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H¥ Load Frequency Control Design Based on
Delay Discretization Approach for Interconnected

Power Systems with Time Delay
Subrat Kumar Pradhan and Dushmanta Kumar Das

Abstract——This paper proposes a delay discretization based
H∞ load frequency control strategy for interconnected power
systems. The effect of time delay is considered in the system for
the design of stabilizing controller. To improve the tolerable de‐
lay margin of the system, a two-term state feedback controller
structure is used. The controller requires delayed state informa‐
tion as control input. In the proposed approach, the amount of
delay introduced in the state of the system, i.e., artificial delay,
for taking control action is assumed to be constant. The ap‐
proach is based on the discretization of this delay interval. In
order to define a simple Lyapunov-Krasovskii (LK) function for
each of the discretized interval, a stabilization criterion is devel‐
oped in such a way that a single one satisfies the requirement
of all the intervals. The developed criterion is computationally
simple and efficient.

Index Terms——Interconnected power system, load frequency
control (LFC), state feedback controller, time delay.

I. INTRODUCTION

IN a large-scale power system, multiple control areas are
connected through tie-lines. For supplying reliable and

sufficient power of good quality, one of the most important
components of the large-scale power system is the load fre‐
quency control (LFC) [1]. In LFC, the balance between pow‐
er generation and demand needs to be satisfied. For LFC,
some requirements must be taken into account such as: ①
the minimization of the steady state error of tie-line exchang‐
es and frequency deviations [2]; ② the optimal transient be‐
havior [3]; ③ the optimal power dispatch [4], [5]. For inter‐
connected power system, area control error (ACE) signal is
used as an input for automatic regulation of frequency devia‐
tion [6]. And dedicated communication channels are used for
the transmission of measured data from remote terminal
units (RTUs) to the control center, and ACE signal from the
control center to the generation station [7], [8]. During the
modeling of interconnected power systems, it is unable to
avoid the time required to collect the information of load fre‐

quency deviation by regulation station, and generate and
transmit ACE signal from regulation station to different pow‐
er system areas. This time lag or time delay in the system
model makes the system dynamics infinite dimensional (infi‐
nite number of roots of the characteristics polynomial) [9].
The design of control algorithm is always a challenging task
for such systems. This time delay in ACE signal may lead to
oscillation and instability in power systems [10], [11]. For a
reliable interconnected power system, the controller is to be
designed without neglecting the delay factor in the system.
Therefore, a delay-dependent stabilization criterion should be
developed so that the maximum tolerable delay margin (MT‐
DM) of an LFC scheme can be improved [10]-[13].

There has been available literature on designing suitable
controllers for LFC scheme of an interconnected power sys‐
tem. One of the simplest controller, i.e., a proportional-inte‐
gral (PI) control, is proposed in [5], [6]. To achieve better
performance, some controllers such as H¥ controller [14]
and adaptive controller [4] are proposed. In [15], the effect
of time-delay on LFC of microgrid is studied and a method
is proposed to compute the delay margin. Various advanced
control strategies are also proposed such as robust control de‐
sign technique [16]-[18], H¥ based decentralized control de‐
sign [19], [20] and sliding mode control [21]. However,
most of the advanced control strategies suggest nonlinear,
complex state feedback and higher-order dynamic control‐
lers. In fact, due to simple structure and effectiveness, sim‐
ple state feedback and proportional-integral-derivative (PID)
controllers are still preferred in industrial applications. To
tune the controller gains, many methods are available such
as fuzzy based tuning [22] and linear matrix inequality
(LMI) based approach [10], [23]. In [12], a decentralized
control strategy using two-term controller is proposed for the
LFC problem. Though there are a number of control tech‐
niques available in literature to design a controller, H¥ con‐
trol technique is a very popular control technique for control‐
ler design. The H¥ controller in a control system has some
advantages such as: ① it achieves stabilization with guaran‐
teed performance [24]; ② it increases the robustness against
uncertainties [25]; and ③ it restrains interferences, unmod‐
eled dynamics or both of them [26]. In [9]- [11], a logic of
introducing an artificial delay in the state of the controller is
proposed, which improves the tolerable delay margin of the
closed loop system. Specifically, for LFC scheme, a two-
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term state feedback controller is used in [10], [11], [27] to
derive the stabilization criterion and to satisfy the H¥ perfor‐
mance criterion. The logic behind the use of this artificial de‐
lay in the state of the controller is that the controller dynam‐
ics involves the delayed state information of the time-delay
system. This improves the tolerable delay margin of the time-
delay system.

In this paper, the LFC problem of interconnected power
system with delay in ACE is analysed by using delay-discret‐
ization approach. H¥ performance based delayed state feed‐
back control strategy is proposed by using an artificial delay
for tolerable delay margin enhancement of the interconnect‐
ed power system. The artificial delay is chosen for discretiza‐
tion because it incorporates the delayed state information of
interconnected power system into the dynamics of the con‐
troller, which is the primary requirement of the proposed
control method. The number of decision variables increases
with the number of delay intervals in the existing delay dis‐
cretization approaches [28]-[31]. However, the proposed de‐
lay discretization approach with discretization of artificial de‐
lay is computationally simple and efficient as the number of
decision variables does not increase with the number of de‐
lay intervals. A new multiple Lyapunov-Krasovskii (LK)
function based approach is proposed to derive an improved
H¥ based delay-dependent stabilization criterion for the inter‐
connected power system. To derive the criterion, a simple
LK function is defined for an arbitrary number of discretized
delay intervals. The criterion for the highest interval is able
to satisfy the stability requirement of all intervals and lead
to a single criterion. Therefore, the number of decision vari‐
able does not change with the number of delay intervals.
Hence, the computation time is reduced. To demonstrate the
effectiveness of the criterion, a well-known numerical exam‐
ple is considered in [10].

The contributions of this paper are listed as follows.
1) It deals with the effect of time delay related to ACE on

the LFC problem of an interconnected power system.
2) A state feedback H¥ controller containing both present

and delayed state information is designed to improve tolera‐
ble delay margin of the interconnected power system.

3) By using delay-discretization approach, a new stabiliza‐
tion criterion with H¥ performance index is derived in terms
of LMI based on LK function for interconnected power sys‐
tem with time delay.

4) To compute suitable controller gains and H¥ perfor‐
mance index, a constrained LMI optimization problem is de‐
veloped by formulating a multi-objective function.

5) A study is conducted to show the effect of the number
of delay intervals on tolerable delay margin of the intercon‐
nected power system.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

There are different types of LFC structures in regulated
and deregulated power markets. In this paper, charged LFC
structure is considered. For simple understanding, a charged
LFC structure of two-area interconnected power system is
shown in Fig. 1. In this scheme, the transmission companies
(TRANSCOs) purchase power from generation companies

(GENCOs) and sell it to distribution companies (DISCOs).
The TRANSCOs have the responsibility of measuring the
load frequency deviation and net tie-line power deviation,
and generate control signal to GENCOs to adjust the real
output power. In an interconnected power system, delays are
present in the ith area power system in ACE due to the fol‐
lowing reasons: ① time taken in measuring/sensing the fre‐
quency deviation and tie-line power; ② time taken in trans‐
mitting the sensor data to controller and control signal from
the controller to generation station. Therefore, it is wiser to
consider the effect of delays in the system dynamics at the
time of controller design such that an appropriate controller
can be designed to withstand the effect of total closed loop
delay with larger margin.

The LFC model of the ith area power system with time de‐
lay in ACE is shown in Fig. 2, where DPvi is the governor
valve position deviation of area i; DPmi is the mechanical out‐
put power deviation of area i; Dfi is the frequency deviation
of area i; DEi is the ACE of area i; DPij is the tie-line power
deviation of areas i and j; DPdi is the load disturbance of ar‐
ea i; Tgi is the governor time constant of area i; Tpi is the
time constant of power system of area i; Tchi is the time con‐
stant of turbine of area i; Tij is the stiffness coefficient be‐
tween areas i and j; kpi is the proportional gain of PI control‐
ler of area i; ki is the integral gain of PI controller of area i;
Bi is the frequency bias parameter of area i; Ri is the speed
droop of area i; τ i is the time delay in ACE of area i; and ui

is the control input to area i.

The objective of this paper is to design a suitable control‐
ler to stabilize the closed loop system, which, at the same
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Fig. 1. Charged LFC structure without bilateral contract.
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Fig. 2. LFC model of the ith control area in an interconnected power sys‐
tem with time delay.
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time, can ascertain the H¥ performance criterion. The H¥ per‐
formance index Γ is described as:

 Twy (jω) £Γ "ω (1)

where Twy (jω)= Twy (s)= L ( y(t)
w(t) ), L is the Laplace operator,

w(t) is disturbance vector, y(t) is the output vector; and ω is
the frequency domain function. Equation (1) can be defined
as:

 Twy
¥
=
 y

2

 w
2

=
∫

0

¥

yT (t)y(t)dt

∫
0

¥

wT (t)w(t)dt

£Γ (2)

where the H¥ performance index Γ is the load rejection ratio
of the controller. It is required to obtain an H¥ controller to
minimize Γ, i.e., norm bounded performance measure, in or‐
der to have the minimal effect of load variation on the per‐
formance of system.

The dynamics of an interconnected power system with n
control areas for ij = 12...ni ¹ j can be described as fol‐
lows.

The linearized model of the alternator output mechanical
power deviation is given by:

DṖmi (t)=
DPvi (t)

Tchi

-
DPmi (t)

Tchi
(3)

The linearized model of ACE is given by:

DĖi (t)= kiDPij (t)+ ki BiDfi (t) (4)

The linearized model of the tie-line power deviation is giv‐
en by:

DṖij (t)= 2πTijDfi (t)- 2πTijDfj (t) (5)

The linearized model of the governor valve position is giv‐
en by:

DṖvi (t)=-
Dfi (t)

RiTgi

-
DPvi (t)

Tgi

-
DEi (t - τ i)

Tgi

+
ui (t)

Tgi
(6)

The linearized model of frequency deviation is given by:

Df ̇i (t)=-
kpi

Tpi

(DPdi (t)+DPij (t)-DPmi (t))-
Dfi (t)

Tpi
(7)

where DPij =-DPji.
The dynamic equations (3) - (7) collectively describe the

generalized dynamic model of multi-area interconnected
power system for LFC analysis. One can analyse the LFC
problem of an interconnected power system containing any
number of control areas by using this dynamic model. In
this dynamic model, the number of parameters increases
with n, i.e., incorporation of more control areas into the in‐
terconnected power system increases the number of system
parameters. Thus, for convenience, by choosing n= 2, a two-
area interconnected power system containing ACE delay in
both control areas is considered for LFC analysis in this pa‐
per. The dynamic model of the two-area interconnected pow‐
er system can be obtained from (3)-(7) for ij = 12i ¹ j. The
two-area LFC model is shown in Fig. 3, which is modeled
following Fig. 2.

Define a state vector as x(t)= [ ]DAr1 DP12 DAr2

T

, where

DAr1 = [Df1 DPm1 DPv1 DE1 ], DAr2 = [Df2 DPm2 DPv2 DE2 ].
The dynamic equations (3)-(7) for the two-area LFC can be
represented in a state-space form as:

ẋ(t)=Ax(t)+Ad1 x(t - τ1)+Ad2 x(t - τ2)+Bu(t)+Dw(t) (8)

y(t)=Cx(t) (9)

where w(t)=DPd =[DPd1 DPd2 ]T is the load disturbance vec‐

tor. For b= 12 and l = 34, the following matrices are de‐
fined as:

A=
é

ë

ê
ê

ù

û

ú
ú
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(10)
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1
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kb Bb 0 0 0

(11)

A l =
é
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êê-
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Tpb

0 0 kb

ù

û
úú

T

(12)

A5 = [2πT1 0 0 0 ] (13)
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-Ad11
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û
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Fig. 3. Two-area LFC model.
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Adb1 =
é

ë
êê0 0

1
Tgb

0
ù

û
úú

T

(16)

B=
é

ë

ê
ê

Ad11

01´ 1

04´ 1

04´ 1

01´ 1

Ad21

ù

û

ú
ú (17)

C =
é

ë

ê
ê

C1

01´ 1

04´ 4

04´ 1

01´ 1

C1

ù

û

ú
ú

T

(18)

C1 = [ I 0 0 0 ]T
(19)

D=
é

ë

ê
ê

-D1

01´ 1

04´ 1

04´ 1

01´ 1

-D2

ù

û

ú
ú (20)

Db =
é

ë
êê

kpb

Tpb

0 0 0
ù

û
úú

T

(21)

It can be noted that the local PI controller is considered as
an integral part of the model (3)-(7). As the margin of delay
τ i increases, the local PI controller fails to stabilize the sys‐
tem in conventional LFC scheme. For such situation, the
conventional PI controller may not improve the performance
of the system [10], [32]. Therefore, a proper optimal control
strategy may be designed to improve the performance of the
system.

In [10], a single-term controller and a two-term controller
with time delay have been considered. It is shown that the
same approach to obtain the stabilization criterion using the
two-term controller with delay structure is less conservative
than the single-term controller. In [9], [27], it is also present‐
ed that the maximum tolerable delay margin of system can
be improved by introducing artificial delays in the controller
dynamics. Therefore, to obtain a less conservative criterion,
the following steps are taken. The steps are described as fol‐
lows.

1) To solve the LFC problem of time-delay power system,
a two-term controller of the following form is proposed as:

u(t)=Kx(t)+Kh x(t - h) (22)

where K and Kh are the controller gain matrices with satis‐
factory dimension; h is a known finite delay intentionally in‐
troduced in the controller by the designer (artificial delay or
controller delay). Assume that h is a constant delay satisfy‐
ing 0£ h£ h̄, where h̄ is the upper bound of h. The control
signal generated for the system is a function of present and
delayed state of the system.

2) To obtain the stabilization criterion using LK function
in LMI framework, a discretization approach is proposed.
Systems (8) and (9) are considered to validate the proposed
control algorithm in this paper.

Using a controller of the form (22), the closed-loop sys‐
tem can be represented as:

ẋ(t)=Ac x(t)+Bh x(t - h)+Ad1 x(t - τ1)+Ad2 x(t - τ2)+Dw(t)
(23)

y(t)=Cx(t) (24)

where Ac =A+BK and Bh =BKh.

To derive the main stabilization criterion, an existing re‐
sult is given in the form of Lemma which is discussed as fol‐
lows.

Lemma 1 (Jensen’s Inequality [33]): for any constant ma‐
trix R> 0, β > α> 0 and γ= β - α> 0, the following bounding
inequality holds:

- ∫
t - β

t - α

ẋT (θ)Rẋ(θ)dθ £ γ̄
é

ë
ê

ù

û
ú

x(t - α)

x(t - β)

T

é
ë
ê

ù
û
ú

-R R
RT -R

é

ë
ê

ù

û
ú

x(t - α)

x(t - β)
(25)

where γ̄= γ-1. The right-hand side of the above inequality is
nonconvex in γ. To approximate a convex criterion involving
the uncertain parameter γ, an equivalent representation can
be obtained using the free matrix variable. The approximated
representation is as follows:

- ∫
t - β

t - α

ẋT (θ)Rẋ(θ)dθ £
é

ë
ê

ù

û
ú

x(t - α)

x(t - β)

T{éëê ù
û
ú

M +M T -M +N T

(-M +N T)T -N -N T +

γ é
ë
ê

ù
û
ú

M
N

R-1 é
ë
ê

ù
û
ú

M
N

T}éëê ù

û
ú

x(t - α)

x(t - β)
(26)

where M and N are free weighted matrices with appropriate
dimensions. Note that, with the choice M =M T =-N =-N T =
-γ-1 R in (26), we can obtain (25).

III. DESIGN OF DELAY-DEPENDENT H¥ TWO-TERM

CONTROLLER

The following theorem presents an LMI-based criterion
for designing the controller of form (22) while ascertaining
the H¥ performance criterion (2).

Theorem 1: system (8) with controller (22) for known α,
β, λ and γ satisfies the H¥ performance (2) if there exists P̄ >
0, Q̄ i > 0, Q̄hk > 0, R̄τi > 0, R̄hi > 0 for k = 1234, and arbitrary
matrices S̄1, M̄hi > 0, N̄hi > 0, Y and V for i = 12, satisfying
the following LMI:

é

ë
êê

ù

û
úú

Θ̄ δΦ̄ j

(δΦ̄ j)
T -R̄h2

< 0 j = 12 (27)

where Φ̄1 = [000M̄ T
h1N̄ T

h10000]T , Φ̄2 = [0000M̄ T
h2N̄ T

h2,
0,0,0]T , Θ̄ = [Θ̄ij] ij = 129 Θ̄11 = AS̄ T

1 + S̄1 AT + BY + Y T BT +

∑
k = 1

2

Q̄k - R̄h1 - R̄τ1
- R̄τ2

+∑
k = 1

3

Q̄hk Θ̄12 = Ad1 S̄ T
1 + R̄τ1

, Θ̄13 =Ad2 ×

S̄ T
1 + R̄τ2

, Θ̄14 = λS̄1 AT + λY T BT + R̄h1, Θ̄15 = βS̄1 AT + βY T BT +
BV Θ̄16 = γS̄1 AT + γY T BT Θ̄17 =-S̄ T

1 + αS̄1 AT + αY T BT + P̄
Θ̄18 = D, Θ̄19 = S̄1C

T, Θ̄22 =-Q̄1 - R̄τ1
, Θ̄24 = λS̄1 AT

d1 Θ̄25 =
βS̄1 AT

d1 Θ̄26 = γS̄1 AT
d1, Θ̄27 = αS̄1 AT

d1, Θ̄33 =-Q̄2 - R̄τ2
, Θ̄34 =

λS̄1 AT
d2, Θ̄35 = βS̄1 AT

d2, Θ̄36 = γS̄1 AT
d2, Θ̄37 = αS̄1 AT

d2 Θ̄44 =
-(Q̄h2 - Q̄h4)- R̄h1 + δ(M̄h1 + M̄ T

h1) Θ̄45 = λBV + δ(-M̄h1 + N̄ T
h1),

Θ̄47 = -λS̄ T
1 , Θ̄48 =λD Θ̄55 =βBV +βV T BT -∑

k=3

4

Q̄hk +δ(-N̄h1 -

N̄ T
h1)+δ(M̄h2 +M̄ T

h2), Θ̄56 = γV T BT + δ(-M̄h2 + N̄ T
h2) Θ̄57 =-βS̄ T

1 +
αV T BT, Θ̄58 = βD, Θ̄66 =-Q̄h1 +δ(-N̄h2 -N̄ T

h2), Θ̄67 = -γS̄ T
1 ,

Θ̄68 = γD, Θ̄77 =-αS̄ T
1 - αS̄1 + R̄h + R̄τ Θ̄78 = αD, Θ̄88 = -Γ 2 I,

Θ̄99 =-I K =Y (S̄ T
1 )-1, Kh = V ( S̄ T

1 )-1, R̄h = h2
(i - 1) R̄h1 + δ2 R̄h2,

R̄τ = τ 2
1 R̄τ1

+ τ 2
1 R̄τ2

.

Proof: considering the ith instance when hÎ[h(i - 1)hi], a
simple LK function is defined as [34]:
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Vi (t)=V1 (t)+Vi2 (t) (28)

V1 (t)= xT (t)Px(t)+∑
i = 1

2 ∫
t - τi

t

xT (s)Q i x(s)ds +

∑
i = 1

2

τ i ∫
t - τi

t ∫
θ

t

ẋT (ϕ)Rτi ẋ(ϕ)dϕdθ (29)

Vi2 (t)=∑
j = 1

2 ∫
t - hi+ 1- j

t

xT (θ)Qhj x(θ)dθ +

∫
t - h

t

xT (θ)Qh3 x(θ)dθ + ∫
t - h

t - hi- 1

xT (θ)Qh4 x(θ)dθ +

h(i - 1) ∫
t - hi- 1

t ∫
θ

t

ẋT (ϕ)Rh1 ẋ(ϕ)dϕdθ +

δ ∫
t - hi

t - hi- 1∫
θ

t

ẋT (ϕ)Rh2 ẋ(ϕ)dϕdθ (30)

Differentiating Vi (t) with respect to time along the state
trajectory of (23) yields:

V̇i (t)= V̇1 (t)+ V̇i2 (t) (31)

V̇1 (t)= 2xT (t)Pẋ(t)+∑
k = 1

2

xT (t)Qk x(t)-

∑
i = 1

2

xT (t - τ i)Q i x(t - τ i)+ ẋT (t)Rτ ẋ(t)-

∑
i = 1

2

τ i ∫
t - τi

t

ẋT (θ)Rτi ẋ(θ)dθ (32)

V̇i2 (t)=∑
k = 1

3

xT (t)Qhk x(t)- xT (t - hi - 1)(Qh2 -Qh4)x(t - hi - 1)-

xT (t - hi)Qh1 x(t - hi)-∑
k = 3

4

xT (t - h)Qhk x(t - h)+

ẋT (t)Rh ẋ(t)- hi - 1 ∫
t - hi- 1

t

ẋT (θ)Rh1 ẋ(θ)dθ -

δ ∫
t - hi

t - hi- 1

ẋT (θ)Rh2 ẋ(θ)dθ (33)

where Rτ = τ 2
1 Rτ1

+ τ 2
2 Rτ2

and Rh = h2
i - 1 Rh1 + δ2 Rh2.

Instead of replacing ẋ(t) by directly using (23) in (31), we
consider in this paper a zero valued quadratic formulation of
the system dynamics (23) as:

(2xT (t)S1 + 2xT (t - hi - 1)S2 + 2xT (t - h)S3 + 2xT (t - hi)S4 +

2ẋT (t)S5)´ ( - ẋ(t)+Ac x(t)+Bh x(t - h)+Ad1 x(t - τ1)+

Ad2 x(t - τ2)+Dw(t))= 0 (34)

where Sk, k = 125 are arbitrary matrices of appropriate
dimensions. This will incorporate the information regarding
the coupling of some important states with the system dy‐
namics. As ẋ(t) is not replaced from (23) to (31), it is an im‐
portant requirement for the analysis to incorporate the infor‐
mation regarding the system dynamics. Therefore, the above
zero term (34) can be used in the analysis. This term can
easily fulfill the requirement of involving states of system
dynamics coupled with some important states while modify‐
ing the stabilization requirement. The following inequality is
used [35] to separate the cross-product term in (34).

2ξ T (t)Sw(t)£Γ -2ξ T (t)SSTξ(t)+Γ 2wT (t)w(t) (35)

where S = [ ]DT S T
1 00DT S T

2 DT S T
3 DT S T

4 DT S T
5

T
, and ξ(t)=

[ xT (t)xT (t-τ1)xT (t-τ2)xT (t - hi-1)xT (t-h)xT (t-hi)ẋT (t) ]T

.

Following (25) of Lemma 1, two integral terms of V̇1 ( t )
and the first integral of V̇i2 ( t ) are approximated. The last in‐
tegral term of V̇i2 ( t ) in (31) may be written as:

-δ ∫
t - hi

t - hi- 1

ẋT (θ)Rh2 ẋ(θ)dθ =-δ ∫
t - h

t - hi- 1

ẋT (θ)Rh2 ẋ(θ)dθ -

δ ∫
t - hi

t - h

ẋT (θ)Rh2 ẋ(θ)dθ (36)

The above term (36) can be approximated by following
(26) of Lemma 1. After the approximation of all integral
terms in (31), we can write the stability condition as:

V̇i (xtẋt)£ ξ T (t) [-Ψ+ h2
i - 1Ω i + ρδ2Φ1 R-1

h2Φ
T
1 +

](1- ρ)δ2Φ2 R-1
h2Φ

T
2 ξ(t)

(37)

where Ψ̄ = Ψ + Ψ̂, Ψ̂ = Γ -2ξ T (t)SSTξ(t)+Γ 2wT (t)w(t) Ψ =

[Ψ ij] ij = 127 Ψ11=S1 Ac+AT
c S T

1 +∑
k=1

2

Qk -Rh1-Rτ1
-Rτ2

+∑
k=1

3

Qhk,

Ψ12 = S1 Ad1 +Rτ1
, Ψ13 = S1 Ad2 + Rτ2

, Ψ14 =AT
c S T

2 +Rh1, Ψ15 =
AT

c S T
3 + S1 Bh, Ψ16 = AT

c S T
4 , Ψ17 =-S1 +AT

c S T
5 +P, Ψ22 =-Q1 -

Rτ1, Ψ24 = AT
d1 S T

2 , Ψ25 = AT
d1 S T

3 , Ψ26 = AT
d1 S T

4 , Ψ27 =AT
d1 S T

5 ,
Ψ33 = -Q2 - Rτ2, Ψ34 = AT

d2 S T
2 , Ψ35 = AT

d2 S T
3 , Ψ36 =AT

d2 S T
4 ,

Ψ37 =AT
d2 S T

5 , Ψ44 =-(Qh2 -Qh4)-Rh1 + δ(Mh1 +M T
h1), Ψ45 =

S2 Bh + δ(-Mh1 +N T
h1), Ψ47 = -S2, Ψ55 = S3 Bh +BT

h S T
3 -∑

k=3

4

Qhk +δ(-Nh1 -N T
h1)+ δ(Mh2 +M T

h2), Ψ56 =BT
h S T

4 + δ(-Mh2 +

N T
h2), Ψ57 =-S3 +BT

h S T
5 , Ψ66 =-Qh1 +δ(-Nh2 -N T

h2), Ψ67 = -S4,

Ψ77 =-S5 -S T
5 +δ2 Rh2 +(τ 2

1 Rτ1
+τ 2

2 Rτ1
), ρ=

h- hi - 1

δ
(0£ ρ£ 1),

Ω i =
é
ë
ê

ù
û
ú

06n × 6n 06n × n

0n × 6n Rh1

, Φ1 = [0 0 0 M T
h1 N T

h1 0 0 ]T
, and Φ2 =

[ ]0 0 0 M T
h2 N T

h2 0 0
T
.

Therefore, the stability requirement of the ith interval is:
-
Ψ+ h2

i - 1Ω i + ρδ2Φ1 R-1
h2Φ

T
1 + (1- ρ)δ2Φ2 R-1

h2Φ
T
2 < 0 (38)

Next, to ascertain the H¥ performance criterion, the perfor‐
mance criterion from (2) can be obtained as:

Jyw = ∫
0

¥

( )yT (t)y(t)-Γ 2wT (t)w(t) dt (39)

Note that if Jyw £ 0, the system (23) satisfies the condition
(2). Thus, to design an H¥ performance based two-term con‐
troller with Γ performance index, the H¥ performance criteri‐
on Jyw £ 0 is adopted. For zero initial condition, i.e., V (0)= 0,
and since V (¥)³ 0, (39) can be re-written as:

Jyw £ ∫
0

¥

( )yT (t)y(t)-Γ 2wT (t)w(t)+ V̇i (t) dt (40)

Substituting (38) into (40), the following inequality can be
obtained:

Jyw £ ∫
0

¥

ξ T (t)Ξξ(t)dt (41)

where Ξ=Ψ +h2
i-1Ω i +C̄C̄ T +ρδ2Φ1 R-1

h2Φ
T
1 + (1-ρ)δ2Φ2 R-1

h2Φ
T
2,

and C̄ = [C 0 0 0 0 0 0 ]T
.

Therefore, Jyw £ 0 is satisfied if Ξ < 0. The above is a poly‐
tope of matrices on ρ, and it is always negative definite if
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two of its vertices are also negative definite. Then, (38) can
be equivalently written as:

Ψ + h2
i - 1Ω i + C̄C̄ T + δ2Φ j R

-1
h2Φ

T
j < 0 j = 12 (42)

Note that Ω i ³ 0 and it is maximum in the Nth interval
where hÎ[hN - 1h̄]. Therefore, irrespective of h lies in any of
the intervals, the following condition always ensures stabili‐
ty of (23):

Ψ + h2
N - 1ΩN + C̄C̄ T + δ2Φ j R

-1
h2Φ

T
j < 0 j = 12 (43)

Taking Schur complement for the last term in (43), we
can obtain:

é
ë
ê

ù
û
ú

Θ δΦ j

(δΦ j)
T -Rh2

< 0 j = 12 (44)

where Θ11 = Ψ11, Θ12 = Ψ12, Θ13 = Ψ13, Θ14 =Ψ14, Θ15 =Ψ15,
Θ16 = Ψ16, Θ17 = Ψ17, Θ18 = S1 D, Θ19 = C T, Θ22 = Ψ22, Θ23 =
Ψ23, Θ24 = Ψ24, Θ25 = Ψ25, Θ26 = Ψ26, Θ27 =Ψ27, Θ28 = 0,
Θ29 = 0, Θ33 = Ψ33, Θ34 = Ψ34, Θ35 = Ψ35, Θ36 = Ψ36, Θ37 =
Ψ37, Θ38 = 0, Θ39 = 0, Θ44 = Ψ44, Θ45 = Ψ45, Θ46 = Ψ46, Θ47 =
Ψ47, Θ48 = S2 D, Θ49 = 0, Θ55 = Ψ55, Θ56 =Ψ56, Θ57 = Ψ57,
Θ58 = S3 D, Θ59 = 0, Θ66 = Ψ66, Θ67 = Ψ67, Θ68 = S4 D,
Θ69 = 0, Θ77 =Ψ77 + h2

(N - 1) Rh1, Θ78 = S5 D, Θ79 = 0,
Θ88 =-Γ 2 I, Θ89 = 0, and Θ99 = -I.

The derived inequality (44) is not an LMI because it has
some nonlinear terms in Θ. The presence of five arbitrary
matrices S1, S2, S3, S4 and S5 in Θ makes the inequality (44)
nonlinear. Thus, the inequality (44) can be converted into
LMI by restricting the presence of five arbitrary matrices in‐
to only one arbitrary matrix (i. e., S1). For this reason, four
parameters such as λ, β, γ and α are chosen by the control
designer. S2, S3, S4 and S5 can be represented in terms of S1

by using λ, β, γ, and α as S2 = λS1, S3 = βS1, S4 = γS1, and
S5 = αS1, respectively.

The LMI (27) can be obtained by substituting S2 = λS1,
S3 = βS1, S4 = γS1, and S5 = αS1 into (44), pre- and post-multi‐
plying (44) by diag{S -1

1 S -1
1 S -1

1 S -1
1 S -1

1 S -1
1 S -1

1 I I S -1
1 }

and its transpose, respectively. Finally, we can change the
following variables: S̄1 = S -1

1 , P̄ = S̄1 PS̄ T
1 , M̄hi = S̄1 Mhi S̄

T
1 

N̄hi = S̄1 Nhi S̄
T
1 , Q̄ i = S̄1Q i S̄

T
1 (i = 1,2), Q̄hj = S̄1Qhj S̄

T
1 ( j =

124), Y = KS̄ T
1 , and V = Kh S̄ T

1 . The proof is completed.
The controller gains can be obtained by using K =Y (S̄ T

1 )-1

and Kh =V (S̄ T
1 )-1 from the feasible solution of (27) with a

suitable value of Γ. To obtain the suitable value of Γ, we
have to optimize Γ 2 in (27). Thus, an optimal controller is
yielded by defining Γ 2 = Γ̄ and minimizing Γ̄ to obtain a so‐
lution of (27). The optimal controller gives optimized value
of Γ, but provides high value of controller gains. These high
controller gains are not practically implementable [10], [36].
Note that the LMI variables Y, V, and S̄1 are involved in the
computation of controller gains K and Kh. Hence, to keep
the controller gains within the practical limit, the norm of
matrices  Y ,  V , and  S̄ -1

1 should be minimized. We aim

to design such an optimal controller, which gives the mini‐
mum value of Γ as well as practically implementable values
of K and Kh. Therefore, an optimization problem can be de‐
fined by formulating a multi-objective function, whose objec‐
tive is to provide suitable values of Γ, K and Kh simultane‐
ously, with LMI constraints as follows [36], [37]:

ì

í

î

ï

ï

ï

ï
ï
ïï
ï

ï

ï

ï

ï
ï
ïï
ï

min(Γ̄ + y + v + s)

s.t. (27)

é
ë
ê

ù
û
ú

yI Y

Y T I
> 0

é
ë
ê

ù
û
ú

vI V
V T I

> 0

é
ë
ê

ù
û
ú

S̄1 I
I T sI

> 0

(45)

where y, v, and s are the norms of the matrices  Y ,  V ,
and  S̄ -1

1 , respectively. By minimizing the above objective

function (45), the H¥ performance (2) can be achieved. The
stabilizing controller gains can also be obtained from the
minimization. The number of decision variables and size of
the LMI in Theorem 1 does not change with number of divi‐
sion of the delay interval N. This is the most important ad‐
vantage of the proposed approach. No approximation is used
to obtain the stability condition (43) from (42). But, the gap
in approximating the first integral term of (31) increases
with h(i - 1), and h(i - 1) increases with N. So, the stabilization cri‐
terion is indeed ultimately constrained. This limitation arises
due to the choice of LK function and the corresponding re‐
sults may be influenced by the approximations of the first in‐
tegral term. However, it is easy to search over N to obtain
the maximum tolerable h̄.

To simplify Theorem 1 by eliminating the number of vari‐
ables, the following corollary is proposed.

Corollary 1: system (8) with controller (22) for known α,
β, λ and γ satisfies the H¥ performance (2) if there exists P̄ >
0, Q̄ i > 0, Q̄hk > 0, R̄τi > 0, R̄hi > 0 for k = 1234, and arbitrary
matrices S̄1, M̄hi > 0, N̄hi > 0, Y and V for i = 12, satisfying
the following LMI:

é

ë
êê

ù

û
úú

Σ̄ δΦ̄ j

(δΦ̄ j)
T -R̄h2

< 0 j = 12 (46)

where Σ̄=[Σ̄ ij] i,j = 1,2,9, Σ̄11 = Θ̄11, Σ̄12 = Θ̄12, Σ̄13 = Θ̄13, Σ̄14 =
Θ̄14, Σ̄15 = Θ̄15, Σ̄16 = Θ̄16, Σ̄17 = Θ̄17, Σ̄18 = Θ̄18, Σ̄19 = Θ̄19,
Σ̄22 = Θ̄22, Σ̄24 = Θ̄24, Σ̄25 = Θ̄25, Σ̄26 = Θ̄26, Σ̄27 = Θ̄27, Σ̄33 =
Θ̄33, Σ̄34 = Θ̄34, Σ̄35 = Θ̄35, Σ̄36 = Θ̄36, Σ̄37 = Θ̄37, Σ̄44 =-(Q̄h2 -
Q̄h4)- R̄h1 - R̄h2, Σ̄45 = λBV + R̄h2, Σ̄47 = Θ̄47, Σ̄48 = Θ̄48, Σ̄55 =

βBV + βV T BT -∑
k = 3

4

Q̄hk - 2R̄h2, Σ̄56 = γV T BT + R̄h2, Σ̄57 = Θ̄57,

Σ̄58 = Θ̄58, Σ̄66 = -Q̄h1 - R̄h2, Σ̄67 = Θ̄67, Σ̄68 = Θ̄68, Σ̄77 = Θ̄77,
Σ̄78 = Θ̄78, Σ̄88 = Θ̄88, and Σ̄99 = Θ̄99.

Proof: since the last term in (43) is positive definite, one
can derive the stability criterion in the form of a single ma‐
trix inequality as:

Ψ + h2
N - 1ΩN + C̄C̄ T + δ2Φ1 R-1

h2Φ
T
1 + δ2Φ2 R-1

h2Φ
T
2 < 0 (47)

Following Lemma 1, by substituting the free matrix vari‐
ables as Mhi =M T

hi =-Nhi =-N T
hi =-δ-1 Rh2 in (47) and follow‐

ing the linearization technique adopted in Theorem 1, (46) is
obtained. The proof is completed.

Although the above stability criterion derived in Corollary
1 is conservative compared to Theorem 1 due to the approxi‐
mations incorporated, the bounding gap decreases with the
decrease of integral limit δ, i.e., the increase of the number
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of delay intervals (N), in both criteria. Hence, the criterion
developed in Corollary 1 is more useful for large N, since it
involves less number of free variables. By modifying the sin‐
gle objective problem to a multi-objective one, the gains of
the designed controller will be within the practical range.
They can be easily implemented in real time.

The proposed Corollary 1 can be used to solve the optimi‐
zation problem with objective function (45) by replacing the
constraint (27) by (46). This causes the reduction of compu‐
tation complexity with conservative results.

A well-known numerical example is presented below to
validate the developed control approach for two-area inter‐
connected power system.

IV. NUMERICAL EXAMPLE AND RESULT ANALYSIS

An example of a well-known two-area interconnected
power system [10] is considered to check the effectiveness
of the proposed H¥ performance based controller design.
The parameters of the state space model of the system (3)-
(7) is presented in Table I [10], [11].

For the simulation study of the two-area power system (8)
with controller (22) in MATLAB, the delay in the ACE sig‐
nal of area 1 τ1 and the delay in the ACE signal of area 2 τ2

are set to be fixed. To design the controller (22), the gains
of the stabilizing controller K and Kh are required. These
controller gains with minimized Γ can be obtained from the
minimization of objective function (45). The LMI optimiza‐
tion problem containing the objective function (45) can be
solved by using mincx solver of LMI control Toolbox in
MATLAB. However, it is unable to find the solution of the
optimization problem using mincx solver alone, because
mincx solver can not get the values of the four parameters λ,
β, γ, and α chosen by the control designer as explained in
Theorem 1. Now, it is a challenge for the control designer to
select suitable values for such unknown parameters, i. e., λ,
β, γ, and α. These four unknown parameters can be obtained
suitably by using fminsearch routine of MATLAB Toolbox.
Therefore, the LMI optimization problem is solved by using
both mincx solver and fminsearch routine. The fminsearch
routine takes four input values at the time of invoking which
are treated as initial values for the parameters, then searches
the suitable values of λ, β, γ and α, and finally gives the suit‐

able values of these unknown parameters to the mincx solv‐
er. Then mincx solver solves the LMI optimization problem
and gives the values of Γ, K, Kh along with λ, β, γ and α.
Next, the controller (22) is designed by using K and Kh.

The maximum tolerable delay margin of the closed loop
system (23) can be verified by checking tolerability of delay
htol as well as minimizing Γ. The proposed discretization ap‐
proach gives an opportunity to study the effect of maximum
tolerable delay margin htol with number of delay intervals N.
A study has been made by obtaining htol using Theorem 1
with respect to change in N and presented in Table II.

It can be observed from Table II that the maximum htol is
obtained for N = 2. However, with the increase in number of
delay intervals N, the tolerable delay margin htol decreases,
which is discussed in the previous text. But the reason be‐
hind obtaining the maximum tolerability at N = 2 is that the
integral inequalities in (31) are halved, so the bounding gap
reduces and leads to improved results. But with the increase
of number of delay interval, the tolerable delay margin htol

decreases though the bounding gap in the second integral
term decreases. Therefore, one always obtains the maximum
tolerable delay margin value at N = 2.

The major concern in the delay discretization approaches
proposed in [28]-[31] is that the number of decision variable
increases with the number of delay interval. Therefore, the
computation burden increases. But in the proposed approach,
the number of decision variable does not increase with the
number of delay interval. Therefore, the approach is compu‐
tationally simple and efficient.

Using the above conditions for simulation, the maximum
htol is also obtained using Corollary 1 by changing the value
N. The analysis has been made and presented in Table III.
Here, it is also observed that htol is maximum, i. e.,
htol = 0.823 at N = 2. But Corollary 1 is conservative than
that of the Theorem 1.

Some variable approximations in Corollary 1 make the cri‐
terion conservative. Though the criterion is conservative, the
number of variable involved in the criterion is less than that
of Theorem 1. From the above study, it is confirmed that the
maximum tolerable delay margin htol can be obtained by set‐

TABLE III
VARIATION htol WITH RESPECT TO CHANGE IN N USING COROLLARY 1

N

1

2

3

htol

0.791

0.823

0.815

N

4

5

10

htol

0.813

0.810

0.806

N

20

100

1000

htol

0.803

0.802

0.802

TABLE II
VARIATION OF htol WITH RESPECT TO CHANGE IN N USING THEOREM 1

N

1

2

3

htol

0.812

0.853

0.846

N

4

5

10

htol

0.842

0.841

0.838

N

20

100

1000

htol

0.836

0.822

0.821

TABLE I
PARAMETERS OF AREAS 1 AND 2

No.

1

2

3

4

5

6

7

8

9

Parameter

Tchi

Tgi

Ri

Di

Mi

ki

Tpi

kpi

Bi

Value of area 1

0.3 s

0.1 s

0.05

1

10

0.5

M1 D1= 10

1 D 1= 1

2 R1 +D1 = 41

Value of area 2

0.17 s

0.4 s

0.05

1.5

12

0.5

M2 D2= 8

1 D 2 = 0.667

2 R2 +D2 = 81.5
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ting N = 2. A comparative analysis is made in Table IV.

TABLE IV
COMPARATIVE ANALYSIS WITH SOME EXISTING RESULTS

Approach

[10]

[11]

Corollary 3

Theorem 3

htol

0.700

0.780

0.823

0.853

To evaluate the performance of Corollary 1 and Theorem
1 with respect to existing approaches in [10], [11], τ1 and τ2

are fixed at 0.1 and 0.2, respectively. The maximum tolera‐
ble delay bound htol obtained using Corollary 1 and Theorem
1 are 0.823 and 0.853, respectively. As compared to the ex‐
isting approaches in [10], [11], the proposed approach is less
conservative with higher value of tolerable delay margin htol.
To validate the approach by simulation, htol is obtained to be
0.853 by using Theorem 1 at α= 0.5832, β = 0.0179, λ=
0.2675 and γ=-0.0002 by minimizing Γ to 9.9912. K and
Kh are designed in (48) and (49).

K = é
ë
ê

ù
û
ú

-5.0017
1.8013

-0.2676
0.0801

-0.1273
0.0660

0.0982
0.1129

0.8209
-3.4306

0.4753
-37.4385

0.0403
-0.5162

0.0295
-1.3949

0.0260
-0.3669

(48)

Kh =
é
ë
ê

ù
û
ú

-0.4786
-0.0481

-0.0063
-0.0017

-0.0199
-0.0032

-0.0165
-0.0009

0.0061
-0.0734

-0.1240
-1.3253

-0.0009
-0.0120

-0.0044
-0.0523

-0.0022
-0.0237

(49)

The deviations in frequency (Df1 and Df2) and the mechani‐
cal power output of the turbines (DPm1 and DPm2) for both
the areas modeled in (3) - (7) can be studied with random
step load disturbances (DPd1 and DPd2). For simulation, the
random step load disturbances of two areas are generated for
200 s as shown in Figs. 4 and 5.

The simulation results Df1, Df2, DPm1 and DPm2 at maxi‐
mum tolerable delay margin (htol = 0.853) are presented in
Figs. 6-9, respectively. These results validates that the de‐
signed controller (K and Kh) is able to achieve stabilization
by minimizing the H¥ performance index Γ to 9.9912 at a
tolerable delay margin htol of 0.853 for random step load dis‐
turbances DPd1 and DPd2.

0 50

2

1

0

ΔP
d1

�1

�2
100

Time (s)
150 200

Fig. 4. Change in load disturbance of area 1.

0 50

1

0

ΔP
d2

�1

�2
100

Time (s)
150 200

Fig. 5. Change in load disturbance of area 2.
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Fig. 6. Change in frequency of area 1.
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Fig. 7. Change in frequency of area 2.
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Fig. 8. Deviation in mechanical power output of area 1.
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V. CONCLUSION AND FUTURE SCOPE

In this paper, a delay discretization approach is proposed
to improve the tolerable delay margin of the interconnected
power system. To validate the approach, a well-known exist‐
ing example is considered. From the demonstration, it is ob‐
served that the designed H¥ performance based two-term
controller is able to withstand random load disturbances. The
proposed approach is simple and less conservative than
some existing results. Though the approach is simple and
less conservative, it is time-consuming and tedious to search
the tuning parameters α, β, λ and γ for the minimum Γ. This
opens up a new direction for research to avoid the above tun‐
ing parameters required during linearization. One may also
analyze the tolerable delay margin improvement capability
using dynamic state feedback controller in place of a two-
term one.
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