ i

ψ T
i ϕ i

(33)

Letting τT =ψ T
i B͂D͂-1 which is also a constant vector and

substituting it into (31), the formulation is obtained as:

¶ ( )ψ T
i A

¶P
=
¶ ( )ψ T

i A͂

¶P
-
¶ ( )ψ T

i B͂

¶P
D͂-1C͂+

¶ ( )τT D͂

¶P
D͂-1C͂-

¶ ( )τTC͂

¶P
(34)

For practical computation, explicit evaluation of the in‐
verse is avoided and the methods for solving sparse linear
equations are used. For example, the calculation of ψ T

i B͂D͂-1

just needs to solve (35) to get τ.

D͂Tτ = B͂Tψ i (35)

After the above formulation, the next step is to calculate
¶ ( )ψ T

i A͂ ¶P, ¶ ( )ψ T
i B͂ ¶P, ¶ ( )τTC͂ ¶P, and ¶ ( )τT D͂ ¶P, re‐

spectively. According to the parameter location in the struc‐
ture of the matrices A͂, B͂, C͂, and D͂. If the structure of a ma‐
trix D͂ is :

D͂=

é

ë

ê

ê
ê
êê
ê

ù

û

ú

ú
ú
úú
ú

D11 D12  D1n

D21 D22  D2n

  
Dm1 Dm2  Dmn

(36)
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And let τT = [ ]τ T
1 τ T

2 τ T
m , where the number of rows of

τ i is equal to the number of rows of D i1 for i = 12m,
then ¶ ( )τT D͂ ¶P can further be expressed as:

¶ ( )τT D͂

¶P
=

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú

ú

ú

( )¶ ( )τ T
1 D11

¶P
+
¶ ( )τ T

2 D21

¶P
++

¶ ( )τ T
m Dm1

¶P

T

( )¶ ( )τ T
1 D12

¶P
+
¶ ( )τ T

2 D22

¶P
++

¶ ( )τ T
m Dm2

¶P

T



( )¶ ( )τ T
1 D1n

¶P
+
¶ ( )τ T

2 D2n

¶P
++

¶ ( )τ T
m Dmn

¶P

T

T

(37)

Through the above transformation, the computation effi‐
ciency will be greatly improved because all formulas are op‐
erations of two-dimensional matrices without any loop com‐
putation. Actually, this transformation has preliminarily per‐
formed some matrix multiplications during the derivation.
2) A is Implicit Function of P

Select an appropriate variable vector X of which the state
matrix is the explicit function, and then write the ith eigenval‐
ue λi as a function of parameter X and P as λi (X (P) P) ac‐
cording to the derivation in Section II. The initial conditions
of the variables for the small-signal stability model of power
system in (17) and (21) are rewritten as:

0=H (X (P) P) (38)

where H is the function vectors in the initial condition equa‐
tions. Thus, λi is an implicit function of P.

To differentiate the function λi, it is generally impossible
to solve it explicitly with X eliminated. Instead, the defined
function λi can be differentiated implicitly by the following
implicit differentiation and the chain rule:

¶λi

¶P
= ( ¶X

¶P )
T ¶λi

¶X
(39)

Here ¶λi ¶X can be calculated by the formulation pro‐

posed in Section VI. ¶X ¶P in (39) can be calculated by
solving the following equations that are obtained by differen‐
tiating both sides of (38) with respect to P:

0= ( ¶X
¶P )

T ¶H
¶X

+
¶H
¶P

(40)

Therefore, the formulation for the implicit function of the
parameter includes the one for the explicit function of the pa‐
rameter. The detailed formulation will be discussed in Sec‐
tion IV through an example.

B. Formulation of ¶λi ¶PG

Since the eigenvalue sensitivity with respect to active pow‐
er generation PG can provide useful information for remedial
actions before or during the oscillation incident, the calcula‐
tion of the eigenvalue sensitivity with respect to active pow‐
er generation is important in the research of small-signal sta‐
bility. The state matrix A is the implicit function of active
power generation PG. By the formulation of ¶λi ¶PG for

WSCC 3-machine 9-bus system which has a particular de‐
scription in [18], this subsection will present the details of
the proposed formulation.
1) Formulation of ¶X ¶PG

The appropriate variable vector x can be obtained as fol‐
lows:

x = é
ë

ù
û

δT ωT ( )E′d
T ( )E′q

T

E T
fd V T

R RT
F

T

(41)

where ω is the rotor speed vector; E′d and E′q are the internal
voltage vectors at d-axis and q-axis, respectively; Efd is the
DC generator output voltage vector; VR is the voltage regula‐
tor output vector; and RF is the exciter rate feedback vector.

Let X = [ ]xT I T
d  I T

q  V T θT
T

, the differentiations of (10)

with respect to V and θ are expressed as:
¶PI

¶V
- diag ((Y* cosφ)V)- diag (V) (Y* cosφ)= 0 (42)

¶PI

¶θ
+ diag ( )V (diag ( )( )Y* cosφ V -

)( )Y* sin φ diag ( )V = 0 (43)

The differentiation of (11) can be derived similarly. Then
¶V ¶PG and ¶θ ¶PG are obtained by (42) and (43).

The differentiation of (14) with respect to PG is expressed
as:

E + ( ¶VG

¶PG
)

T
¶Gp

¶VG

+ ( ¶θG

¶PG
)

T
¶Gp

¶θG

+ ( ¶δ¶PG
)

T
¶Gp

¶δ
+ ( ¶Id

¶PG
)

T
¶Gp

¶Id

+

( ¶Iq

¶PG
)

T
¶Gp

¶Iq

= 0 (44)

where E is an identity matrix; VG and θG are the vectors of
the voltage magnitude and phase angle for generator buses,
respectively; and ¶Gp ¶VG, ¶Gp ¶θG, ¶Gp ¶δ, ¶Gp ¶Id, and

¶Gp ¶Iq are all diagonal matrices, which can be directly de‐

rived by differentiation rule as:
¶Gp

¶VG

=-diag (Id* sin (δ- θG)+ Iq* cos (δ- θG)) (45)

¶Gp

¶θG

= diag (VG*Id* cos (δ- θG)-VG*Iq* sin (δ- θG)) (46)

¶Gp

¶δ
=-diag (VG*Id* cos (δ- θG)-VG*Iq* sin (δ- θG)) (47)

¶Gp

¶Id

= diag ( -VG* sin (δ- θG)) (48)

¶Gp

¶Iq

= diag ( -VG* cos (δ- θG)) (49)

The differentiation of (13) with respect to PG is expressed
as:

E + ( )¶VG

¶PG

T
¶Gg

¶VG

+ ( )¶θG

¶PG

T
¶Gg

¶θG

+ ( )¶δ
¶PG

T
¶Gg

¶δ
+ ( )¶Id

¶PG

T
¶Gg

¶Id

+

( )¶Iq

¶PG

T
¶Gg

¶Iq

= 0 (50)
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where ¶Gg ¶VG, ¶Gg ¶θG, ¶Gg ¶δ, ¶Gg ¶Id, and ¶Gg ¶Iq

are all diagonal matrices, which can also be directly derived
by differentiation rule. ¶Gg ¶VG can be obtained as:

¶Gg

¶VG

= diag ( - Id* sin (δ- θG)- Iq* cos (δ- θG)) (51)

The differentiation of (15), (21) with respect to PG can be
derived similarly. Then a group of differentiated initial condi‐
tion equations can be obtained. Solving these linear equa‐
tions with ¶V ¶PG and ¶θ ¶PG from (42) and (43), ¶x ¶PG,

¶Id ¶PG, and ¶Iq ¶PG can be obtained.

2) Formulation of ¶λi ¶X

Since ¶λi ¶θ is the most complicated part among ¶λi ¶X,

this paper only shows its formulation. The block diagonal
matrices with respect to θ is easy to derive the following dif‐
ferentiation rule. For example, the D21, which is a submatrix
of D͂, can be expressed as:

D21 = diag ( -VG* sin (δ- θG)) (52)

The differentiation of D21 with respect to θ is:

¶ ( )τ T
2 D21

¶θ
= diag (τ2*VG* cos (δ- θG)) (53)

The differentiations of D43 D44 D53 and D54 are more
complicated since they are full matrices. In fact, they are the
Hessian matrices of the power flow equations of (10) and
(11) as follows:

¶ ( )τ T
4 D43

¶θ
= τ T

4

¶2GP

¶V¶θ
= ( )diag ( )bV - abT d +

( )-diag ( )τ T
4 ab + adb (54)

¶ ( )τ T
4 D44

¶θ
=τ T

4

¶2GP

¶θ¶θ
= ( )diag ( )cV -acT ad-

( )-diag ( )τ T
4 ac +adc a (55)

¶ ( )τ T
5 D53

¶θ
=τ T

5

¶2GQ

¶V¶θ
= ( )- diag ( )cV +acT e-

( )-diag ( )τ T
5 ac +aec (56)

¶ ( )τ T
5 D54

¶θ
=τ T

5

¶2GQ

¶θ¶θ
= ( )diag ( )bV -abT ae-

( )-diag ( )τ T
5 ab +aeb a (57)

where a is the diag (V); b is the Y* sin φ; c is the Y* cosφ; d
is the diag (τ T

4 ); and e is the diag (τ T
5 ).

3) Calculation of CFES
Above all, (39) can be rewritten in the following form:

¶λη
¶PG

= ( )¶X
¶PG

T
¶λη
¶X

= ( )¶x
¶PG

T
¶λη
¶x

+ ( )¶Id

¶PG

T
¶λη
¶Id

+

( )¶Iq

¶PG

T
¶λη
¶Iq

+ ( )¶θ
¶PG

T
¶λη
¶θ

+ ( )¶V
¶PG

T
¶λη
¶V

(58)

The real part of ¶λη ¶PG is the closed-form spectral ab‐

scissa sensitivity (CFSAS).

In summary, the flow chart to calculate the CFES with re‐
spect to active power generation is shown in Fig. 1. The for‐
mulations proposed in this paper are all combinations of ma‐
trices and vectors. Therefore, by directly using some low-lev‐
el routines, the computation efficiency will be improved. Fur‐
thermore, the proposed formulation is more clear and is not
error-prone. It should also be noted that the proposed formu‐
lation can calculate all of the CFES, not just the spectral ab‐
scissa sensitivity.

4) Additional Processing for PV and Slack Buses in CFSAS
At an equilibrium point, the voltage magnitude for PV

and slack buses are fixed. Also, phase angles for slack buses
are fixed. Actually, they are constants for the small-signal
analysis model at an equilibrium point. Thus ¶Vk ¶PG for a

slack bus or PV bus k in Section IV should be set to be ze‐
ro. ¶θk ¶PG in Section IV should be set to be zero if the bus

k is a slack bus.
However, since the operation point in each iteration is not

basically an equilibrium point, there is no PV bus model in
some power system optimization models with only one refer‐
ence bus. To calculate the eigenvalue sensitivity with respect
to PG, ¶θk ¶PG in Section IV should be set to be zero if bus

k is a reference bus.

V. CASE STUDIES

The proposed formulation and NES are both implemented
in ANSI C language with CSparse of SuiteSparse [24] and
BLAS [23], which support matrix and vector operation. The
code for element-based formulation uses ANSI C language.
Since the cases are relatively small, LAPACK [25] is em‐
ployed to calculate the eigenvalues and eigenvectors via QR
decomposition.

A. Spectral Abscissa Sensitivities with Respect to Controller
Parameters of Wind Turbines

A slightly modified version of the New England 10-ma‐

Solve initial conditions (17) and (21)
and calculate the variables X0

Calculate CFES ∂λη/∂PG by (58)

Differentiate initial condition
equations with respect to X on
X0 by the chain rule to get an

equation set 

Set up matrices A, B, C, D on X0
according to small-signal

stability model

Solve the differentiated equation
set and obtain ∂X/∂PG 

    Calculate the state matrix A and 
the corresponding left eigenvectors

φφ i and right eigenvectors ψi

Calculate the ∂λη/∂X by (33)

~ ~ ~ ~

Start

End

Process 1 Process 2

Fig.1. Flow chart of computing CFES with respect to active power outputs.
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chine 39-bus system [26] is considered to assess the impact
of the controller parameters of wind turbines on small-signal
stability of the conventional power system. Two synchronous
generators at buses 32 and 38 in the New England 10-ma‐
chine 39-bus system are replaced by two doubly-fed induc‐
tion generators. The model and the required data can be
found in the PSAT MATLAB toolbox [27]. The perturbed
quantity ε is set to be 0.1, which is small enough for calcu‐
lating the NES in this case. The spectral abscissa sensitivity
with respect to the parameters of pitch and voltage controller
are presented in Table I, where NSAS stands for numerical
spectral abscissa sensitivity. From Table I, both of NSAS
and CFSAS are zero for pitch control gain Kp and pitch con‐
trol time constant Tp. It implies that the two parameters of
the pitch controller do not affect spectral abscissa. Besides,
negative values of NSAS and CFSAS indicate that increas‐
ing the voltage control gain KV will enhance the small-signal
stability. This further demonstrates the same tendency and
small difference of NSAS and CFSAS in the small system.

B. Spectral Abscissa Sensitivities with Respect to Power
Generation

The proposed formulation is applied to three benchmark
systems, namely the WSCC 3-machine 9-bus system [18],
New England 10-machine 39-bus system, and the modified
IEEE 54-machine 118-bus system [28], and is compared
with the numerical differentiation method. The generators
are described by a two-axis model with an IEEE type DC-1
exciter. The loads are modeled as constant power. The re‐
quired data for the three systems and detailed results in this
paper can also be found in GitHub [17]. The perturbed quan‐

tity ε is set to be a enough small value 0.1 p.u. for calculat‐
ing a numerically stable NES. For ease of comparison, only
the spectral abscissa sensitivity is considered, which is most
critical for power system small-signal stability. In these cas‐
es, the state matrix is the implicit function of power genera‐
tion.

Detailed solutions are presented in Tables II-IV, where
CFSAS-Y stands for the CFSAS with additional processing
in Section IV and CFSAS-N stands for the CFSAS without
additional processing.

1) Comparison of spectral abscissa sensitivities with re‐
spect to active power generation between NSAS, CFSAS-Y,
and CFSAS-N

Note that the slack bus and the PV buses have no NES.
The positive value in Tables II-IV means that if the power
generation increases, the spectral abscissa sensitivity will be‐
come bigger and the system stability will be weakened. By
contrast, the negative value in Tables II-IV means that if the
power generation increases, the spectral abscissa sensitivity
will become smaller and the system stability will be en‐
hanced. It can be observed in Tables II-IV that the eigenval‐
ue sensitivities of some generators obtained from NSAS, CF‐
SAS-Y, and CFSAS-N can be significantly different, espe‐
cially for IEEE 54-machine 118-bus system. Furthermore,
some eigenvalue sensitivities have opposite signs such as
those with respect to active power for the buses 25, 26, 59,
66, 80, 89, 100, and 103 of the IEEE 118-bus system, which
indicates different adjustment directions.

To test the effectiveness of CFSAS, the following model
(59) similar to the one in [8] is used to simulate the redis‐
patch of active power.

TABLE II
SPECTRAL ABSCISSA SENSITIVITY FOR WSCC 3-MACHINE 9-BUS SYSTEM

Bus

1

2

3

Active power

NSAS

0.1210

0.0369

CFSAS-Y

-0.0014

0.0794

-0.0114

CFSAS-N

-0.2365

0.0549

-0.0364

Reactive power

NSAS CFSAS-Y

-0.0042

-0.0840

-0.0187

CFSAS-N

-0.0673

0.0721

0.0671

TABLE I
SPECTRAL ABSCISSA SENSITIVITY WITH RESPECT TO CONTROLLER

PARAMETERS OF WIND TURBINES FOR NEW ENGLAND 10-MACHINE

39-BUS SYSTEM

Bus

32

38

Kp

NSAS

0

0

CFSAS

0

0

Tp

NSAS

0

0

CFSAS

0

0

KV

NSAS

-0.0149

-0.0148

CFSAS

-0.0350

-0.0294

TABLE III
SPECTRAL ABSCISSA SENSITIVITY FOR NEW ENGLAND 10-MACHINE 39-BUS SYSTEM

Bus

30

31

32

33

34

35

36

37

38

39

Active power

NSAS

-5.8´ 10-4

1.0´ 10-5

5.3´ 10-5

-1.8´ 10-5

7.3´ 10-5

-1.1´ 10-4

8.2´ 10-3

-6.3´ 10-6

-7.3´ 10-5

CFSAS-Y

-1.4´ 10-4

-9.3´ 10-6

1.5´ 10-4

8.1´ 10-5

5.5´ 10-5

1.9´ 10-4

1.2´ 10-5

6.3´ 10-3

1.4´ 10-4

3.2´ 10-4

CFSAS-N

-1.8´ 10-3

-7.9´ 10-6

-1.9´ 10-4

-1.0´ 10-4

7.2´ 10-5

-2.1´ 10-4

4.5´ 10-5

-6.9´ 10-3

-1.1´ 10-4

1.8´ 10-4

Reactive power

NSAS CFSAS-Y

-2.1´ 10-5

-5.9´ 10-6

-5.8´ 10-5

-1.7´ 10-4

1.6´ 10-5

-9.6´ 10-5

4.3´ 10-6

-3.1´ 10-2

-1.1´ 10-6

-9.1´ 10-8

CFSAS-N

-2.2´ 10-3

-1.6´ 10-5

-3.2´ 10-5

-5.2´ 10-5

7.3´ 10-6

-3.1´ 10-5

2.5´ 10-5

-3.6´ 10-2

-8.6´ 10-5

7.5´ 10-5
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min∑
iÎ SG

DP 2
Gi

s.t. ∑
iÎ SG

DP 2
Gi = 0

∑
iÎ SG

σPi DPGi £ η̄- η0

-P Gi
£P 0

Gi +DPGi £ P̄Gi iÎ SG

(59)

where σPi is the spectral abscissa sensitivity of the active
power output of the ith generator at the equilibrium point; η0

and P 0
Gi are the spectral abscissa and active power output of

the equilibrium point which are obtained from a convention‐
al optimal power flow (OPF) with the object function mini‐
mizing the generation cost, respectively; DPGi is the change
of the output power of the ith generator from the equilibrium
point; η̄ is the expected spectral abscissa sensitivity; and -P Gi

and P̄Gi are the minimum and maximum power outputs of
the ith generator, respectively.

Tests on the New England 10-machine 39-bus system are
performed with η0 as -0.10 and the expected spectral abscis‐
sa sensitivity as -0.12 and -0.13. In each case, either CF‐
SAS-Y or NSAS is used to provide descent directions. The
results are summarized in Table V. It can be observed that
when using CFSAS-Y, a smaller amount of active power out‐
put adjustment can obtain the same spectral abscissa, indicat‐
ing that CFSAS-Y can provide better descent direction than
NSAS for this optimization problem.

CFSAS-N fails in all cases, which suggests that additional
processing for PV and slack buses is essential to the redis‐
patch problem in (59). This is because the model (59) needs
a spectral abscissa sensitivity at an equilibrium point. How‐
ever, it needs to be emphasized that CFSAS with only slack
bus processing is very suitable to be used in the small-signal
stability constrained optimal power flow (SSSC-OPF) mod‐
el, as shown in [9]. In the OPF model, CFSAS-Y does not

exist because there are no PV buses. Besides, since the oper‐
ation point in each iteration is basically not an equilibrium
point, NSAS cannot be solved either. Therefore, CFSAS
with slack bus processing is the only method that can be
used to calculate the spectral abscissa sensitivity in the
SSSC-OPF model. The results in [9] show that the method
using CFSAS with slack bus processing has good conver‐
gence and optimality.

2) Comparison of spectral abscissa sensitivities with re‐
spect to reactive power generation between NSAS, CFSAS-
Y, and CFSAS-N

As Hopf bifurcations are associated with eigenvalue condi‐
tions, the reactive power also plays an important role in
small-signal stability [29]. Besides, the cost for adjusting re‐
active power is lower and the response time for adjusting re‐
active power is shorter because the exciter has a smaller
time constant than the governor. Thus, the reactive power re-
dispatch is also important to improve small-signal stability.
Because most of the generators in the test systems are set as
PV buses or slack bus, NSAS is invalid for reactive power
redispatch. The following modified model (60) is used to
simulate the re-dispatch with CFSAS-Y and CFSAS-N in
Section V.
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min∑
iÎ SG

DP 2
Gi

s.t. ∑
iÎ SG

DPGi = 0

∑
iÎ SG

DQGi = 0

∑
iÎ SG

σPi DPGi +∑
iÎ SG

σQi DQGi £ η̄- η0

-P Gi
£P 0

Gi +DPGi £ P̄Gi iÎ SG

-Q Gi
£Q0

Gi +DQGi £ Q̄Gi iÎ SG

(60)

where σQi is the eigenvalue sensitivity of the reactive power
output of the ith generator; DQGi is the change of the reactive
power output of the ith generator from the base case; and -Q Gi

TABLE V
ACTIVE POWER GENERATION ADJUSTMENT FOR 10-MACHINE 39-BUS SYSTEM

Bus

30

31

32

33

34

35

36

37

38

39

Total

P 0
G (MW)

0

754.57

920.00

0.00

747.50

862.50

0.00

805.00

883.26

1179.50

DPG (MW)

η̄=-0.12

NSAS

262.33

-7.07

0.00

0.00

-31.11

-263.10

0.00

-313.29

151.74

200.50

1229.13

CFSAS-Y

107.51

-7.07

0.00

62.20

0.00

-129.83

357.86

-373.08

58.80

-76.39

1172.73

η̄=-0.13

NSAS

352.69

-7.07

0.00

0.00

-16.80

-308.93

0.00

-372.13

151.74

200.50

1409.87

CFSAS-Y

122.50

-7.07

0.00

70.82

0.00

-148.24

408.09

-425.74

66.94

-87.28

1336.67

TABLE IV
SPECTRAL ABSCISSA SENSITIVITY FOR IEEE 54-MACHINE 118-BUS SYSTEM

Bus

10

12

25

26

49

54

59

61

65

66

69

80

89

100

103

111

Active power

NSAS

3.1´ 10-6

3.5´ 10-6

2.6´ 10-6

2.7´ 10-6

1.3´ 10-5

-3.5´ 10-2

-8.3´ 10-5

-4.1´ 10-5

-1.1´ 10-5

4.5´ 10-6

-4.2´ 10-6

-3.6´ 10-6

-4.0´ 10-6

-4.2´ 10-6

-4.3´ 10-6

CFSAS-Y

2.1´ 10-10

1.1´ 10-10

-5.0´ 10-9

-6.9´ 10-10

2.5´ 10-3

-3.3´ 10-2

1.9´ 10-3

-8.3´ 10-5

-3.2´ 10-7

-4.8´ 10-5

4.7´ 10-11

2.5´ 10-8

2.4´ 10-9

2.0´ 10-9

7.6´ 10-10

-5.7´ 10-10

CFSAS-N

1.5´ 10-10

1.3´ 10-10

-1.1´ 10-8

8.8´ 10-9

-6.3´ 10-2

-2.0´ 10-2

-8.2´ 10-2

3.7´ 10-3

-7.5´ 10-5

2.3´ 10-3

9.7´ 10-3

2.0´ 10-8

3.9´ 10-8

7.5´ 10-10

5.3´ 10-10

-3.0´ 10-10

Reactive power

NSAS CFSAS-Y

-4.0´ 10-11

-1.1´ 10-11

-3.9´ 10-11

-1.3´ 10-11

1.6´ 10-5

5.9´ 10-3

1.5´ 10-6

-3.5´ 10-11

-1.8´ 10-11

3.8´ 10-9

-1.6´ 10-10

-1.7´ 10-10

-1.8´ 10-11

-4.4´ 10-11

-2.1´ 10-11

6.0´ 10-12

CFSAS-N

-1.0´ 10-9

1.2´ 10-10

-1.9´ 10-9

1.8´ 10-9

-2.3´ 10-2

1.2´ 10-2

-2.6´ 10-2

1.1´ 10-3

-3.8´ 10-7

7.9´ 10-4

3.9´ 10-3

6.9´ 10-8

-1.8´ 10-7

-5.0´ 10-9

-1.8´ 10-10

2.2´ 10-9
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and Q̄Gi are the minimum and maximum reactive power out‐
puts of the ith generator, respectively.

The changes of the active power and reactive power out‐
puts for all the generators are shown in Table VI. It can be
observed that considering the eigenvalue sensitivity with re‐
spect to the reactive power outputs of generator, the expect‐
ed spectral abscissa sensitivity can be achieved without the
need to re-dispatch the active power outputs. It further im‐
plies that the reactive power outputs of generator should not
be ignored in small-signal stability analysis. Besides, CF‐
SAS-N needs more adjustment of reactive power than CF‐
SAS-Y. This shows that CFSAS-Y should also be used in
the reactive power re-dispatching according to spectral abscis‐
sa sensitivity.

C. Efficiency

The time efficiency of the proposed closed-form formula‐
tion is compared with the numerical differentiation method
and element-based formulation. All simulations are per‐
formed on an HP EliteOne with Intel Core i5-6500
3.20 GHz CPU and 8 GB of RAM memory without GPU
hardware. From Table VII, it can be observed that the pro‐
posed CFES calculation is more time-efficient than the ele‐
ment-based formulation and the numerical differentiation
method, especially for large systems. The calculation time of
the numerical differentiation method is about 12 times as
much as the proposed formulation for IEEE 118-bus system.

VI. CONCLUSION

The accuracy of the numerical eigenvalue decreases as the
size of the system increases compared with the numerical
differentiation method. The proposed CFES has higher accu‐
racy and can provide better descent direction for the optimi‐
zation problem used for improving the system small-signal
stability. Besides, the efficiency of the proposed formulation
of CFES is substantially higher than that of the element-
based formulation and the numerical differentiation method.
Also, the proposed formulation will be helpful for coordinat‐
ing controller tuning and taking remedial actions.
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TABLE VI
ACTIVE POWER AND REACTIVE POWER GENERATION ADJUSTMENT FOR

10-MACHINE 39-BUS SYSTEM

Bus

30

31

32

33

34

35

36

37

38

39

Total

Q0
G (Mvar)

182.67

271.94

294.12

103.99

188.75

225.62

64.93

36.49

45.04

98.66

DPG (MW)

CFSAS-Y

1.41

-7.07

0

1.41

0

0

1.41

0

1.41

1.41

14.14

CFSAS-N

1.41

-7.07

0

1.41

0

0

1.41

0

1.41

1.41

14.14

DQG (Mvar)

CFSAS-Y

-147.43

-42.49

9.01

-32.72

-40.61

-103.52

-52.83

461.89

-4.19

-47.11

941.79

CFSAS-N

-116.19

-47.46

-46.89

-39.85

-39.58

-206.65

147.82

460.32

-17.07

-94.44

1216.27

TABLE VII
TIME OF CALCULATING CFSAS-Y AND NSAS

Test system

WSCC
9-bus system

New England
39-bus system

IEEE
118-bus system

Calculation time (s)

Proposed
formulation

0.008

0.016

0.189

Element-based
formulation

0.008

0.080

2.250

Numerical
differentiation

0.010

0.067

2.355
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