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Abstract——To improve energy efficiency and protect the envi‐
ronment, the integrated energy system (IES) becomes a signifi‐
cant direction of energy structure adjustment. This paper inno‐
vatively proposes a wavelet neural network (WNN) model opti‐
mized by the improved particle swarm optimization (IPSO) and
chaos optimization algorithm (COA) for short-term load predic‐
tion of IES. The proposed model overcomes the disadvantages
of the slow convergence and the tendency to fall into the local
optimum in traditional WNN models. First, the Pearson correla‐
tion coefficient is employed to select the key influencing factors
of load prediction. Then, the traditional particle swarm optimi‐
zation (PSO) is improved by the dynamic particle inertia
weight. To jump out of the local optimum, the COA is em‐
ployed to search for individual optimal particles in IPSO. In
the iteration, the parameters of WNN are continually optimized
by IPSO-COA. Meanwhile, the feedback link is added to the
proposed model, where the output error is adopted to modify
the prediction results. Finally, the proposed model is employed
for load prediction. The experimental simulation verifies that
the proposed model significantly improves the prediction accu‐
racy and operation efficiency compared with the artificial neu‐
ral network (ANN), WNN, and PSO-WNN.

Index Terms——Integrated energy system (IES), load predic‐
tion, chaos optimization algorithm (COA), improved particle
swarm optimization (IPSO), Pearson correlation coefficient,
wavelet neural network (WNN).

I. INTRODUCTION

THE integrated energy system (IES) is an integrated ener‐
gy supply platform based on the multi-energy comple‐

mentation and energy cascade utilization [1], which realizes
the conversion of various energy sources such as combined
cooling, heating and power (CCHP) [2]. With the rapid de‐
velopment of the Energy Internet, the coupling of different
types of energy becomes significant, which calls for more ad‐
vanced load prediction with higher accuracy and efficiency
[3], [4].

Energy load can be broadly divided into three categories:
electrical load, thermal load, and cooling load. The cooling
load keeps indoor temperature and humidity at specified lev‐
els, including the lighting heat dissipation, human body heat
dissipation, and other ways of heat dissipation. The thermal
load refers to the amount of heat released in a time domain
when the fuel burns. The sum of the electricity taken from
the power system by the user’s electrical equipment repre‐
sents the electrical load, whose related characteristics can be
observed through the load curves.

Early short-term load prediction (STLP) did not fully con‐
sider the impact of the environment, resulting in low load
prediction accuracy on weekends [5]. Statistical models have
been widely applied later in STLP, including the autoregres‐
sive (AR) model [6], exponential smoothing (ES) model [7],
and autoregressive integrated moving average (ARIMA)
model [8]. Among others, the AR model is the most popular
due to its simplicity with effectiveness [6].

Most statistical methods are unsuitable in IES due to the
complicated and non-linear relationships between multiple
IES loads and related influencing factors. With the develop‐
ment of artificial intelligence technology, STLP is moving in
an intelligent direction. To predict and analyze IES perfor‐
mance, extensive artificial intelligence prediction models
such as Kalman filter [9], support vector machine (SVM)
[10], and deep neural network (DNN) [11], [12] have been
proposed for STLP. Reference [9] proposed the STLP condi‐
tioning applying the Kalman filter algorithm, which defined
the load prediction as an observation model and a state-
space model in time domain. Reference [10] presented a
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new STLP method based on SVM to improve the prediction
accuracy and timeliness. The neural network has a more ro‐
bust capability of non-linear approximation and self-improv‐
ing than statistical methods. Based on the time-series predic‐
tion of long short-term memory DNN, [11] proposed an ener‐
gy prediction strategy for the multi-energy information inter‐
action in regional IESs from the perspective of vertical inter‐
action and horizontal interaction. Considering the influences
among three types of load, [12] proposed a DNN model
based on a multi-layer restricted Boltzmann machine
(RBM), which achieved high accuracy at the costs of large
training data size and slow prediction speed.

In [13], the wavelet neural network (WNN) was intro‐
duced to predict the cooling, thermal, and electrical loads of
the IES with competitive performances. Compared with oth‐
er methods mentioned above, WNN has stronger learning
and feature extraction ability over a relatively simple struc‐
ture, which is suitable for fast load prediction of IES with
many influencing factors. As the traditional WNN prediction
method is sensitive to the initial connection weights and
wavelet parameters, a poor selection of parameters will
cause a slow convergence rate or even non-convergence. The
gradient descent method cannot obtain satisfactory conver‐
gence performance in WNN [14]. Besides, IES is a non-lin‐
ear system with complex influencing factors and choosing
the appropriate influencing factors is challenging.

In this paper, we propose a new WNN model optimized
by the improved particle swarm optimization (IPSO) and
chaos optimization algorithm (COA) for the STLP of IES.
First, representative influencing factors are selected by the
Pearson correlation coefficient, and redundant influencing
factors can be discarded. As the particle swarm optimization
(PSO) often falls into the local optimum and results in pre‐
mature convergence, the dynamic inertia weight is presented
to control the global search and convergence to the global
best solution in the IPSO. To further improve the optimiza‐
tion effectiveness, the COA is employed to search for the
personal optimal particle in chaos. The IPSO-COA is used to
optimize the connection weights and wavelet parameters in
the WNN. Besides, a feedback link is added to the predic‐
tion model, where the output error is adopted to modify the
prediction results. Ultimately, the optimized WNN is used to
predict the IES load. The experimental simulation and analy‐
sis verify that the IPSO-WNN has a satisfactory improve‐
ment in the prediction accuracy and operation efficiency
compared with the ANN, WNN, and PSO-WNN.

The rest of this paper is organized as follows. In Section
II, the problem formulation is presented. Section III employs
the Pearson correlation coefficient to select the key influenc‐
ing factors of load prediction. Section IV introduces the prin‐
ciple and process of the proposed model in detail. Section V
verifies the feasibility of the proposed model via simula‐
tions. Section VI concludes the paper.

II. PROBLEM FORMULATION

The structure of the load prediction model of IES is
shown in Fig. 1. The IES loads are composed of three types,
i.e., the electrical load, thermal load, and cooling load, whose

predicted values are denoted as ŷ1 +Δy1t , ŷ2 +Δy2t , and ŷ3 +
Δy3t, respectively. The input data in the load prediction in‐
clude the historical load data, meteorological data, and daily
parameters of IES. The key influencing factors of the three
types of load are determined by the Pearson correlation coef‐
ficient ρXY . To reduce the prediction dimensions and forecast
the three types of load with high accuracy and efficiency, in‐
fluencing factors with a Pearson correlation coefficient great‐
er than the threshold are regarded as representative influenc‐
ing factors and used as the input for prediction.

The training data are input into the proposed model for
the predictive outcome training and error correction, and the
application data are input to predict each type of load. To op‐
timize the performance of WNN, the particle iteration veloci‐
ty and position in the IPSO are adopted to replace the con‐
nection weights and wavelet parameters in the WNN, and
the COA is conducted on the global optimal particle in each
iteration. The output of the proposed model includes electri‐
cal load, thermal load, and cooling load, which is recorded
as ŷ i (i = 1, 2, 3). Finally, the STLP result of IES ŷ i +Δyit is
obtained after feedforward error correction.

III. PEARSON CORRELATION COEFFICIENT

Unlike STLP in traditional power systems, the IES has
abundant energy conversion equipment, and the three types
of load in the IES have high coupling and strong correlation.
Reference [15] suggested that the load characteristics and
the relationship of different loads should be considered in
the STLP of the IES. STLP of IES is affected not only by
the interaction of loads but also by many other influencing
factors such as the operation environment and day types.
Reference [16] presented that proper quantification and selec‐
tion of influencing factors are the premises of accurate pre‐
diction. Reference [17] selected five influencing factors relat‐
ed to ignition temperature and activation energy by Pearson
correlation coefficient. It developed a three-layer back-propa‐
gation neural network model with the selected five influenc‐
ing factors to forecast the ignition characteristics of coal
blends [17]. Therefore, the Pearson correlation coefficient is
introduced to quantify the correlation between multiple influ‐
encing factors and predicted objects (IES loads) [18], which
is calculated by:

ρAB =
∑

i = 1

I

( )Ai -
-
A ( )Bi -

-
B

∑
i = 1

I

( )Ai -
-
A

2 ∑
i = 1

I

( )Bi -
-
B

2
(1)

where
-
A and

-
B are the average values of variables Ai and Bi,

respectively; ρAB is the Pearson correlation coefficient; and I
is the number of statistics.

The Pearson correlation coefficient ranges from -1 to 1,
as shown in Fig. 2. The higher the absolute value of the
Pearson correlation coefficient, the greater the correlation be‐
tween influencing factors. If two variables are positively cor‐
related, the range of the Pearson correlation coefficient is (0,
1]; on the contrary, the range of the Pearson correlation coef‐
ficient is [-1,0). When the Pearson correlation coefficient is
0, the two variables are completely independent of each other.
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To improve the accuracy and efficiency of STLP of IES,
influencing factors of STLP of IES can be selected based on
the Pearson correlation analysis. The main influencing fac‐
tors include historical electrical load P1, historical thermal
load P2, historical cooling load P3, wind speed V, tempera‐
ture T, wind direction D, weather W, day R, week Z, and
month M. The predicted objects are the electrical load, ther‐
mal load, and cooling load. Too many selected influencing
factors may complicate the network structure and decrease
the operation efficiency. Therefore, the influencing factors
with a correlation coefficient below a certain threshold
should be ignored in the subsequent prediction process. The
determination of the appropriate threshold can be set through
multiple simulation experiments.

IV. PRINCIPLE AND PROCESS OF PROPOSED MODEL

This section will briefly introduce the principle and pro‐
cess of the proposed model. The flowchart of the proposed
WNN model based on IPSO and COA is shown in Fig. 3.

A. WNN

There are many potential influencing factors in the STLP
of IES, and each factor is interrelated. It is challenging to ex‐
tract data features directly. Due to the scalability and trans‐
formability of the wavelet function, WNN makes the data
feature more obvious and reduces the extraction difficulty.
Besides, WNN takes wavelet space as the feature space for
pattern recognition and extracts features from the signal by
weighting the inner product of the wavelet base and signal
vector. The procedure can effectively learn input and output
characteristics of the system without much prior knowledge
such as structure and characteristics [19]. Compared with ge‐
neric neural networks, WNN has a better generalization abili‐
ty, convergence rate, and robustness to complex non-linear
systems [20].
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The structure in Fig. 4 shows that the WNN consists of an
input layer, a hidden layer (wavelet layer), and an output lay‐
er [21]. The WNN combines artificial neural network (ANN)
[22] and wavelet analysis. The wavelet function is adopted
as the activation function in the hidden layer of the WNN.
The input in the input layer are [x1, x2, ..., xM], which are
transmitted to the hidden neurons [F1, F2, ..., Fn] in the hid‐
den layer through the connection weight wij. The predicted
loads in the output layer are [y1, y2, ..., yN].

In Fig. 4, wjk ( j = 1, 2,, n; k = 1, 2,, N) is the connection
weight between the hidden layer and the output layer. The out‐
put variable (predicted load) of the WNN yk (k = 1, 2,, N) is
defined as:

yk =∑
j = 1

n

wjk Fj (x1x2xM ) (2)

Fj (x1x2xM)= τ (Xj - bj

aj
) "j = 12n (3)

Xj =∑
i = 1

M

wij xi (4)

where aj is the dilation factor; bj is the translation factor of
the wavelet function; Xj is the input of the hidden layer; and
τ(×) is the Morlet wavelet function, which is a complex wave‐
let modulated by the Gaussian function and has the advantag‐
es of time-frequency regularity of Gaussian function. Com‐
pared with real wavelets, the Morlet wavelet can reflect the
size of different time scales. Besides, the strength of the
time-scale signal is determined by the modulus of the com‐
plex wavelet transform coefficient. The real part describes
the intensity and phase of time-scale signals with different
characteristics. τ(x) is defined as:

τ(x)= e-0.5x2

cos(1.75x) (5)

However, the proposed model is sensitive to the initial
connection weights wij and wjk and wavelet parameters aj and
bj. A poor selection of parameters will cause a slow conver‐
gence rate or even non-convergence.

B. IPSO

The gradient descent algorithm is adopted by the tradition‐
al WNN to optimize the parameters such as connection
weights and wavelet parameters. However, the transmission
information of neural networks with a complex structure is
sparse, which may lead to low prediction effectiveness. As a
mature optimization method, the PSO algorithm has the char‐
acteristics of fast optimization speed and satisfactory optimi‐
zation effect [23], which is suitable for optimizing the con‐
nection weights and wavelet parameters in the WNN.

Each individual in the swarm represents a particle. All the
particles follow the same principle: while continuously ac‐
quiring the fitness f (the effectiveness of the given solution)
of its current position, they accelerate toward the personal
best position Pbest and the global best position Gbest. Besides,
the particle position represents the solution to the problem.
The inertia weight ω is significant in the PSO algorithm and
determines to what extent the particle remains along its origi‐
nal course unaffected by the pull of Gbest and Pbest [24]. A
small inertia weight indicates excellent local searchability,
while a large inertia weight leads to excellent global search‐
ability. Therefore, the optimization effectiveness and conver‐
gence speed can be improved by selecting the appropriate in‐
ertia weight ω (from 0 to 1) in the IPSO algorithm. The al‐
gorithm implementation process is as follows.

Step 1: define the solution space. The input data come
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Fig. 4. Structure of WNN.
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from the influencing factors selected in Section III. To opti‐
mize the WNN model, the particle position is designated as
connection weights wij and wjk and wavelet parameters aj and
bj. Besides, the position and velocity of the particles should
be given upper and lower limits according to the actual situa‐
tion.

Step 2: define the fitness function. The predicted value is
calculated by the WNN with optimal connection weights and
wavelet parameters. The mean absolute percentage error
(MAPE) is selected as the fitness function to quantify the
training error and the goodness of a given solution, which
can be expressed as:

fc =MAPE =
1

Npre
∑

t = 1

Npre |

|
||

|

|
||
yt - y′t

yt

´ 100% (6)

where fc is the fitness of the current particle; yt is the actual
value; y′t is the predicted value; MAPE is the value of MAPE;
and Npre is the number of predicted samples.

Step 3: initialize the random swarm location and veloci‐
ties. To start searching for the optimal position, each particle
begins at a random position, whose velocity is random in di‐
rection and magnitude.

Step 4: calculate fc. If fc is less than the fitness value at
the respective Pbest for the particle (f (Pbest)) or the fitness val‐
ue at the global Gbest (f (Gbest)), then Pbest and Gbest are re‐
placed with the current position.

Step 5: update the inertia weight ω according to fc. Ac‐
cording to the optimization demand of different particle fit‐
ness, the dynamic weight selection strategy is established.
By dynamically adjusting ω, fine particles tend to perform
exploitation to refine local search results, while weak parti‐
cles perform extensive modifications to explore space with
massive steps. Therefore, the possibility of falling into a lo‐
cal optimum can be reduced. Assume that

-
f and fp are the av‐

erage fitness values of the current particle and the global
best particle, respectively.

1) When fc <
-
f , the current particle is far from the Gbest,

thus the inertia weight ω should be larger, which is calculat‐
ed as:

ω=ωavg +
ωmax -ωmin

2
rand (7)

ωavg =
ωmax +ωmin

2
(8)

where ωmax and ωmin are the maximum and minimum inertia
weights, respectively; ωavg is the average inertia weight; and
rand is a random value in [0,1].

2) When fc > fp, the current particle is closer to the Gbest;
thus, the inertia weight ω should be smaller, which is calcu‐
lated as:

ω=ωavg - | fc - fp

f ( )Gbest - fp
| (ωavg -ωmin) (9)

3) When
-
f £ fc £ fp, the non-linear decrease of the inertia

weight ω can be calculated as:

ω=ωmax -
(ωmax -ωmin)iter

Mgen
(10)

where iter is the current iteration number of IPSO; and Mgen

is the total number of IPSO iterations.
Step 6: update the particle position and velocity. The up‐

dated formula of the particle position can be expressed as:

Xi (k + 1)=Xi (k)+Vi (k + 1) (11)

where Xi (k) is the position of particle i in the iteration k;
and Vi (k) is the velocity of particle i in the iteration k,
which is the core element of the entire optimization. The par‐
ticle velocity is accelerated based on the relative positions of
Pbest and Gbest. The goal of Vi (k + 1) is to guide particles to
the position with the best fitness, which is defined as:

Vi (k + 1)=ωVi (k)+ c1rand1 (Pbest -Xi)+ c2rand2 (Gbest -Xi) (12)

where rand1 and rand2 are the random numbers in the range of
[-1, 1]; and c1 and c2 are the learning factors.

Step 7: repeat Steps 4 to 6.
Return to Step 4 until iter reaches Mgen. Gbest is regarded as

the optimal connection weight and wavelet parameters.

C. COA

The PSO has several shortcomings, e.g., being trapped in
the local optimum and premature convergence, resulting in
sizable STLP error [25]. Due to the easy implementation and
remarkable ability to avoid being trapped into the local opti‐
mum, chaos has been applied to many scenarios. To apply
chaos for optimization, COA is incorporated into the itera‐
tive process in the IPSO to enrich the searching behavior
and jump out of the local optimum. The COA includes two
main steps: mapping from the chaotic space to the solution
space and searching optimal regions using chaotic dynamics
[26], [27].

Considering the computational complexity, only the Pbest

of the current personal optimal particle is searched by chaos
in each iteration. If the new particle produced by the chaotic
search is better than Pbest, then Pbest is replaced with the new
particle. The chaotic search process is as follows.

Step 1: map from the solution space to the chaotic space.
Pbest = [p1, p2,, pD] represents the vector of the personal op‐
timal positions. Each dimension pi in the Pbest is mapped to
the chaotic variable δk

d, and δk
d ∈[0,1]. The mapping formula

is presented as:

δk
d =

pbestd - pmaxd

pmaxd - pmind

"d = 12D (13)

where D is the number of dimensions in Pbest; Pbest,d is the d th

variable of Pbest; and Pmin,d and Pmax,d are the lower and upper
limits of the d th variable, respectively.

Step 2: perform a chaotic local search. The iterative logis‐
tic equation is employed to deal with δk

d, as shown in (14).

δk + 1
d = μδk

d (1- δk
d) (14)

where μ is the control parameter. When μ= 4, the iterative lo‐
gistic equation exhibits chaotic dynamics, exhibiting sensi‐
tive dependence on initial conditions. A minute difference in
the initial value of the chaotic variable would make a consid‐
erable difference in its long-time behavior. The track of cha‐
otic variables can travel ergodically over the entire search
space. In general, the above chaotic variable has extraordi‐
nary characteristics such as ergodicity, pseudo-randomness,
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and irregularity.
Step 3: convert the chaotic variables to the solution space.

The iterative chaotic variable δk + 1
d is inversely mapped to the

original solution space, as shown in (15).

xk + 1
d = (pmaxd - pmind)δk + 1

d + pmaxd (15)

Step 4: calculate the fitness of the current particle xk + 1
d .

Based on the fitness function proposed in the IPSO algo‐
rithm, if the current particle fitness is less than the value at
the respective Pbest for the particle or the global Gbest, then
the appropriate positions are replaced with the current posi‐
tion.

Step 5: repeat Steps 1 to 4. If the iteration number of
COA Citr has not been reached, go back to Step 1 and con‐
duct a chaotic local search again; otherwise, proceed to Step
6 for the secondary carrier wave.

Step 6: generate the initial secondary carrier wave. For
more precise optimization, the second carrier wave can be
carried out. Re-assign D initial values from 0 to 1 of δk

d in
(13) with slight differences.

Step 7: perform a chaotic local search using the chaotic
variables of the secondary carrier. According to (14), gener‐
ate δk + 1

d through chaotic local search. Then, perform precise
optimization as:

P k + 1
best =P k

best + αδk + 1
d (16)

where α is the adjustment coefficient (less than 1).
Step 8: calculate the fitness of the new personal best posi‐

tion P k + 1
best . If the fitness value of P k + 1

best (f (P k + 1
best )) is less than

f (Pbest) or f (Gbest), then the Pbest and Gbest are replaced with
the new personal best position.

Step 9: repeat Steps 7 and 8.
Go back to Step 7 and conduct a chaotic local search until

it reaches the iteration number Citr.

V. EXPERIMENTAL SIMULATION AND ANALYSIS

To verify the effectiveness of the proposed model, an IES
of the Binhai district in Tianjin, China, is selected for daily
load prediction. The historical load, temperature, weather,
and date data from January 2017 to December 2017 are ex‐
tracted for network training and error correction. The hyper-
parameter validating data are from January 2016 to Decem‐
ber 2016 for the hyper-parameter setting. The testing data
are from January 2018 to December 2018 for load prediction
and effectiveness verification. Simultaneously, the ANN,
WNN, and PSO-WNN are introduced to compare with the
proposed model. The time resolution of the thermal load and
the electrical load is 15 min, and the time resolution of the
cooling load is 30 min. Therefore, a day can be divided into
94 or 48 intervals, represented by time t. The electrical load
and thermal load can realize numerical prediction after 15
min, and the cooling load can realize numerical prediction
after 30 min.

A. Data Processing

To guarantee the integrity of data sequence, the missing
value is replaced by the average of the data before and after
the moment. The data normalization scheme is as follows:

H ′ =
H -Hmin

Hmax -Hmin
(17)

where Hmax and Hmin are the maximum and minimum values
in the data sequence, respectively; H ′ is the normalized data;
and H is the data before processing.

In this paper, the input data have been normalized by the
MinMaxScaler. The threshold of the Pearson correlation coef‐
ficient from 0.1 to 0.7 is tested for STLP. The simulation re‐
sults prove that the prediction accuracy of the proposed mod‐
el is the highest when the threshold is 0.29. The Pearson cor‐
relation coefficients of multiple influencing factors and the
predicted objects are shown in Fig. 5, and the input vari‐
ables of various load predictions are as follows.

1) Supposing the electrical load at time t is to be predict‐
ed, the input variables are: the temperature of the day T, the
weather of the day W, the electrical load at 15 min ago
P1 (t - 1), the electrical load at 30 min ago P1 (t - 2), the elec‐
trical load at 45 min ago P1 (t - 3), the average electrical load
of the previous day P1ave , the electrical load from the same
time t of the previous day P'1 (t), the thermal load of the day
at 15 min ago P2 (t - 1), the thermal load of the day at 30
min ago P2 (t - 2), the thermal load of the day at 45 min ago
P2 (t - 3), the average thermal load of the previous day P2ave ,
and the thermal load from the same time t of the previous
day P'2 (t). When electrical load prediction is conducted, the
dimensions of the input layer are 12.

2) Supposing the thermal load at time t is to be predicted,
the input variables are: T, P1 (t - 1), P1 (t - 2), P1 (t - 3), P1,ave ,
P'1 (t), P2 (t - 1), P2 (t - 2), P2 (t - 3), P2,ave , and P′2 (t). When
thermal load prediction is conducted, the dimensions of the
input layer are 11.

3) Supposing the cooling load at time t is to be predicted,
the input variables are: W, R, Z, M, the cooling load at 15
min ago P3 (t - 1), the cooling load at 30 min ago P3 (t - 2),
the cooling load at 45 min ago P3 (t - 3), the average cooling
load of the previous day P3,ave , and the cooling load from the
same time t of the previous day P'3 (t). When cooling load
prediction is conducted, the dimensions of the input layer
are 9.

B. Evaluating Indicators

The MAPE and weighted mean accuracy (WMA) are se‐
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Fig. 5. Pearson correlation coefficients of influencing factors and predicted
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lected as the evaluation indexes. The MAPE can quantify
the accuracy of the prediction method in predicting a certain
type of IES load, and the WMA can comprehensively evalu‐
ate the accuracy of prediction methods in IES. The value of
WMA is calculated by:

WMA = αe (1-MAPEe)+ α t (1-MAPEt)+ αc (1-MAPEc) (18)

where αe, α t, and αc are the weights of electrical, thermal,
and cooling loads, respectively; and MAPE,e, MAPE,t, and MAPE,c

are the MAPEs of electrical, thermal, and cooling loads, re‐
spectively.

The self-learning interval analytic hierarchical process in
[28] is adopted to calculate the weights. N experienced engi‐
neers are invited to score the importance intervals of differ‐
ent loads to obtain the interval weight of each load by the in‐
terval analytic hierarchical process. In addition, taking the
maximum entropy criterion as the optimization goal, the sim‐
ulated annealing algorithm is employed to convert the inter‐
val weights into the constant weights. By completing the
above process, αe, αh, and αc are set to be 0.4, 0.3, and 0.3,
respectively.

C. Hyper-parameter Setting

The value range of the particle position is set to be [-5,
5], and the maximum absolute velocity of the particle is 5.
The control parameter μ is set to be 4. The value range of
the inertia weight ω is set to be [0.4, 0.9], the initial value
of the inertia weight ω is set to be 0.65, and the iteration
number of IPSO is set to be 1000. To obtain the best predic‐
tion effectiveness, the appropriate hyper-parameter setting of
the proposed model is significant. The data of three types of
load from January 2016 to December 2016 are selected as
the hyper-parameter validating data of the proposed model.
The average WMA of prediction results is employed to quan‐
tify the effectiveness of the hyper-parameter setting.
1) Number of Hidden Layer Neurons n and Number of IPSO
Particles Nsize

To limit the number of parameter variables, the COA is
temporarily eliminated in the proposed model, and the pa‐
rameter settings of the IPSO-WNN are studied first. To
avoid affecting the optimization speed of particles, the learn‐
ing factors a and b are set to be 1. Therefore, the parameter
settings of n and Nsize are discussed.

Hidden layer neurons are a significant and sensitive part
of the WNN structure. Too few neurons in the hidden layers
can lead to under-fitting, while too many neurons may result
in over-fitting. Besides, the particle number is a key factor
affecting the efficiency and speed of the IPSO. A large num‐
ber of particles will slow down the calculation speed, while
too few particles will result in a local optimum. Therefore,
the choice of n and Nsize is a significant challenge. The
WMA with different n and Nsize is shown in Fig. 6. It can be
observed that when n = 12 and Nsize = 24, the IPSO-WNN has
the highest operational efficiency and prediction accuracy.
2) Learning Factors c1 and c2

After n = 12 and Nsize = 24 are determined, the parameter
settings of c1 and c2 are discussed. As demonstrated in [23],
increasing c1 encourages the exploration of the solution
space as each particle moves toward the respective Pbest; and

increasing c2 encourages the exploitation of the supposed
global optimum. The WMA with different c1 and c2 is shown
in Fig. 7.

Due to the randomness in the optimization process of IP‐
SO and WNN, the prediction under different parameters fluc‐
tuates significantly. The experiments found that when
c1 = 1.5 and c2 = 0.8, the optimization effectiveness is the
best.
3) Iteration Number of COA Citr and Adjustment Coeffi‐
cient α

Based on the determined IPSO-WNN parameters, the
COA parameters are studied. The COA is incorporated into
the iterative process in the IPSO to form the proposed mod‐
el. When n = 12, Nsize = 24, c1 = 1.5, and c2 = 0.8, the parame‐
ter settings of Citr and α are discussed. For a given Pbest, the
COA with different parameters is adopted to optimize Pbest in
an iteration of IPSO. The WMA with different Citr and α is
shown in Fig. 8.

Increasing Citr will improve the optimization accuracy
with increased costs of data processing. A large α will re‐
duce the accuracy of the secondary carrier wave of COA,
while a small α will reduce the optimization efficiency. To
meet the prediction accuracy and efficiency requirements si‐
multaneously, α and Citr are selected as 0.0013 and 700, re‐
spectively.

D. Result Analysis

In this subsection, the prediction accuracies of the ANN,
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Fig. 6. WMA with different n and Nsize.
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WNN, PSO-WNN, and proposed model are compared.

The data of three types of load from January 2018 to De‐
cember 2018 are selected as the testing data of the proposed
model. Since the load prediction accuracy of the same sea‐
son is similar, the prediction results in four typical days (Jan‐

uary 15, April 15, July 15, and October 15) are shown in
Fig. 9, including the electrical, thermal, and cooling loads.
January, April, July, and October are used to represent the
winter, spring, summer, and autumn, respectively. The fol‐
lowing conclusions can be drawn.

1) The prediction accuracy of three types of load in peak
and valley periods is lower than those in other periods.

2) Compared with the thermal load and electrical load, the
prediction accuracy of the cooling load is lower, the regulari‐
ty is lower, and the fluctuation during the day is more fre‐
quent. The prediction errors of the cooling load are all with‐
in acceptable limits.

3) Due to the occasional large deviation of prediction, the
accuracy of the ANN in predicting load is unstable. The
WNN strengthens the non-linear optimization with a more
accurate approximation of the results based on ANN. Al‐
though PSO-WNN further improves the prediction perfor‐
mance of WNN, there are still large deviations sometimes.
In general, the prediction performance of the proposed mod‐
el is relatively stable, which is better than that of the ANN,
PSO-WNN, and WNN.

4) Due to temperature changes, the types of main electri‐
cal equipment have changed, and the loads in winter and
summer have apparent regularity and periodicity. Compared

with April (spring) and October (fall), the prediction accuracy
in January (winter) and July (summer) increases by 2.80%.

The MAPE is used to compare and analyze the prediction
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Fig. 8. WMA with different Citr and α.
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Fig. 9. Prediction results of different prediction models. (a) Electrical load prediction in January. (b) Electrical load prediction in April. (c) Electrical load
prediction in July. (d) Electrical load prediction in October. (e) Thermal load prediction in January. (f) Thermal load prediction in April. (g) Thermal load
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accuracy of different models, and its exact values are shown in
Fig. 10 and Table I. The conclusions can be drawn as follows.

1) Due to the lack of wavelet analysis, the prediction accu‐
racy of ANN is the lowest among all models. Compared
with WNN, the proposed model and PSO-WNN increase the
prediction accuracies by 14.2% and 7.1%, respectively. The

introduction of new swarm intelligence algorithms can im‐
prove the prediction accuracy of WNN.

2) Compared with the other three models, the proposed
model has the highest prediction accuracy of 90.8%. It is
verified that the introduction of the COA and dynamic iner‐
tia weight selection strategy in IPSO can overcome the poor
convergence and the tendency to fall into the local optimum.
The accuracy of the STLP of IES has been effectively im‐
proved by the proposed model.
1) Efficiency Comparison

The operation efficiency of prediction models is also a
key aspect that needs to be considered in actual engineering.
In each iteration, the computational efficiency and the predic‐
tion time of different models can be effectively compared by
observing the decline of fitness. The prediction data of elec‐
trical load in spring are selected as the testing data. Through
100 consecutive experiments, the average prediction time of
different prediction models is shown in Table II. The declin‐
ing trend of fitness of Gbest during the iterations of IPSO is
shown in Fig. 11.

The conclusions drawn from Table II and Fig. 11 are as
follows.

1) When accuracy is similar, the prediction of the WNN is
the slowest, and that of the PSO-WNN is the fastest. The in‐
troduction of the PSO algorithm improves the operation effi‐
ciency of the WNN.

2) Although the COA increases the complexity of the pre‐
diction model, it does not significantly reduce the prediction
speed of the proposed model due to the dynamic inertia
weight. Meanwhile, there is a 6.29% improvement in the pre‐
diction accuracy.

3) As shown in Fig. 11, the prediction speed of the pro‐
posed model is faster than that of the PSO-WNN. The up‐
date frequency of Gbest in the proposed model is higher, achiev‐
ing better optimization effectiveness with fewer iterations than
that of the PSO-WNN. Besides, the calculation speed of the
proposed model can be increased by reducing the iteration
number of IPSO while ensuring good prediction accuracy.
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Fig. 10. MAPEs of different prediction models.

TABLE I
MAPES OF DIFFERENT PREDICTION MODELS

Load

Electrical

Thermal

Cooling

Model

Proposed

PSO-WNN

WNN

ANN

Proposed

PSO-WNN

WNN

ANN

Proposed

PSO-WNN

WNN

ANN

MAPE

January

0.069

0.073

0.066

0.070

0.075

0.070

0.057

0.149

0.077

0.121

0.161

0.143

February

0.064

0.070

0.067

0.084

0.089

0.101

0.101

0.129

0.098

0.129

0.099

0.157

March

0.072

0.066

0.074

0.121

0.077

0.087

0.087

0.137

0.087

0.110

0.145

0.162

April

0.100

0.125

0.110

0.208

0.110

0.149

0.183

0.147

0.114

0.167

0.135

0.154

May

0.119

0.121

0.108

0.107

0.089

0.131

0.172

0.138

0.119

0.127

0.135

0.123

June

0.086

0.119

0.129

0.182

0.092

0.108

0.082

0.101

0.119

0.086

0.119

0.176

July

0.091

0.123

0.123

0.143

0.077

0.132

0.160

0.171

0.076

0.088

0.087

0.201

August

0.089

0.081

0.132

0.091

0.078

0.089

0.152

0.082

0.109

0.118

0.171

0.211

September

0.099

0.102

0.101

0.138

0.094

0.113

0.118

0.156

0.089

0.109

0.181

0.172

October

0.094

0.139

0.102

0.143

0.079

0.118

0.125

0.203

0.079

0.106

0.146

0.165

November

0.087

0.112

0.131

0.178

0.083

0.098

0.148

0.118

0.119

0.118

0.108

0.119

December

0.097

0.011

0.118

0.154

0.108

0.132

0.156

0.179

0.098

0.096

0.099

0.129

Average

0.089

0.095

0.105

0.135

0.088

0.111

0.129

0.142

0.099

0.115

0.132

0.159

TABLE II
AVERAGE PREDICTION TIME OF DIFFERENT PREDICTION MODELS

Model

ANN

WNN

Prediction time (s)

229

275

Model

PSO-WNN

Proposed

Prediction time (s)

220

256
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Fig. 11. Declining trend of fitness of Gbest during iterations of IPSO.
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VI. CONCLUSION

To overcome the poor convergence and the tendency to fall
into local optimum of the traditional WNN for STLP of IES,
the WNN model based on the IPSO and COA is put forward
for the STLP of IES in this paper. The Pearson correlation co‐
efficient is used to select appropriate influencing factors as the
prediction input. The dynamic inertia weight strategy is incor‐
porated into the PSO. The IPSO-COA is used to optimize the
connection weights and wavelet parameters in the WNN, and
the training errors are referenced for feedback correction. In
the experimental simulation and analysis, the proposed model,
PSO-WNN, WNN, and ANN are compared in the STLP of
IES. The simulation results prove that the proposed model has
higher prediction accuracy and operation efficiency and over‐
comes the shortcomings of the other prediction models.
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