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Wind Power Prediction Based on Variational
Mode Decomposition and Feature Selection

Gang Zhang, Benben Xu, Hongchi Liu, Jinwang Hou, and Jiangbin Zhang

Abstract——Accurate wind power prediction can scientifically
arrange wind power output and timely adjust power system dis‐
patching plans. Wind power is associated with its uncertainty,
multi-frequency and nonlinearity for it is susceptible to climatic
factors such as temperature, air pressure and wind speed.
Therefore, this paper proposes a wind power prediction model
combining multi-frequency combination and feature selection.
Firstly, the variational mode decomposition (VMD) is used to
decompose the wind power data, and the sub-components with
different fluctuation characteristics are obtained and divided in‐
to high- , intermediate- , and low-frequency components accord‐
ing to their fluctuation characteristics. Then, a feature set in‐
cluding historical data of wind power and meteorological fac‐
tors is established, which chooses the feature sets of each com‐
ponent by using the max-relevance and min-redundancy
(mRMR) feature selection method based on mutual information
selected from the above set. Each component and its corre‐
sponding feature set are used as an input set for prediction af‐
terwards. Thereafter, the high-frequency input set is predicted
using back propagation neural network (BPNN), and the inter‐
mediate- and low-frequency input sets are predicted using least
squares support vector machine (LS-SVM). After obtaining the
prediction results of each component, BPNN is used for integra‐
tion to obtain the final predicted value of wind power, and the
ramping rate is verified. Finally, through the comparison, it is
found that the proposed model has higher prediction accuracy.

Index Terms——Wind power prediction, feature selection, varia‐
tional mode decomposition (VMD), max-relevance and min-re‐
dundancy (mRMR).

I. INTRODUCTION

WIND power has the characteristics of instability,
which may lead to cascaded failure and certain shock

in the power system. This brings severe challenges to the
safe and stable operation of power system [1], [2]. Wind
power prediction is a prerequisite for the grid-connected
wind farm. Otherwise, wind energy resources will not be ef‐
fectively utilized, which will restrict the effective installed
capacity of wind farms. If the wind power could be predict‐
ed more accurately, the power system dispatching depart‐
ment can adjust the dispatching plan in time, and rationally
formulate the control strategy. Consequently, this will reduce
the rotating reserve capacity of the power grid, reduce the
wind power ramping and power generation cost, and im‐
prove the safety of wind power generation [3].

At present, wind power prediction methods commonly
used at home and abroad are mainly machine learning meth‐
ods such as neural network method [4], [5], time series meth‐
od [6], [7], support vector machine method [8], [9], and Kal‐
man filtering method [10]. However, it is difficult to capture
its characteristics using only one method due to the random‐
ness and uncertainly of wind power. Therefore, some re‐
searchers first decompose the wind power data and then con‐
duct the prediction.

For example, [11] uses a combination of empirical mode
decomposition (EMD) and support vector machine (SVM)
prediction model; [12] uses a combination of EMD and non‐
linear autoregressive exogenous (NARX) neural network pre‐
diction model; and [13], [14] use the ensemble empirical
mode decomposition (EEMD). Reference [15] uses a short-
term wind power prediction model combining variational
modal decomposition (VMD) and extreme learning machine
(ELM), and [16] uses multi-frequency combined VMD de‐
composition to predict wind power. All these studies conduct
the prediction on the sub-sequences after decomposing the
wind power, and then integrate the predicted values of the
sub-sequences. It can be seen from the studies that the de‐
composition of VMD is more thorough, and that the final
prediction accuracy is higher. However, the wind power data
will be affected by meteorological factors such as wind
speed, air pressure, and temperature. The sub-sequences de‐
composed by various decomposition methods will naturally
be affected by these factors. There is no doubt that the pre‐
diction accuracy will be reduced only by considering the
study of wind power data and ignoring the meteorological
factors.

In recent years, some researchers have considered the in‐
fluence of some factors in the wind power prediction pro‐
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cess. For example, [17] extracts the features from wind pow‐
er historical values. Reference [18] uses mutual information
(MI) to extract the spatial correlation information between
variables and target variables, and then uses conditional ker‐
nel density estimation methods for wind power prediction.
Reference [19] uses the wind speed and wind direction data
in different numerical weather prediction (NWP) data to
train the model. At present, there are three common feature
selection methods including filtering methods, packaging
methods, and embedding methods. The accuracy of the pack‐
aging method and the embedding method are higher but are
easy to lead to over-fitting, while the filtering method is less
likely to cause over-fitting and could reduce the computation
dimension [20]. The common filtering method is the MI. It
arranges the variables according to the standard of MI, and
then selects the top-ranked variables. This method can pre-
process the variables before using the predictive model for
prediction [21]. However, the MI only considers the correla‐
tion between the variable and the target variable but ignores
the redundancy, which makes the input dimension larger and
reduces the computation efficiency of the model. Compara‐
tively, the max-relevance and min-redundancy (mRMR)
based on MI considers not only the correlation between vari‐
ables and target variables, but also its redundancy, so it
could reduce the input dimension and improve the computa‐
tion efficiency.

Based on the above discussion, this paper improves wind
power prediction on the basis of [16], and proposes a predic‐
tion method of “decomposition-feature selection-prediction-
integration”. Firstly, the wind power data is decomposed us‐
ing VMD to obtain the components with different fluctuation
characteristics. These components are divided into high-, in‐
termediate- , and low-frequency components according to
their fluctuation characteristics. Then, a feature set contain‐
ing wind power historical data and meteorological factors is
established, and selects a feature set of each component
from the set using mRMR. After that, each component and
its corresponding feature set are taken as an input set. In the
prediction process, the high-frequency input set is predicted
using back propagation neural network (BPNN), and the in‐
termediate- and low-frequency input sets are predicted using
least squares support vector machine (LS-SVM). After ob‐
taining the predicted values of each component, the BPNN
is used to integrate the predicted values of each component
to obtain the final predicted values of wind power. Finally,
the prediction results are compared with those of other mod‐
els. By analyzing the four indexes including mean absolute
error (MAE), mean square error (MSE), mean absolute per‐
centage error (MAPE), and root mean square error (RMSE),
it is shown that the results of the proposed prediction meth‐
od are the closest to the actual values.

The rest of this paper is organized as follows. Section II
briefly introduces the prediction model and prediction perfor‐
mance evaluation indicators. Section III conducts case stud‐
ies and analyzes the results. The research conclusions are
given in Section IV.

II. PREDICTION METHOD

According to the above discussion, the flow chart of the
prediction method proposed in this paper is shown in Fig. 1.
It can be seen that the prediction process is divided into four
modules: ① module 1 is the decomposition, i. e., the wind
power data is decomposed using VMD; ② module 2 is the
feature selection, i.e., mRMR is used to select the input fea‐
ture set of each component from the established feature set;
③ module 3 is the multi-frequency prediction, i. e., each
component and its corresponding input feature set are com‐
bined into a new matrix in the prediction model for various
frequencies to obtain the predicted value of various frequen‐
cy components; ④ module 4 is the integration, i. e., BPNN
is used to integrate the prediction results of component of
various frequency components to obtain the final wind pow‐
er predicted value and the predicted value of wind power
ramping rate.

It can be seen from Fig. 1 that the VMD, mRMR, BPNN,
and LS-SVM algorithms are used in this paper. Among
them, VMD is proposed in [22], which is essentially a set of
adaptive Wiener filter banks. It adopts non-recursive mode
decomposition that can simultaneously estimate the modali‐
ties of different center frequencies and could avoid the mod‐
al aliasing caused by empirical decomposition in EMD and
EEMD. Therefore, it has been applied in many fields [15],
[16], [23], [24]. The feature selection method of mRMR is
proposed in [25]. Based on MI, the method analyzes the
mRMR between each feature and target variable, which re‐
duces the input dimension and enhances the prediction accu‐
racy.

For the prediction methods of various frequencies, BPNN
and LS-SVM are the mature methods that have been used in
various fields including wind power prediction [26] and the
study on wind power ramping [27]. Therefore, the principles
of these two methods are not repeated here.

When evaluating the proposed model, this paper uses the
MAPE to evaluate the prediction accuracy of intrinsic mode
functions (IMFs). For comparison with other models, this pa‐
per uses three evaluation indicators including MAE, MSE,
and RMSE. The calculation formulas of each indicator are
as follows:

MAE =
1
M∑m= 1

M

|| Ym -Fm (1)

MSE =
1
M∑m= 1
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( )Ym -Fm

2
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|
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´ 100% (4)

where Ym is the actual value; Fm is the predicted value; and
M is the sample capacity.
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III. CASE STUDY

A. Decomposition of Wind Power Data

The wind power data in this paper is collected every 10
minutes, and each wind farm has 144 data points per day. In
this paper, the data in October, 2009 in northern Shaanxi,
China and the data of wind farm in July, 2010 in Yunnan,
China will be selected for analysis. For the division of the
training set and test set, this paper uses a variety of divi‐
sions. Considering the influencing factors, the training data
is used to train the model and make predictions on the test
set, and the final prediction result is evaluated by MAE. The
comparison results are shown in Table I. It can be seen from
Table I that when the training data is for 28 days and the
test data is for 3 days, the error is the smallest. In this case,
the occurrence of under-fitting and over-fitting can be effec‐
tively reduced [28]. Therefore, this paper uses 4464 data
points for 31 days a month for each wind farm for model‐
ing, 4032 data points from the 1st to the 28th of the month as
training samples, and 432 data points from the 29th to the
31st of the month are used as test samples, respectively. Fig‐
ure 2 illustrates the wind power data of the wind farm in
northern Shaanxi in October, 2009.
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Fig. 1. Flowchart of prediction process.

TABLE I
PREDICTION ERROR FOR MULTIPLE SITUATIONS OF DIVISION
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Fig. 2. Wind power data for wind farm in northern Shaanxi, China in Oc‐
tober, 2009.
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The basic information of the wind power value is shown
in Table II.

The wind power values of the two wind farms are highly
random. In addition, the difference between the average and
standard deviation of data of wind farm in Yunnan in July,
2010 is 0.88 MW, and the difference between the average
and standard deviation of data of wind farm in northen Shan‐
nxi in October, 2009 is 4.56 MW. The greater the difference
between the average and the standard deviation is, the great‐
er the dispersion of the data will be. Therefore, by compari‐
son, the wind power fluctuation of wind farm in northern

Shaanxi in October, 2009 is stronger. In the following analy‐
sis, a specific explanation is conducted on the data of the
wind farm in northern Shaanxi in October, 2009. The predic‐
tion process of the wind farm in Yunnan is consistent with
that in northern Shaanxi. First, VMD is used to decompose
the wind power data of the wind farm in northern Shaanxi
in October, 2009 to better utilize its multi-frequency charac‐
teristics. The wind power data is decomposed by VMD, and
the result is shown in Fig. 2. In the decomposition process,
the parameters are set using the method in [23].

Each component, which is obtained by decomposing wind
power data by the VMD, is shown in Fig. 3. It can be seen
from Fig. 3 that the fluctuations of IMF1-IMF6 are strong
and its frequency is large, the fluctuation after IMF7 starts
to ease, and at IMF10, the fluctuation tends to be stable and
IMF10 is also the most moderate of all components, that is,
the fluctuation frequency is also the smallest. Therefore,
IMF1-IMF6 are defined as high-frequency components,
IMF10 is defined as low-frequency component, and the re‐
maining components are defined as intermediate frequency
components.

B. Feature Selection

The wind power is affected by characteristic factors such
as wind speed, temperature, and wind direction. Therefore,
each sub-component obtained by decomposing the wind pow‐

er using VMD is also affected by different characteristics.
This sub-section will use mRMR to select the feature set of
each component. The specific process is shown in Fig. 4,
where N is the number of IMFs after VMD decomposition.
It can be seen from Fig. 4 that the establishment of feature

TABLE II
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Average
value
(MW)
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Fig. 3. Decomposition map and spectrogram. (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4. (e) IMF5. (f) IMF6. (g) IMF7. (h) IMF8. (i) IMF9. (j) IMF10.
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set of each component mainly includes the following steps:
① establishing an initial feature set F, which includes influ‐
encing characteristics affecting wind power variation; ② us‐
ing incremental search method to establish the candidate fea‐
ture set J of each modal component from set F; ③ calculat‐
ing the mRMR value of each feature in J, arranging them in
descending order, and inputting into the error function one
by one to calculate the error; ④ taking out the correspond‐
ing number of features when the error is minimized and es‐
tablishing the set of component input features JIN. The specif‐
ic research process is as follows.

This paper first establishes a feature set. The features and
representation variables contained in the set are shown in Ta‐
ble III.

The time scale of wind power in this paper is 10 minutes.
Therefore, the time t in Table III is expressed by 0.0, 0.1, ...,
23.5. The historical values of wind speed and wind power
are represented by St and Pt, respectively, and its meaning is
the historical value t minutes ago. For example, S10 repre‐
sents the wind speed value of the sample 10 minutes ago,
and P50 represents the wind power value of the sample 50
minutes ago. In addition, the wind speed, air pressure, and
temperature are the measured values.

After the feature matrix is established, the candidate fea‐
ture set J is established for each component, respectively, by
using the incremental search method. The size of the mRMR
value of each feature in the candidate feature set J is calcu‐
lated, and the features are arranged in descending order ac‐
cording to the magnitude of the mRMR value. The descend‐
ing sorting results of candidate feature sets of each feature
component are shown in Table IV.

Obtain error function

N

Y

Input one by one

Start

End

Establish feature set F

n=0, N=10

n=n+1, An=IMFn

Use incremental search method

Establish candidate feature set J

Calculate mRMR value of each feature
and arrange them in descending order

Take out the corresponding number of
feature with the smallest error JIN

n<N?

Fig. 4. Flowchart of component feature selection.

TABLE III
INFLUENCING FEATURES AND REPRESENTATION VARIABLES

Influencing feature

Time

Temperature

Air pressure

Wind direction

Wind speed

Historical value of wind speed

Historical value of wind power

Representation variable

t

T

P

D

S

St

Pt

TABLE IV
DESCENDING SORTING RESULTS OF CANDIDATE FEATURE SETS OF EACH FEATURE COMPONENT

Sorting serial
number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Component

IMF1

S10 = 4.5055

S = 4.4861

S40 = 4.4154

P20 = 4.4033

S30 = 4.3394

P50 = 4.3295

S50 = 4.3053

S20 = 4.2983

P60 = 4.1642

S60 = 4.1627

P10 = 4.1576

P40 = 4.0882

T = 3.2907

D = 3.2476

P30 = 3.2409

P = 2.4770

t = 2.0774

IMF2

P20 = 4.4566

P30 = 4.4556

P50 = 4.4276

P40 = 4.4144

S30 = 4.3016

S = 4.2856

S50 = 4.2587

S20 = 4.2534

S40 = 4.2292

P10 = 4.1813

S60 = 4.1413

S10 = 4.0157

P60 = 3.2444

D = 3.1257

T = 2.9673

P = 2.3002

t = 2.1714

IMF3

S = 4.4215

S30 = 4.3936

P50 = 4.3124

S20 = 4.2961

P60 = 4.2310

S40 = 4.1917

P30 = 4.1322

P10 = 4.1113

S50 = 4.0662

P20 = 4.0446

S60 = 4.0288

S10 = 3.8723

D = 3.5070

T = 3.4850

P40 = 3.0523

P = 2.4283

t = 2.1435

IMF4

S50 = 3.8149

S30 = 3.7995

S40 = 3.7742

P20 = 3.7669

S = 3.6542

P10 = 3.5201

P50 = 3.4763

P30 = 3.4496

S20 = 3.4464

P40 = 3.4166

S60 = 3.2988

S10 = 3.2049

T = 2.3983

D = 2.3805

P60 = 2.3385

P = 1.9996

t = 1.3314

IMF5

S30 = 4.8252

P40 = 4.7868

P20 = 4.7505

S = 4.7401

P60 = 4.6367

P30 = 4.4955

S40 = 4.4939

S50 = 4.4870

P10 = 4.4829

S20 = 4.4445

S60 = 4.3846

S10 = 4.2217

P50 = 3.3580

T = 2.8679

D = 2.7589

P = 2.3385

t = 2.3357

IMF6

S40 = 4.5082

S20 = 4.4673

P30 = 4.4267

S = 4.4058

P60 = 4.2669

P10 = 4.2267

P40 = 4.2084

S50 = 4.1231

P20 = 4.1107

S30 = 4.1077

S60 = 3.9882

S10 = 3.9195

P50 = 3.2075

T = 2.1820

D = 2.1438

P = 1.8861

t = 1.8663

IMF7

P40 = 4.1146

S30 = 4.0923

S20 = 4.0188

P50 = 4.0062

P60 = 3.8442

P10 = 3.8134

S40 = 3.5759

P30 = 3.5545

P20 = 3.5013

S50 = 3.4504

S60 = 3.3236

S10 = 3.3095

S = 2.3902

P = 1.4513

D = 1.4262

T = 1.4166

t = 1.3126

IMF8

P40 = 3.4235

S30 = 3.4161

P50 = 3.3347

P20 = 3.3095

P60 = 3.2189

P10 = 3.1846

P30 = 2.6099

S40 = 2.5978

S20 = 2.5065

S50 = 2.4861

S60 = 2.3963

S10 = 2.3953

S = 1.3950

P = 0.5055

T = 0.2628

t = 0.1597

D = 0.1230

IMF9

S30 = 2.4146

P40 = 2.3898

P50 = 2.3721

P20 = 2.3610

P60 = 2.1652

P10 = 2.1594

T = 1.7645

P30 = 1.6750

D = 1.6618

S40 = 1.6366

S50 = 1.6128

S20 = 1.5961

S10 = 1.4392

S60 = 1.4149

t = 0.9956

S = 0.5254

P = 0.3966

IMF10

T = 4.7423

D = 4.5705

P = 3.0220

P40 = 1.9220

S = 1.9016

P30 = 1.8844

P20 = 1.7488

P60 = 1.7101

P10 = 1.5487

S40 = 1.4620

S50 = 1.4096

S30 = 1.4042

S20 = 1.2776

S60 = 1.2457

S10 = 1.1096

t = 0.4318

P50 = 0.3797
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Table IV shows the result of mRMR values in descending
order. The corresponding numbers of the variables are the
mRMR values of the feature. It can be seen that for each
modal component, the mRMR values of wind speed, wind
speed history value, and wind power history value are rela‐
tively in the front, while the feature time is relatively back‐
ward for each component. The size of the wind power value
is not closely related to time. In addition, IMF10 is the only
component where the temperature, wind direction, and air
pressure have high rankings. It can be seen that the IMF10
is mainly affected by weather characteristics such as temper‐

ature, wind direction, and air pressure.
After obtaining the candidate feature sets of the respective

components, the features are input into the prediction model
one by one to calculate the prediction error, and the number
of input features with the smallest error is taken as the final
input feature set JIN. The MAPE is used for evaluation. The
relationship between the error of each component and the
number of input features is shown in Fig. 5. When the num‐
ber of input eigenvalues is equal to that of eigenvalues corre‐
sponding to the blue bar, the error is the smallest.

It can be seen from Fig. 5 that the relationship diagram is
mainly divided into two categories.

1) Continuous fluctuation. We will get a minimum error
in the fluctuation finally, for example, Fig. 5(a), (e) - (j).
There will be cases where several points are with less error
such as Fig. 5(i). When the numbers of features are 3, 8,
and 13, respectively, the errors of the three points are very
close, but increasing the input quantity will lead to the in‐
crease of running time of the program and reduce the run‐
ning speed. Therefore, this paper will select the number of
input features corresponding to the point with the smallest in‐
put quantity as the input feature matrix of the component.

2) Small fluctuation. The error first decreases and then un‐
dergoes a period of smooth fluctuation such as Fig. 5(b)-(d),
where the point with the smallest error occurs in the process
of the error drop.

Through the above analysis, the input feature set JIN of
each modal component is selected out, as shown in Ta‐
ble V.

It can be seen from Table V that the input feature set of
IMF1-IMF9 mainly includes the wind speed, wind speed his‐
torical values, and wind power historical values. Among
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Fig. 5. Relationship between number of each component feature and error. (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4. (e) IMF5. (f) IMF6. (g) IMF7. (h)
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TABLE V
INPUT FEATURE SET OF EACH COMPONENT

Component

IMF1

IMF2

IMF3

IMF4

IMF5

IMF6

IMF7

IMF8

IMF9

IMF10

Input feature set

S10, S, S40, P20, S30, P10, S50, S20, P60, S60

P20, P30, P50, P40, S30, S, S50, S20, S40, P10, S60

S, S30, P50, S20, P60

S50, S30, S40, P20, S, P10

S30, P40, P20, S

S40, S20, P30, S, P60, P10, P40

P40, S30, S20, P50

P40, S30, P50

S30, P40, P50

T, D, P, P40, S
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them, JIN of IMF1-IMF6 contains more wind speeds and his‐
torical values of wind speeds. Since wind speeds are uncer‐
tain and intermittent, these components mainly include the
randomness and volatility of wind power due to the uncer‐
tainty of wind speed. By contrast, JIN of IMF10 mainly in‐
cludes meteorological features such as temperature, wind di‐
rection, and air pressure. The generation of wind speeds and
directions is affected by the temperature difference of the en‐
vironment. In addition, the pressure gradient force is the di‐
rect cause of wind formation. It can be seen that IMF10
mainly contains the factors of wind generation, and the mag‐

nitude of the wind power is directly affected by this factor
of wind generation. Therefore, it is considered that IMF10
mainly includes the changing trend of wind power.

C. Prediction of Wind Power

As described above, BPNN is used to predict high-fre‐
quency components, and LS-SVM is used to predict interme‐
diate- and low-frequency components. Before adding the in‐
fluencing factors, BPNN and LS-SVM are used to directly
predict various frequency components of VMD decomposi‐
tion, and MAPE is used to represent the error. The results
are shown in Table VI.

It can be seen from Table VI that for high-frequency com‐
ponents IMF1-IMF6, the accuracy of prediction results using
BPNN is significantly higher than those using LS-SVM. For
the intermediate- and low-frequency components, however,
the prediction accuracy is lower than that of BPNN, especial‐
ly after IMF8, it becomes more and more obvious.

To sum up, the prediction performance of BPNN is better
than LS-SVM for high-frequency components, and the pre‐
diction performance of LS-SVM is better than BPNN for
low- and intermediate-frequency components.

In the training model, the input data is extracted from the
new matrix composed of the frequency components and the
corresponding JIN. When the input quantity of BPNN is
trained, three points of high-frequency components and their
corresponding features are used as the input of the neural
network, which is also called the input layer. For example,
the number of input layer nodes of IMF5 is 15. In addition,
the number of iterations is set to be 1000, the learning speed
is set to be 0.1, and the expected error is set to be 0.0004.
When LS-SVM is trained, the kernel function is the radial
basis function (RBF), and the particle swarm optimization
(PSO) algorithm is used to optimize the kernel parameters
and regularization parameters. After the model of each fre‐
quency component is trained, and the wind power prediction
is done, the prediction results of the various frequency com‐
ponents are integrated using BPNN to obtain the final pre‐
dicted values. The results and distribution map of predicted
points are shown in Fig. 6.

It can be seen from Fig. 6 that the curve from the 50th

wind power data point to the 100th wind power data point
has larger error to the actual curve compared with the curve
of other intervals, because the data has strong fluctuation in
the above interval. The remaining prediction curves are basi‐
cally close to the actual curve, and the error is small. In or‐
der to clearly analyze the prediction method in this paper,
the distribution figure of each predicted point is drawn and
shown in Fig. 6(b).

In Fig. 6, if the green point is closer to the black line, the
closer the predicted value is to the actual value, and the
higher the prediction accuracy will be. It can be seen from
Fig. 6(a) that in the interval where the predicted value is 25-
30, there are some points that are farther away from the
black line; the value of wind power is between 20-30 in the
range of 50-100 where the error is relatively obvious. The
distribution shown in Fig. 6(b) coincides with the analysis in
Fig. 6(a). In addition, it can be seen from Fig. 6(b) that the
predicted value of wind power is the most accurate in the in‐
terval of 0-10, and if some points are ignored in other inter‐
vals, most of the predicted points can be close to the actual
value line of black. Therefore, the red line is also very close

TABLE VI
PREDICTION RESULTS

Model

BPNN

LS-SVM

MAPE (%)

IMF1

4.00

4.23

IMF2

3.44

5.57

IMF3

4.75

6.19

IMF4

1.67

5.02

IMF5

1.47

2.53

IMF6

2.36

2.87

IMF7

3.12

3.06

IMF8

5.42

0.83

IMF9

1.66

0.21

IMF10

0.030

0.005
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Fig. 6. Wind power prediction results. (a) Prediction and actual wind pow‐
er. (b) Distribution of predicted points.
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to the black line.

D. Verification of Wind Power Ramping Rate

Wind power ramping is likely to cause imbalances to the
active power of the system, disrupt the frequency stability,
and even lead to large-scale load shedding, which severely
threatens the safe, stable, and economic operation of power
system. Therefore, after predicting the wind power value, the
wind power ramping rate still needs to be predicted. Wind
power ramping rate refers to the rate of change of wind
farm power caused by the random nature of wind, i. e., the
power ramping rate (PRR), which is calculated as:

PRR=
DPr

Dt
(5)

where DPr is the amplitude change value of wind power;
and Dt is the duration of power fluctuation. The key to the
definition of wind power ramping rate is the selection of Dt.
Generally, Dt has 3 reference values, 15 min, 30 min, and 60
min [29]. This paper will choose Dt = 30 min to study the
wind power ramping rate. Different countries have different
requirements for wind power ramping rate. In China, when
PN < 150 MW, the maximum power change does not exceed
33%PN for 10 min and 10%PN for 1 min; when PN > 150
MW, the maximum power change is 50 MW for 10 min and
15 MW for 1 min, where PN is the rated installed capacity.
In Section III-C, 432 wind power data points in three days
are predicted, and 144 predicted values of wind power ramp‐
ing rate can be further calculated. The prediction results are
shown in Fig. 7.

It can be seen from Fig. 7 that with the exception of indi‐
vidual points, most of the predicted values are very close to
the actual values. The upward ramping rate and downward
ramping rate of wind power ramping rate is less than 0.5
MW/min, which is less than 10%PN (4.703 MW/min) and
meets the standard. It can be seen from the Fig. 7(b) that the
distribution of the predicted points is always near the actual

value, and basically, the fitted predicted value also coincides
with the actual value, which indicates that the prediction er‐
ror is small and the accuracy is high. This shows that the
method of this paper, which first predicts the value of wind
power and then predicts the wind power ramping rate, is ef‐
fective in prediction. Therefore, we can make targeted adjust‐
ments to wind power according to the prediction results, and
reduce the probability of ramping events effectively. As a re‐
sult, the operation of power systems with wind power will
become safer and more economical, and the power supply
and grid planning will be more reasonable.

E. Comparison and Analysis

In order to visually analyze the proposed prediction mod‐
el, we compare the predicted point distribution maps of LS-
SVM, BPNN, long short-term memory (LSTM), deep belief
network (DBN), EMD combination prediction model,
EEMD combination prediction model, and VMD combina‐
tion prediction model considering influencing factors by us‐
ing MI with the model proposed in this paper. Among them,
the EMD combination prediction model, the EEMD combi‐
nation prediction model, and the VMD combination predic‐
tion model firstly use EMD, EEMD, or VMD to decompose
wind power data, and then use BPNN to predict high-fre‐
quency components and LS-SVM to predict intermediate-
and low-frequency components, and finally, use BPNN for
integration. For the VMD combination prediction model con‐
sidering the influencing factors by using MI, after using
VMD to decompose the wind power data, we use MI to con‐
sider the influencing characteristics of each modal compo‐
nent, BPNN to predict the high-frequency components, and
LS-SVM to predict the intermediate- and low-frequency
components. Finally, BPNN is used for integration.

In order to analyze the above model prediction results
more intuitively, we compare each model using the evalua‐
tion indicators mentioned above. The calculation results are
shown in Table VII.

It can be clearly seen from Table VII that the prediction
accuracy of the multi-frequency combination prediction mod‐
el is significantly higher than that of the single prediction
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Fig. 7. Prediction results of wind power ramping rate. (a) Predicted and
actual PRR. (b) Distribution of predicted points.

TABLE VII
PREDICTION PERFORMANCE INDICATORS OF EACH MODEL IN WIND FARM

IN NORTHERN SHAANXI, CHINA

Model

VMD+mRMR+BPNN+LS-SVM

VMD+MI+BPNN+LS-SVM

VMD+BPNN+LS-SVM

EMD+BPNN+LS-SVM

EEMD+BPNN+LS-SVM

LS-SVM

BPNN

LSTM

DBN

Evaluation index (MW)

MSE

0.8537

0.9240

1.3148

6.7821

4.0752

12.6100

12.8671

11.4221

11.1682

RMSE

0.9270

0.9612

1.1466

2.6042

2.0187

3.5511

3.5871

3.3797

3.3419

MAE

0.7044

0.7478

0.9088

1.7741

1.5600

2.5979

2.6844

2.4910

2.3872
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model for the wind farm in northern Shaanxi, China. For ex‐
ample, for MSE, the prediction accuracy of the EMD combi‐
nation prediction model is higher than those of the LS-SVM,
BPNN, LSTM, and DBN by 46.2%, 47.3%, 40.6%, and
39.3%, respectively. The prediction accuracy of the EEMD
combination prediction model is higher than that of the LS-
SVM, BPNN, LSTM, and DBN by 67.7%, 68.3%, 64.3%,
and 63.5%, respectively. The prediction accuracy of the
VMD combination prediction model is higher than that of
the LS-SVM, BPNN, LSTM, and DBN by 89.6%, 89.8%,
88.5%, and 88.2%, respectively. The prediction accuracy of
the VMD combination prediction model, which considers the
influencing factors by using MI, is higher than those of the
LS-SVM, BPNN, LSTM, and DBN by 92.7%, 92.8%,
91.9%, and 91.7%, respectively. The prediction model in this
paper is higher than those of the LS-SVM, BPNN, LSTM,
and DBN by 93.2%, 93.4%, 92.5%, and 92.4%, respectively.

The combination prediction model proposed in this paper
has the highest accuracy. For example, for MAE, the predic‐
tion accuracy in this paper is higher than those of the EMD
combination model, EEMD combination model, and VMD
combination model by 60.3%, 54.8%, and 22.5%, respective‐
ly. It can be seen that the wind power prediction accuracy is
significantly improved considering the influencing factors
such as meteorology.

Similarly, the prediction situation of wind farm in Yunnan
is basically consistent with that of wind farm in northern
Shaanxi. It can be seen from Table VIII that the prediction
accuracy of the combination prediction model is higher than
that of the single prediction model. For the combination pre‐
diction model, the improved EEMD combination prediction
model based on EMD is more accurate than EMD. The accu‐
racy of VMD combination prediction model that improves
the “end-point effect” is higher than that of EEMD, and the
accuracy of the VMD combination prediction model that
considers the influencing factors is higher. However, the ac‐
curacy of the VMD combination prediction model that con‐
siders the influencing factors on the basis of MI and mRMR
is higher than that of the VMD combination prediction mod‐
el that considers the influencing factors only by using the
MI.

IV. CONCLUSION

In this paper, the combination of decomposition method
and feature selection method considers not only the multi-fre‐
quency of wind power data, but also the influence of wind
speed and temperature on wind power. In order to avoid the
modal aliasing and false components of EMD and EEMD
when decomposing wind power data, this paper uses VMD
to decompose wind power, whose principle is completely dif‐
ferent from those of EMD and EEMD, aiming to make bet‐
ter use of the multi-frequency of wind power and improve
the prediction accuracy. In addition, wind power data is af‐
fected by wind speed, direction, and other characteristics, so
the components of various frequencies contain the above in‐
formation. To this end, this paper uses mRMR for feature se‐
lection, which aims to select the features that have a greater
impact on the component of various frequencies. When se‐
lecting features, a feature matrix composed of wind speed,
wind direction, temperature and other features is firstly estab‐
lished, and the incremental search method is used to estab‐
lish candidate feature sets of each component. The features
are then arranged in the candidate feature set in descending
order of mRMR, and are input into the prediction model one
by one to calculate the error. Finally, the number of features
is taken with the smallest error as the input feature of the
component. It can be seen from the case study that after con‐
sidering the influence of features on each component, the
model prediction accuracy is significantly improved. It turns
out that the prediction model proposed in this paper has
higher accuracy.

In addition, when the input feature set is selected after the
candidate feature set is established, the features of the candi‐
date feature set are input into the prediction model one by
one, and the calculated error is taken as the decisive factor.
The workload is relatively large although this will greatly
improve the prediction accuracy of each component and re‐
duce the input dimension. Therefore, it is the next research
direction of this paper to find a better way to choose the in‐
put feature set or develop a better feature selection method.
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