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Abstract——Although wind power ramp events (WPREs) are
relatively scarce, they can inevitably deteriorate the stability of
power system operation and bring risks to the trading of elec‐
tricity market. In this paper, an imprecise conditional probabili‐
ty estimation method for WPREs is proposed based on the
Bayesian network (BN) theory. The method uses the maximum
weight spanning tree (MWST) and greedy search (GS) to build
a BN that has the highest fitting degree with the observed data.
Meanwhile, an extended imprecise Dirichlet model (IDM) is de‐
veloped to estimate the parameters of the BN, which quantifica‐
tionally reflect the ambiguous dependencies among the random
ramp event and various meteorological variables. The BN is
then applied to predict the interval probability of each possible
ramp state under the given meteorological conditions, which is
expected to cover the target probability at a specified confi‐
dence level. The proposed method can quantify the uncertainty
of the probabilistic ramp event estimation. Meanwhile, by using
the extracted dependencies and Bayesian rules, the method can
simplify the conditional probability estimation and perform reli‐
able prediction even with scarce samples. Test results on a real
wind farm with three-year operation data illustrate the effec‐
tiveness of the proposed method.

Index Terms——Bayesian network (BN), conditional probabili‐
ty, imprecise Dirichlet model (IDM), imprecise probability,
wind power ramp events.

I. INTRODUCTION

LARGE-SCALE wind power has been continuously inte‐
grated into power systems. However, the inherent ran‐

domness and volatility of wind power cause an increasing
impact on power system operation [1]. The significant chang‐
es of wind power in a short period are often referred to as
wind power ramp events (WPREs) [2]. Although such
events are relatively scarce, the unanticipated sudden increas‐
es or decreases in wind power could inevitably deteriorate
the stability of power systems [3]-[5]. Meanwhile, the distur‐
bances caused by WPRE may hurt the interests of energy

traders by exposing them to the risk of financial penalties,
and thus reduce the vendibility of wind energy [6].

Accurate warning of WPRE can not only provide indica‐
tion for scheduling backup resources to mitigate the impacts
[7], [8], but also facilitate market participants to better under‐
stand the risks involved in the trades [9]. Although the
WPRE prediction has attracted widespread attention in re‐
cent years, the research on WPRE still has broad prospects
and profound significance. The deterministic WPRE predic‐
tion can be roughly divided into two categories [10]. One is
dedicated to providing deterministic numerical descriptions
of ramp characteristics such as magnitude, duration, ramp
rate and timing [9], [11]. The other regards the ramp event
as a multi-state random variable and alerts the approaching
ramp event by identifying the state with the highest probabil‐
ity [4], [12], [13].

However, the scarcity of WPRE may bring unavoidable
statistical errors to the deterministic WPRE prediction [14].
Under this circumstance, the uncertain WPRE prediction,
which can assist system operators and market participants to
make more informed and advisable decisions, has attracted
increasing attention. Reference [15] adopted the numerical
weather prediction (NWP) ensemble to realize the uncertain
estimation of ramp timing. Reference [16] provided temporal
uncertainty information of WPRE using wind power scenari‐
os generated from quantile prediction. Reference [17] pre‐
dicted wind power for different scenarios based on the neu‐
ral network method, so as to provide statistics on ramp
swing, ramp timing and the duration. For the probabilistic
prediction of the multi-state random WPRE, the intuitive
way is to predict the wind power distribution at each predic‐
tion moment, and then the statistical random sampling on
two adjacent distributions are used to estimate the probabili‐
ty of the possible power changes [18]. Nevertheless, it is
pointed out in [18] that the results predicted by this way are
lack of applicability due to the failure of capturing temporal
correlations of the wind power at adjacent moments.

To overcome this deficiency, [18] converted the NWP en‐
semble into wind power ensemble using the random forest
model, and then detected WPRE based on the predicted
wind power members to improve the capture ratio. By cate‐
gorizing the statistical scenarios, the principal component
analysis (PCA) based method in [19] can directly estimate
the ramp probability based on the observed wind speed se‐
ries. The method does not need to predict the power before
performing WPRE prediction.
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Although significant progress has been made on the proba‐
bilistic prediction of WPRE, the historical samples are al‐
ways assumed to be sufficient for making reliable probabili‐
ty distribution estimation. In other words, the precondition
of the law of large numbers is always assumed to be satis‐
fied. However, when counting the ramp probabilities under
different meteorological conditions, due to the scarcity of
WPRE, the estimation errors introduced by the finite sample
statistics are inevitable, leading to unreliable probabilistic
prediction results.

Under this circumstance, this paper proposes a Bayesian
network (BN) based method to estimate the imprecise condi‐
tional probability of WPRE. The event is modeled as a multi-
state random variable, where different states correspond to
different ramp magnitudes. Based on the historical observa‐
tions of wind power and meteorological elements, the maxi‐
mum weighted spanning tree (MWST) and greedy search
(GS) are applied to objectively excavate the conditional de‐
pendencies among variables and construct the BN structure
that best fits the samples. An extended imprecise Dirichlet
model (IDM) is then developed to quantify these unclear de‐
pendencies and establish the imprecise conditional probabili‐
ty table (CPT) at each node. Thus, the interval probability of
each ramp state under a given meteorological condition can
be inferred using the BN-based probability inference algo‐
rithm. Case studies on a wind farm located in Ningxia, Chi‐
na verify the effectiveness of the method in prediction sce‐
narios with sufficient and insufficient samples, respectively.

The advantages of the proposed method lie in:
1) Wind power prediction methods intentionally ignore the

extreme samples and obtain a relatively smooth curve to
minimize the overall error [10]. Therefore, the methods that
detect WPRE from the predicted power series may underesti‐
mate ramp probability [7]. In contrast, the proposed method
directly explores the ramp probabilities under different mete‐
orological conditions, avoiding the cumulative errors caused
by power prediction.

2) The paper applies imprecise probability to quantify the
uncertainty of the probability estimation with insufficient
samples. The prediction results represented by imprecise
probability mass functions can effectively estimate the range
of occurrence probability of each ramp state, providing more
comprehensive information than the traditional deterministic
probability prediction.

3) In most methods based on scenario categorization, the
sample sizes corresponding to the extreme scenarios are usu‐
ally small, which may cause unreliable estimation results
[19]. By extracting the dependency between WPRE and each
meteorological variable, the proposed BN-based method can
increase the valid sample size in conditional prediction and
improve the prediction reliability even under some extreme
conditions.

The rest of the paper is organized as follows. Section II
defines the WPRE quantitatively. Section III introduces the
theoretical basis of BN, which includes the structure learn‐
ing and probability inference algorithm. Section IV express‐
es the standard IDM (SIDM) and extends it for our research.
Section V applies the BN and extended IDM (EIDM) on

WPRE prediction. Test results on a real wind farm are ana‐
lyzed in Section VI and conclusions are drawn in Section
VII.

II. DEFINITION OF WPRES

The WPREs are defined as significant upward or down‐
ward wind power variations in fixed short-time intervals.
The threshold of variation applied for detection can be with‐
in a specific megawatt or a percentage of the installed capac‐
ity [20]. The discriminant is expressed as:

|Pt +Dt -Pt|>Pε or |Pt +Dt -Pt|> rPR (1)

where Pt and Pt +Dt are the observed wind power at moment t
and t +Dt, respectively; Pε is the threshold value; PR is the
installed capacity; r is the specified percentage; and Dt is the
time interval.

At present, an extensive consensus for the setting of Pε

and r in (1) has not been achieved. In most cases, they
should be carefully assigned according to the actual require‐
ment of power grid. A variety of setting methods for the
thresholds have been discussed in [10].

III. CONSTRUCTION AND INFERENCE ALGORITHMS OF BN

A. Structure of BN

The BN utilizes the directed acyclic graph (DAG) to ex‐
press the conditional dependencies among variables [21]. In
a BN, the nodes X1X2...Xn represent the random variables
and the directed edges represent the dependencies among
these variables. The CPT attached to each node stores the
conditional probability distribution of the variable given the
instantiation of its parents Pa(Xi), i. e., P(Xi|Pa(Xi))i =
12...N.

By extracting the dominant dependencies among the vari‐
ables, the BN simplifies the network-based inference, there‐
by avoiding dimension curse during the prediction. In this
paper, the discrete BN is applied for WPRE prediction,
whose variables all have discrete values.

B. BN Structure Learning Algorithms

BN structure learning is to construct a DAG that best fits
the observations and expresses the hidden conditional depen‐
dencies abstractly. BN structure learning algorithms can be
roughly divided into two categories:

1) The constraint-based structure learning algorithms
check the dependencies by conditional independence tests
(CITs) [22]. These approaches are simple and intuitive, but
sensitive to the accuracy of CIT and easy to cause error
propagation and accumulation during the learning.

2) The score-and-search-based structure learning algo‐
rithms judge the quality of the structure through scoring
functions and search for the optimal structure intelligently
[23]. However, the search space may exhibit exponential
growth as the number of nodes increases, which aggravates
the computation burden.

To integrate the above advantages, this paper applies an
MWST-initialized GS algorithm to build the BN structure,
which is denoted as MWST-GS for convenience.
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Since searching for the optimal structure in the vast
space of network structure is NP-hard [24], the heuristic
search algorithms, typically represented by the GS [25], are
usually adopted. Beginning with an initial structure, the GS
algorithm locally updates the current structure in each itera‐
tion, and evaluates all new structures obtained by the scor‐
ing function. The quality of the structure is evaluated by the
Bayesian information criterion index, which uses the likeli‐
hood function to describe the fitting degree, and punishes
the complexity to avoid overfitting [26]. If the optimal candi‐
date is superior to the current, replace the current with the
optimal one and continue to search; otherwise, stop search‐
ing and the current structure is the final result.

In the GS algorithm, an unreasonable initial structure
could lead to a complex search iteration process and even
create a local optimal solution. To overcome this defect, the
MWST algorithm is applied to build an initial tree structure
based on the captured plain dependencies. Thus, the initial
structure of the GS algorithm can be confined to the neigh‐
borhood of the global optimal structure.

MWST is a constraint-based structure learning algorithm.
It uses the mutual information (MI) index to measure the de‐
pendency between every two variables.

MI(XY )=∑
xy
( )P(X = xY = y)lg

P(X = xY = y)
P(X = x)P(Y = y)

(2)

where X and Y are the random variables; P(X = xY = y) is
the joint probability distribution function; and P(X = x) and
P(Y = y) are the marginal probability distribution functions of
X and Y, respectively.

When the MWST algorithm is executed, it firstly sorts the
edges in descending order of MI values of the connected
variables. Then, the edges can be successively added to con‐
struct the oriented tree, as long as the newly added edge
does not form a cycle [27]. When all n nodes have been con‐
nected by n- 1 edges, the algorithm stops.

The MWST-GS algorithm inherits the computation effi‐
ciency of the MWST algorithm, and the employed GS algo‐
rithm can eliminate the errors in the high-order indepen‐
dence tests of the MWST algorithm. Figure 1 provides the
flowchart of the MWST-GS algorithm applied in this paper.

C. Probability Inference Algorithm

The BN inference is to estimate the concerned posterior
probability according to the observed evidence and the net‐
work describing the dependencies among target and evi‐
dence variables. The inference rules can be intuitively dem‐
onstrated with the structure shown in Fig. 2.

Suppose A and C are both two-state nodes, and B is a
three-state node, i. e., A={Ai|i = 12}, B={Bk|k = 123}, C =
{Cd|d = 12}. With the given evidence, e. g., {BkCd}, the oc‐
currence chance of the state Ai can be expressed as
P(Ai|BkCd). According to Bayesian rules, this conditional
probability can be rewritten as:

P(Ai|BkCd)=
P(Ai)P(BkCd|Ai)

∑
i = 1

2

P(Ai)P(BkCd|Ai)
(3)

With respect to the independence indicated in Fig. 2, the
conditional joint probability P(BkCd|Ai) can be further fac‐
torized according to the chain rule as:

P(BkCd|Ai)=P(Bk|Ai)P(Cd|AiBk)=P(Bk|Ai)P(Cd|Ai) (4)

Therefore, the conditional probability P(Ai|BkCd) can be
calculated with respect to the CPT at each node as:

P(Ai|BkCd)=
P(Ai)P(Bk|Ai)P(Cd|Ai)

∑
i = 1

2

P(Ai)P(Bk|Ai)P(Cd|Ai)
(5)

In summary, the Bayesian rules and the chain rule factor‐
ize the concerned posterior probability, and the implied con‐
ditional independence simplifies the expression. Thereby, the
BN inference algorithm facilitates the posterior distribution
estimation of the target variable and improves the computa‐
tion efficiency.

IV. SIDM AND EIDM

The imprecise probability theory employs interval proba‐
bility to express the occurrence chance of a random event,
which describes the uncertainty in statistics. IDM is an effec‐
tive method for imprecise probability estimation with respect
to insufficient samples [28].

A. SIDM

In the process of deterministic multinomial distribution es‐
timation, an arbitrary Dirichlet distribution is commonly ad‐

Y

MWST learning
process

GS learning
process

Start

Calculate the joint probability distribution

Assign the weights of edges

Choose the root node

Select the edges by order

Build the oriented tree according to the DAG principle

Initialize the GS with the constructed tree

Update the current structure locally
according to the DAG principle

Evaluate all candidate structures and
the current structure

Is the optimal candidate superior?

Output the current structure as the best structure

Replace the
current

structure
with the
optimal

candidate 

End

N

Fig. 1. Flowchart of MWST-GS algorithm for BN structure learning.

A

CB

Fig. 2. Simple three-node structure example.
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opted as the prior distribution. However, without sufficient
samples, an improper prior distribution may lead to subjec‐
tive estimation results. The IDM develops the deterministic
Dirichlet model in the context of imprecise probability, and
employs a set of possible prior density functions to avoid
the subjective results [29].

Consider a multi-nomial variable that has n states, and the
occurrence chance of each state is represented by θ ii =
12...n. Then, with respect to the observations, the impre‐
cise posterior estimation of θ i obtained by IDM is:

θ iÎ
é

ë
ê

mi

M + s

mi + s

M + s
ù

û
ú (6)

where mi is the number of times that the ith state is ob‐
served; and M is the total number of observations. The hy‐
per parameter s determines the degree of imprecision, i. e.,
the larger s is, the more reliable the estimation will be [30].
However, if s is too large, the estimation will be weakened.
Till now, an extensive consensus for the setting of s has not
been achieved. However, s= 2 is generally considered to be
enough cautious in various applications [28], [30].

Although the historical samples of ramp phenomena are
usually insufficient, a considerable number of samples, e.g.,
a few hundreds, are still available for quantifying the depen‐
dencies among variables. In this case, as shown in Fig. 3,
the interval estimated by (6) with s= 2 is very narrow, which
may cause unreliable results of ramp probability prediction.
This phenomenon is analyzed below. It is also noted that in
Fig. 3, u is a parameter of EIDM to be discussed in Section
IV-B.

Suppose that the real occurrence probability of event Ω is
pÎ[01], and M samples are available. Therefore, the expect‐
ed times that Ω occurs is Mp=m. Due to the randomness of
sampling, the actual observation result might be m+ 1 (when
M is large, this experimental bias is very likely to happen).
In this case, the occurrence probability estimated by SIDM
(s= 2) is [ (m+ 1) (M + 2) (m+ 3) (M + 2) ]. It is found that

the lower bound of the interval is larger than the target value

p when p< 0.5, so the estimated result fails to cover the real
probability in this case.

On the contrary, if Ω is observed for m- 1 times, the inter‐
val probability provided is [ (m- 1) (M + 2) (m+ 1) (M + 2) ].
It is found that the upper bound of the interval is smaller
than the target value p when p> 0.5, indicating that the esti‐
mated result fails to cover the real probability.

In summary, for a relatively large M, when p< 0.5 and the
counted times of Ω are no less than Mp+ 1, or when p> 0.5
and the counted times are no more than Mp- 1, the intervals
estimated by SIDM (s= 2) will deviate from the real proba‐
bility. The constant hyper parameter, e. g., s= 2, cannot be
suitable for all M, which is the main reason to raise this is‐
sue.

B. EIDM

The IDM is extended to overcome its deficiency and im‐
prove the chance of the predicted ramp interval probability
covering the target probability. As shown in (7), the hyper
parameter s in EIDM is designed to be a function of the
sample size M, where the convergence speed of the interval
probability is controlled by an exogenous parameter u that
can be optimized to improve the results of WPRE prediction.

s= {2 M = 01
u lg M M ³ 2uÎR+ (7)

Through the similar derivation process, the interval proba‐
bility estimated by EIDM can be expressed as:

θ iÎ

ì

í

î

ï
ï
ï
ï

é

ë
ê

ù

û
ú

mi

M + 2

mi + 2

M + 2
M = 01

é

ë
ê

ù

û
ú

mi

M + u lg M

mi + u lg M

M + u lg M
M ³ 2uÎR+

(8)

The rationality of EIDM is explained as below:
1) The advantages of SIDM are inherited for M = 0 1.
The value of s for M = 01 are inherited from SIDM.

When no sample is available, i.e., M = 0, the estimated prob‐
ability will be [01], indicating the prior ignorance. On the
other hand, when one sample is obtained and the concerned
event occurs, i. e., M = 1 and m= 1, the estimated posterior
probability will be [1 31]. Otherwise, if the event does not
occur, i. e., M = 1 and m= 0, the estimation result will be
[0 2 3]. As discussed in [28], the estimated interval can per‐
mit a relatively high degree of imprecision.

2) EIDM possesses the convergence property.
When M approaches infinity, according to the L’Hospital

rule [31], the uncertainty measured by interval probability
can reduce to zero, which conforms to the law of large num‐
bers. And the property can be proved by:

lim
M ®¥

u lg M
M + u lg M

= lim
M ®¥

u M
1+ u M

= lim
M ®¥

u
M + u

= 0 (9)

3) A minimum u can be found to ensure the coverage of
the target probability for any sampling result.

The interval probability estimated by EIDM is

[ (m+ a) (M + u lg M ) (m+ a+ u lg M ) (M + u lg M ) ] when Ω
occurs for m + a (a > 0) times. The target probability p can

EIDM, u=1; EIDM, u=2; EIDM, u=3; EIDM, u=5
SIDM, s=2; EIDM, u=0.8; EIDM, u=0.9
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Fig. 3. Reduction of uncertainty, i.e., interval width, in SIDM and EIDM
with increasing sample size M.
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be covered when (m+ a) (M + u lg M ) £ p (or u³ a (p lg M ))
and (m+ a+ u lg M ) (M + u lg M ) ³ p (or u³ -a [(1- p)lg M]).

Obviously, the second inequality above is always satisfied.
Therefore, as long as u³ a (p lg M ), EIDM can guarantee
the coverage of p.

On the contrary, if event Ω is observed for m- a (a > 0)
times, the estimated result [ (m - a ) ( M + u lg M ),

](m- a+ u lg M ) (M + u lg M ) will cover the target probabili‐

ty p when (m- a) (M + u lg M ) £ p (or u³ -a (p lg M )) and
(m- a+ u lg M ) (M + u lg M ) ³ p (or u³ a [(1- p)lg M]).

Here the first inequality is always satisfied. Thus, as long
as u³ a [(1- p)lg M], the coverage can be guaranteed.

In summary, if the coverage of the target probability is re‐
quired as long as the observed times of Ω is within [m-
am+ a], u should satisfy the following condition:

u³max ( a
p lg M


a

(1- p)lg M )=
ì

í

î

ï
ï
ï
ï

a
p lg M

p£ 0.5

a
(1- p)lg M

p> 0.5
(10)

Obviously, the minimum u cannot be directly obtained
from (10) since p and a are both unknown. Instead, an ap‐
proximate u can always be estimated according to the experi‐
ential data using heuristic optimization algorithms. The corre‐
sponding EIDM curves in Fig. 3 illustrate that by specifying
a proper u, the uncertainty involved in the estimated interval
probability can be preserved even for the modest samples. In
fact, the absolute reliability is not necessary and too cautious
interval probabilities may disguise the valid information. To
avoid unreliable and over-cautious parameter setting, the pro‐
posed method seeks u that leads to the best prediction perfor‐
mance with respect to a comprehensive criterion.

Based on the algorithms mentioned above, the proposed
prediction method can be divided into four key steps, as
shown in Fig. 4.

V. CASE STUDY

The BN and EIDM are applied for WPRE prediction car‐
ried out on a wind farm located in Ningxia, China. The de‐
tails of the prediction are provided in this section.

A. Data Description

The installed capacity of the wind farm is 36 MW. The da‐
ta including wind power and four meteorological measure‐
ments, i.e., wind speed, wind direction, temperature and hu‐
midity, are from January 1, 2015 to December 31, 2017, and
the time resolution is 30 min. All the meteorological mea‐
surements are integrated into the BN as the candidate evi‐
dence variables. Moreover, since sudden changes in wind
speed can easily trigger WPRE, the wind speed variation in
30 min calculated by (11) is selected as an additional candi‐
date evidence variable.

Vt = St - St - 30 (11)

where St and St - 30 are the wind speeds at moment t and the
previous moment, respectively. The identification thresholds
of WPRE are designed [32]:

{-11%´PR £Pt -Pt - 30 £ 10%´PR no events
Pt -Pt - 30 > 10%´PR ramp up events

Pt -Pt - 30 <-11%´PR ramp down events
(12)

where Pt - 30 is the observed wind power at the previous mo‐
ment.

The dataset is divided into a training set and a validation
set, as shown in Table I. The training set is used to build the
prediction model and optimize the parameter u, while the
validation set is used to verify the effectiveness.

Every candidate evidence variable is divided into three
states by equal-frequency discretization process [33]. Table
II provides the state list of the variables.

B. Construction of BN

A tree structure shown in Fig. 5(a) is firstly built by the
MWST algorithm presented in Section III-B to extract the
heuristic knowledge about the hidden dependencies for ini‐
tializing the BN structure. With the initial structure, the GS
algorithm can locally update the structure and evaluate
whether the current structure is superior to the optimal candi‐
date.

Start

MWST-GS algorithm constructs the optimal
BN structure, which indicates the parent-child

relations among variables

Initialize u

The EIDM estimates the CPTs at every node,
which quantifies the conditional dependencies

among variables

BN probability inference algorithm simplifies
the expression to be estimated

Design index to evaluate prediction
results with the current u

Does SCORE index
reach the optimum?

Change the
value of u

The optimal value of u has been found

N

Y

Infer the conditional imprecise ramp probability
with the quantitative information in CPTs

Get final results from Step 2 and Step 3
with the optimal u

End

Step 1:
BN structure

learning

Step 2:
BN

parameters
estimating

Step 3:
ramp

probability
conditional

inferring

Step 4:
parameter
optimizing

Fig. 4. Four key steps of proposed prediction method.

TABLE I
DATASET DESCRIPTION

Dataset

Training set

Validation set

Time span

January 2015 to
June 2016

July 2016 to
December 2017

Sample
size

25774

25084

Ramp up
events

2864

2703

Ramp down
events

2328

2304
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According to the process in Fig. 1, the optimum network
structure (as shown in Fig. 5(b)) that illustrates the dominant
conditional dependencies can be established.

The constructed network structure indicates that WPRE
are directly related to wind speed, wind direction, tempera‐
ture and the wind speed variation. Therefore, the states of
these four evidence variables can determine the probability
distribution of WPRE.

C. Inference of Conditional Imprecise Probability of WPRE

All possible meteorological conditions can be expressed
as El ={VySrDqTkhd}, where y rq kd Î{1 23}. There
are totally 243 meteorological conditions. The conditional
imprecise probability of the ramp state HwwÎ{1 2 3} can
be inferred based on the BN shown in Fig. 5(b) as:

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

-P (Hw|El)=min
P(Hw)Pim (Vy|Hw)Pim (Sr|HwVy)Pim (Dq|Hw)Pim (Tk|HwSr)

∑
w= 1

3

P(Hw)Pim (Vy|Hw)Pim (Sr|HwVy)Pim (Dq|Hw)Pim (Tk|HwSr)

-
P (Hw|El)=max

P(Hw)Pim (Vy|Hw)Pim (Sr|HwVy)Pim (Dq|Hw)Pim (Tk|HwSr)

∑
w= 1

3

P(Hw)Pim (Vy|Hw)Pim (Sr|HwVy)Pim (Dq|Hw)Pim (Tk|HwSr)

(13)

In (13), the prior probability P(Hw) can be counted as the
occurrence frequency of Hw in the training set, and other
quantitative information can be read from the CPTs estimat‐
ed by EIDM.

D. Evaluation of Prediction Performance

The evaluation of the interval probability results mainly
focuses on the reliability and the sharpness. The reliability
indicates the capability of covering the target probability.
The following criterion SCORE1 is designed here for the reli‐
ability evaluation.

SCORE1 = {1 P* (Hw|El)Î [ ]-P (Hw|El),
-
P ( )Hw|El

0 otherwise
(14)

where [-P (Hw|El)
-
P (Hw|El)] is the predicted interval probabil‐

ity; and P* (Hw|El) is the target probability, which is replaced
by the counted conditional frequency. A bigger SCORE1 re‐
flects a better performance on the reliability.

The sharpness evaluated by criterion SCORE2 measures
the imprecision degree of the interval. The smaller SCORE2

is, the better the sharpness performance will be.

SCORE2 =
-
P (Hw|El)- -P (Hw|El) (15)

In addition, the weighted sum of SCORE1 and SCORE2

can be calculated to evaluate the comprehensive perfor‐
mance of the prediction method, which can be expressed
as:

ì

í

î

ïï
ïï

SCORE =WT1 × SCORE1 -WT2 × SCORE2

s.t. WT1 > 0
WT2 > 0
WT1 +WT2 = 1

(16)

where WT1 and WT2 are the weights of SCORE1 and
SCORE2, respectively. The weights can be specified accord‐
ing to the individual risk attitude. For a risk averter, a larger
WT1 should be selected to enhance the reliability of the pre‐
dicted interval probabilities, and vice versa.

It can be observed that the larger the SCORE value is, the
better the comprehensive performance will be. Therefore, the
optimization of parameter u is to find out u with the maxi‐
mum SCORE. Then the optimized parameter u can be ob‐
tained by sensitivity analysis of SCORE. With the pre-set
risk attitude, the optimal u can strike a balance between the
reliability and sharpness.

VI. RESULT ANALYSIS

A. Comparison with Central Limit Theorem (CLT) Based
Method

1) Prediction with Limited Samples
The CLT is commonly used for estimating the distribution

of the statistical mean [34]. Suppose that μ and σ 2 represent
the mean and variance of the samples, respectively. When
the sample size M is large enough, CLT presents that the
mean can be approximated by normal distribution
N(μ σ2 M). Thus, the confidence interval of the mean can

TABLE II
STATES OF VARIABLES IN CONSTRUCTED DISCRETE BN

State

1

2

3

Wind speed variation
V (m/s)

V1: [-11.2- 0.8)

V2: [-0.80.8)

V3: [0.816.7]

Wind speed S (m/s)

S1: [03.6)

S2: [3.65.3)

S3: [5.323.2]

Wind direction D (°)

D1: [1120)

D2: [120240)

D3: [240360]

Temperature T (℃)

T1: [-21.75.7)

T2: [5.716.8)

T3: [16.836.2]

Humidity h (%)

h1: [9.536.5)

h2: [36.558.5)

h3: [58.598.5]

Ramp events H (wind
power variation) (MW)

H1: [-4.03.6]

H2: (3.636]

H1: [-36- 4.0)

(a) (b)  

V S

H D

Th

V S

H D

Th

Fig. 5. Constructed BN structures. (a) Tree structure acquired from
MWST. (b) Optimal structure acquired from GS.
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be obtained accordingly.
Table III analyzes the average performance of WPRE pre‐

diction results under 243 meteorological conditions predicted

by the CLT (90% confidence level) and BN. In the table, dif‐
ferent weights, i. e., WT1 = 0.3 0.5, and 0.7, are applied to
evaluate the performance of the methods.

Risk seekers may choose WT1 = 0.3, WT2 = 0.7 to express
their concerns about the sharpness. In this case, the average
width of interval probabilities predicted by BN is only
0.122. More than 90% of the interval probabilities are nar‐
rower than 0.2, and only a minority of intervals are wider
than 0.3, which are much better than those of the CLT mod‐
el. Besides, during the test, 78.2% of the interval probabili‐
ties can cover the target probabilities, which are higher than
those of the CLT model. This indicates the acceptable reli‐
ability performance of the BN model.

Contrarily, risk averters may choose WT1 = 0.7, WT2 = 0.3
to reflect their concerns about the reliability. In this case, the
coverage rate obtained by BN model is close to 90%, indi‐
cating its remarkable reliability. However, the cost of pursu‐
ing high reliability is that when WT1 increases from 0.3 to
0.7, the average width of the intervals increases by 50%.

The two models happen to provide almost the same aver‐
age width when WT1 =WT2 = 0.5. In this case, the higher
coverage rate of the BN model clearly reflects its superiority
over the CLT model.

In summary, the following conclusions can be drawn from
the test results shown in Table III.

1) The weights WT1 and WT2 reflect the individual predic‐
tion attitude. For a larger WT1, more reliable prediction re‐
sults will be provided. Meanwhile, the predicted interval
probabilities will be relatively wider.

2) With respect to different risk attitudes, the parameter u
in BN model can be optimized accordingly to obtain better
performance. It is clearly observed that the interval probabili‐
ties predicted by BN model can be tuned according to the
risk attitude, which indicates its flexibility.

3) Regardless of the individual risk attitude, the proposed
model always exhibits a better performance, since it can al‐
ways get a higher evaluation score.

To further verify the effectiveness of the proposed meth‐
od, Fig. 6 provides the imprecise probabilities of predicted
WPRE by using the BN and CLT under 8 different meteoro‐
logical conditions. Under the meteorological conditions E6,
E7, and E8, weak prediction results are obtained by the CLT
model. In these three cases, the narrower predicted intervals
can always be obtained by the BN model, while all the tar‐
get probabilities are well covered.

Under the meteorological conditions E4 and E5, the count‐
ed empirical probabilities differ greatly between the training
and validation sets because of the scarcity of samples in
these meteorological conditions. In these cases, the CLT
model does not work well, since its precondition, i. e., the
number of samples is large enough, cannot be satisfied. On
the contrary, by using the BN model, all the target probabili‐
ties can be covered in the predicted intervals, revealing the
effectiveness of the proposed method with scarce samples.

Moreover, for the meteorological conditions E2 and E3, no
ramp event occurs in the training set. In these cases, the
CLT model can only generate deterministic prediction re‐
sults, i. e., P(H1|El)= 1 and P(H2|El)=P(H3|El)= 0, which
leads to unbearable errors. On the contrary, it is observed
that the proposed BN model still works well under these con‐
ditions and all the target probabilities can be covered.

Under the most adverse condition E1, due to the severe
scarcity of samples, gigantic differences exist in the counted
empirical probabilities of training and validation sets, lead‐
ing to the poor reliability performance of both the BN and

TABLE III
ANALYSES OF PREDICTION RESULTS

WT1

0.3

0.5

0.7

Prediction
model

BN

CLT

BN

CLT

BN

CLT

SCORE1

570

410

608

410

646

410

SCORE2

88.7

107.1

105.2

107.1

133.2

107.1

SCORE

108.9

48.0

251.4

151.4

412.2

254.9

Coverage
rate (%)

78.20

56.20

83.40

56.20

88.60

56.20

Average
width

0.122

0.147

0.144

0.147

0.183

0.147

Proportion of prediction
results with interval

width no less than 0.1 (%)

60.50

54.30

70.30

54.30

84.00

54.30

Proportion of prediction
results with interval width

no less than 0.2 (%)

8.20

32.00

16.80

32.00

38.30

32.00

Proportion of prediction
results with interval width

no less than 0.3 (%)

0.80

16.10

2.40

16.10

8.20

16.10

Probability intervals of no events predicted by BN
Probability intervals of no events predicted by CLT

Probability intervals of ramp up events predicted by BN
Probability intervals of ramp up events predicted by CLT

Probability intervals of ramp down events predicted by BN
Probability intervals of ramp down events predicted by CLT

Empirical probabilities of each ramp state

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(
|

)
w

l
P
H

E

E1 E2 E3 E4 E5 E6 E7 E8
Condition

Fig. 6. Predicted imprecise probabilities of WPRE under 8 different meteo‐
rological conditions when WT1 =WT2 = 0.5.
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CLT models. However, less deviations corresponding to the
proposed model indicate that the method can reflect the po‐
tential distribution more accurately even in this adverse case.
2) Prediction with No Samples

One feature of the proposed BN model is that it can still
perform effective predictions without available samples un‐
der some extreme meteorological conditions. To illustrate
this feature, the states of variable D, T and h are redefined
in Table IV.

Based on the new state definitions, no training sample ex‐
ists for meteorological conditions E1 ={V1S3D2T3h3}, E2 =
{V1S3D3T3h3}, E3 ={V3S1D3T2h3} and E4 =
{V3S1D3T3h3}. In these cases, the prediction results pro‐
vided by the CLT model can only be Pim (Hw|Ev)=[01]
where w= 123 and v= 1234. Obviously, the results can‐
not provide any useful information.

By using the proposed method, the network structure
learned by MWST-GS algorithm with respect to all the train‐
ing samples is shown in Fig. 7. The structure clearly illus‐
trates that WPRE is directly related to wind speed, tempera‐
ture and the wind speed variation in this situation, and the
states of these three evidence variables will determine the
probability distribution of WPRE.

Then, based on the BN probability inference rules ex‐
plained in Section III-C, the interval probabilities of WPRE
can be calculated by:

ì

í

î

ï

ï

ï

ï
ï
ïï
ï

ï

ï

ï

ï
ï
ïï
ï

-P (Hw|Ev)=

min
P(Hw)Pim (Sr|Hw)Pim (Vy|HwSr)Pim (Tk|HwSr)

∑
w= 1

3

P(Hw)Pim (Sr|Hw)Pim (Vy|HwSr)Pim (Tk|HwSr)

-
P (Hw|Ev)=

max
P(Hw)Pim (Sr|Hw)Pim (Vy|HwSr)Pim (Tk|HwSr)

∑
w= 1

3

P(Hw)Pim (Sr|Hw)Pim (Vy|HwSr)Pim (Tk|HwSr)

(17)

When WT1 = WT2 = 0.5, the prediction results correspond‐
ing to the extreme meteorological conditions are summarized
in Table V. Although several predicted interval probabilities
in Table V fail to cover the target probabilities, they can still
pick out the ramp states that are most likely to happen, and

the tolerable deviations indicate the effectiveness of the pro‐
posed method under fresh meteorological conditions.

In summary, the constructed BN prediction model is appli‐
cable to all the meteorological conditions. For the condition
with scarce samples or even no samples, the method can
still obtain reliable prediction results. Actually, in the pro‐
posed method, the samples participated in the conditional
prediction are not confined to the ones satisfying the con‐
cerned meteorological evidence, which makes it possible to
fully excavate the statistical information of the training sam‐
ples.

B. Comparison with Principal Component Analysis (PCA)
Based Statistical Method

In order to evaluate the accuracy of the deterministic pre‐
diction results of the proposed method, a PCA-based statisti‐
cal model is established [19] with respect to the training
samples. The PCA uses an orthogonal transformation to con‐
vert the observations of possibly correlated variables into the
values of linearly uncorrelated variables, i.e., principal com‐
ponents, thereby realizing the dimensionality reduction of
multi-dimensional information. In [19], the first three princi‐
pal components of wind speed time series are extracted and
selected as the evidence variables to categorize the statistical
conditions. The counted conditional frequencies of WPRE
are used to evaluate the probabilities of the forthcoming
WPRE.

The performances of the BN model and the PCA-based
statistical model are evaluated using the validation set. Since
the PCA-based statistical model can only provide determinis‐
tic results, the interval probabilities generated by BN model
are firstly converted into their medians.

The ranked probability score (RPS) criterion [20], which
compares the predicted cumulative density function (CDF)
against the observed CDF, is selected to evaluate the perfor‐
mances of these two methods. For discrete cases, the RPS
criterion can be expressed as:

RPS =
1

K - 1∑k = 1

K

(Fk -Ok)
2 (18)

TABLE IV
ADJUSTMENT OF DISCRETIZATION OF VARIABLES D, T AND H

State

1

2

3

Wind direction D (°)

D1: [1200)

D2: [200318)

D3: [318360]

Temperature T (℃)

T1: [-21.7 14.0)

T2: [14.018.0)

T3: [18.036.2]

Humidity h (%)

h1: [9.555.0)

h2: [55.075.0)

h3: [75.098.5]

V S

H D

Th

Fig. 7. BN structure constructed with redefined variable states.

TABLE V
BN PREDICTION RESULTS UNDER EXTREME CONDITIONS

Conditional probability

Pim(H1|E1)

Pim(H2|E1)

Pim(H3|E1)

Pim(H1|E2)

Pim(H2|E2)

Pim(H3|E2)

Pim(H1|E3)

Pim(H2|E3)

Pim(H3|E3)

Pim(H1|E4)

Pim(H2|E4)

Pim(H3|E4)

Target probability

0.846

0

0.154

0.667

0

0.333

0.600

0.400

0

1.000

0

0

Interval probability

[0.606, 0.833]

[0.036, 0.140]

[0.113, 0.301]

[0.606, 0.833]

[0.036, 0.140]

[0.113, 0.301]

[0.566, 0.952]

[0.041, 0.357]

[0, 0.163]

[0.555, 0.954]

[0.038, 0.349]

[0, 0.199]
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where K is the number of prediction categories; and

Fk =∑
i = 1

k

fi and Ok =∑
i = 1

k

oi are the kth components of the pre‐

dicted and observed CDF, respectively, fi is the predicted
probability of the event in category i, oi is a binary variable
that takes the value of 1 if the event is observed in category
i. The RPS criterion calculated by (20) is a punitive func‐
tion, and a smaller score reflects a better prediction perfor‐
mance.

By performing 25084 prediction tests with respect to the
validation set, the score of the PCA-based statistical method
is 3053.31, while the score of the BN-based prediction meth‐
od is 2895.22. Therefore, although the proposed method
does not take the deterministic probability prediction accura‐
cy as an indicator to optimize the parameters, its outstanding
capability of excavating statistical information from limited
samples makes it perform better even for the deterministic
probability prediction.

VII. CONCLUSION

In this paper, an imprecise probability estimation method
for WPRE is proposed by combining the MWST-GS algo‐
rithm, EIDM, and the BN probability inference algorithm.
The uncertainty of the ramp probability estimation can be
quantificationally reflected by the interval probability. The
method maps the WPRE to meteorological evidences direct‐
ly, avoiding the prediction of wind power time series and the
corresponding cumulative errors. The dominant conditional
dependencies among the evidence and target variables are ex‐
tracted by MWST-GS algorithm. Then, with respect to these
dependencies, the method can perform reliable WPRE predic‐
tion by BN inference even with scarce samples. The EIDM
developed in this paper can enhance the reliability of the es‐
timated interval probability. Meanwhile, its exogenous pa‐
rameter can be optimized according to the specified risk atti‐
tude to tune the prediction results, reflecting the flexibility
of the method. Case studies of a wind farm located in Ningx‐
ia, China illustrate the effectiveness of the proposed method.
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