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Spatio-temporal Convolutional Network Based
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Abstract——The rapidly increasing wind power penetration
presents new challenges to the operation of power systems. Im‐
proving the accuracy of wind power forecasting is a possible so‐
lution under this circumstance. In the power forecasting of mul‐
tiple wind farms, determining the spatio-temporal correlation of
multiple wind farms is critical for improving the forecasting ac‐
curacy. This paper proposes a spatio-temporal convolutional
network (STCN) that utilizes a directed graph convolutional
structure. A temporal convolutional network is also adopted to
characterize the temporal features of wind power. Historical da‐
ta from 15 wind farms in Australia are used in the case study.
The forecasting results show that the proposed model has high‐
er accuracy than the existing methods. Based on the structure
of the STCN, asymmetric spatial correlation at different tempo‐
ral scales can be observed, which shows the effectiveness of the
proposed model.

Index Terms——Deep learning, spatio-temporal correlation,
wind power forecasting, graph conventional network (GCN).

I. INTRODUCTION

AS a clean source of renewable energy, wind power gen‐
eration has been rapidly developed and globally ap‐

plied in recent years [1]. Because of its intermittent and sto‐
chastic nature, the rapid increase of wind power penetration
presents new challenges to the dispatching and planning of
power systems. Improving the accuracy of wind power fore‐
casting can contribute to improving the power system stabili‐
ty and increasing the consumption rates of wind power [2].

Wind power forecasting technology has made great ad‐
vances over the last several decades, but most existing meth‐
ods have focused merely on single site using temporal fea‐
tures. However, power generation from multiple wind farms
has not only temporal correlation but also spatial correlation.
The existing research has also shown that wind power fore‐
casting errors are reduced significantly when spatio-temporal

correlation is considered [3].
Wind power forecasting with spatio-temporal correlation

can be used not only in multiple wind farms in an area but
also in the wind turbines of a wind farm [4]. Atmospheric
motion produces similar patterns of wind speed and wind di‐
rection between different sites in an area. Therefore, the spa‐
tio-temporal correlation of wind power is related to wind
speed, wind direction, and the distance between sites. A
method for combining the historical data of multiple sites
with prior knowledge of spatio-temporal correlation is the
main goal of this study.

The existing wind power forecasting methods with spatio-
temporal correlation can be divided into the following cate‐
gories.

1) Physical methods: they are based on numerical weather
prediction and geographical information. Although physical
methods describe the atmospheric motion accurately, the
high computational complexity limits the wide application of
short-term wind power forecasting [5], [6].

2) Statistical methods: they use historical measurement da‐
ta to establish explicit models between forecasts and mea‐
surements. These methods include Markov chains [7], copu‐
la functions [8], and regressive models [9], which have
much simpler computational complexity as compared with
physical methods. In [10], a conditional parametric model is
proposed, which is later used as the basis for probabilistic
forecasting [11]. In [12], a wind power forecasting frame‐
work is proposed by using off-site information for the pur‐
poses of privacy preservation. However, these approaches do
not employ wind power data with high-dimensional nonlin‐
ear features.

3) Artificial intelligence (AI) methods: they use historical
measurements to train deep learning models and establish im‐
plicit models [13]. Convolutional neural networks (CNNs)
are widely used to learn spatial features of wind power data
and are often combined with long short-term memory
(LSTM) [14] or gated recurrent units (GRUs) [15] to learn
temporal features. These methods enable implicit models to
realize wind power forecasting when considering spatio-tem‐
poral correlation.

Although deep learning approaches have obtained better
forecasting results than statistical models, most AI methods
reported previously have several drawbacks as follows.

1) Many deep learning models represent the data in the
Euclidean space. Although the sequential data can be ex‐
pressed effectively, geographical data of multiple sites clear‐
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ly belong to non-Euclidean domains. Describing geographi‐
cal data in the Euclidean space will destroy prior informa‐
tion of the relative positions between sites [16].

2) Interpretability is a major problem for deep learning
models that is difficult to combine with prior information
(e.g., negative correlation between distance and spatial corre‐
lation, and spatial correlation is related to wind direction and
speed).

Geographical data can be represented by a graph model.
However, the structure complexity of graphical data imposes
significant challenges on the existing deep learning models.
The graph neural network (GNN) was first introduced in
[17], and since then, many studies on extending GNN mod‐
els have emerged. Inspired by the great success of CNN, the
graph convolutional network (GCN) has shown excellent ca‐
pabilities in spatial feature extraction. In the fields of trans‐
portation [18] and meteorology [19], the GCN model has be‐
come a hot research topic. Reference [20] uses a GCN mod‐
el to describe the spatial correlation for wind speed forecast‐
ing. In addition, a learnable adjacency matrix for the GCN
model to forecast wind speed is proposed in [21], and a
GCN model is used for fault location in distribution systems
in [22]. Finally, in [23], a GCN model is combined with the
autoencoder for spatio-temporal solar irradiance forecasting.

Although GCNs have proven to be effective in dealing
with non-Euclidean data, the challenges of wind power fore‐
casting remain. The traditional GCN is a general graph learn‐
ing structure of a GNN, and there is room for improvement
in the application of wind power forecasting. In this paper, a
spatio-temporal convolutional network (STCN) is proposed
based on a spectral graph convolution and temporal convolu‐
tional network (TCN). The main contributions of this paper
are described as follows.

1) A directed graph structure is redesigned for multiple
wind farms, and a directed graph convolutional structure is
proposed. The proposed directed graph convolutional struc‐
ture can better extract asymmetric spatial features from the
data of multiple wind farms, making the model more inter‐
pretable.

2) A GCN is combined with a TCN to form an STCN
model that can transmit spatial features at different temporal
scales. Simulation results show that the STCN has higher ac‐
curacy in spatio-temporal wind power forecasting as com‐
pared with traditional methods.

The rest of this paper is organized as follows. Section II
describes the problem formulation of power forecasting for
multiple wind farms. Section III presents the background the‐
ories on GCN and TCN. Section IV introduces the power
forecasting model of STCN for multiple wind farms. Section
V discusses the numerical results and Section VI concludes
this study.

II. PROBLEM FORMULATION

The objective of power forecasting for multiple wind
farms is to capture the correlation among historical wind
power data, geographical information, and wind power fore‐
casting values in an area.

When the geographical scale of an area is tens to hun‐

dreds of kilometers, a mesoscale atmospheric physical model
can be used to describe atmospheric motion [24]. Based on
the atmospheric physical model, the power generation of
multiple wind farms can be formulated by the nonlinear dy‐
namic equation as [25]:

ì
í
î

xt + 1 = f (xtχ tt)+ ξt

gt + 1 = h(xt + 1t + 1)+ ηt + 1

(1)

where f (·) and h(·) are nonlinear functions; x is the state of
the atmospheric system; χ is the state of the atmospheric sys‐
tem boundary, and the atmospheric states include wind
speed, wind direction, temperature, and geopotential height;
ξ and η are the white Gaussian noises; and t is the time in‐
dex. The site state of the next moment xt + 1 is related to the
system boundary state χ t and previous site state xt, and the
site wind power value gt + 1 is related to the site state xt + 1.

Suppose a set of N wind farms is presented in an area,
where the power of wind farm i at time t is denoted by P i

t.
The power of another wind farm P j

t ( j ¹ i) can then be used
as an incomplete boundary value as input for the target pow‐
er forecasting of wind farms.

The distance between wind farms i and j is denoted by dij,
and the symmetric distance matrix M N × N is used to store the
distance information. If L-step historical data are used as the
forecasting input information to predict the wind power after
K steps, the implicit formulation of the power forecasting
problem for multiple wind farms can be written as:

H(P i
t - L + 1:tMθ)=P i

t +K (2)

where P i
t - L + 1:t ={P i

t - L + 1P
i
t - L + 2...P

i
t }; iÎ{12...N}; θ is the

learnable parameter; and H(·) is the mapping function of the
deep learning model.

III. BACKGROUND THEORIES

A. Spectral Graph Convolution

First, an undirected graph model G =(E,V, A) is used to de‐
scribe the geographical information of wind farms, where E
is the set of graph edges; V is the set of N nodes that corre‐
sponds to wind farms; and A is the adjacent matrix that in‐
cludes the connection weight between nodes. In the geo‐
graphical graph model, A can be calculated by the distance
information matrix M [26].

Because it is difficult to define a GCN in a spatial do‐
main, the spectral graph convolution in the Fourier domain
is proposed, which transforms graph data x and convolution
kernel g to the spectral domain for convolution. It then per‐
forms the inverse Fourier transform on the convolution re‐
sult to obtain the spatial domain result [27].

An essential matrix in spectral graph convolution is the
graph Laplacian, the normalized Laplacian matrix of which
is defined as: L = IN -D-1/2 AD-1/2 =UΛU T, where IN is the
identity matrix; Λ is the eigenvalues diagonal matrix of L; U
is the eigenvector matrix of L; and D is the degree matrix,
the element of which is Dii =∑

j

Aij, and Aij is the connection

weight of nodes i and j. The spectral convolutional operation
can be written as:
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g*x =F -1 (F(g)F(x))=Ug(Λ)U T x (3)

where g is the convolution kernel; x is the input graph data;
“∘” is the Hadamard product; F(x)= U T x and F -1 (x)= Ux are
the graph Fourier transform of x and its inverse, respective‐
ly; and g(Λ)= diag(θ) is defined as filter parameters to derive
the GCN, but this design has O(N 2 ) computational complexi‐
ty. The solution of this problem is used to transform gθ into
a Chebyshev polynomial function as [28]:

gθ (Λ)*x =U ( )∑
k = 0

K

θkTk (Λ̂) U T x =∑
k = 0

K

θkTk (L̂)x (4)

where Λ̂ = 2Λ/λmax - IN, and λmax is the largest eigenvalue of
L; and L̂ = 2L/λmax - In. Reference [29] proposes an approxi‐
mate method as: λmax ≈ 2, K = 1, θ = θ0 =-θ1. Under these con‐
ditions, (4) can be simplified as:

gθ (Λ)*x » θ0 x + θ1 (L - IN )x = θ(IN +D-1/2 AD-1/2 )x (5)

To avoid the explosion/disappearance of gradients in the
deep network, a renormalization trick can be used as:

L = IN +D-1/2 AD-1/2 = D̂-1/2 ÂD̂-1/2Â =Α + IND̂ii =∑
j

Âij (6)

Thus, (5) can be rewritten as:

gθ (Λ)*x = θD̂-1/2 ÂD̂-1/2 x (7)

Most existing deep learning models use (7) to construct
the first-order approximate graph convolution to avoid the
calculation of high-order Chebyshev polynomials. This
yields a clear geometric meaning, namely, the weighted sum‐
mation of each node eigenvalues in the first-order neighbor‐
hood of the spatial domain.

B. Temporal Convolution

The spectral graph convolution can extract only spatial do‐
main features of graph data. Therefore, it is necessary to
choose a network structure to extract temporal features. Re‐
current neural networks (RNNs) and the improved models
(e.g., LSTM and GRU) are the common research methods to
handle the sequential data. However, the recursive structures
of these models make it difficult to compute in parallel,
which introduces the problem of gradient explosion or disap‐
pearance.

The causal convolution of the TCN model is used to ex‐
tract temporal features [30]. Unlike RNN-based approaches,
the TCN model can handle the sequential data in a non-re‐
cursive manner, thus providing improved parallel computa‐
tional capabilities and alleviating the gradient problem.
When a sequential input data x and filter q are used, the
causal convolution operation is represented as:

q(t)*x =∑
s = 0

S - 1

q(s)x(t - ds) (8)

where S is the size of the convolution kernel; and d is the di‐
lation factor that controls the interval of input convolution
data. The output of causal convolution depends only on the
previous sequential data, and therefore has a strictly causal
relationship. In addition, the causal convolution network al‐
lows for an exponentially large receptive field by increasing
the layer depth [31].

The structure of TCN based on causal convolution with

kernel size of 2 is presented in Fig. 1. The output of differ‐
ent layers can transmit the relations between the historical se‐
quential data and the forecasting values at different temporal
scales. As shown in Fig. 1, layer 1 transmits the features of
[t - 1 t] and layer 2 transmits the features of [t - 3 t], etc.

IV. METHODOLOGY

In this section, the original graph and directed graph con‐
volutional models are proposed. Then, the STCN power fore‐
casting model for multiple wind farms is presented.

A. Graph Structure of Multiple Wind Farms

Section III provides background theories on traditional
spectral graph convolution. It is worth noting that the tradi‐
tional GCN model is based on the undirected graph with a
definite connection. Using the traditional graph model for
spatio-temporal forecasting has the following two drawbacks.

1) In the undirected graph spectral convolution, the spatial
correlation between nodes is equal. The adjacency matrix A
of the undirected graph is a symmetric matrix, thus Aij =Aji.
However, the atmospheric motion is directional, which
causes an unequal spatial correlation between wind farms.
This characteristic can be extracted by means of a wind rose
diagram [32].

2) The weight of edge in graph is used to describe the cor‐
relation between wind farms. However, the atmospheric mo‐
tion is everywhere in an area. Therefore, the correlation of
wind power is not only limited to the edges in the graph but
also exists between and outside the graph nodes.

In summary, we need to construct a directed graph to de‐
scribe the different correlation among wind farms. The graph
structure of directed wind farms is designed using a fully-
connected directed graph, which contains external interaction
edges on the nodes. As an example, Fig. 2 presents a direct‐
ed graph structure with three wind farms.

Input layer
(Dilation is 1)

Layer 1
(Dilation is 2)

Layer 2
(Dilation is 4)

Layer 3

Output

Output

Output

tt�1t�2t�3t�4t�5t�6t�7

Fig. 1. Structure of TCN based on casual convolution with kernel size of 2.

Wind farm B

Wind farm C

Wind farm A

Fig. 2. Directed graph structure with three wind farms.
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B. Directed Graph Convolutional Structure

A directed graph convolutional structure provides the foun‐
dation for describing the spatial correlation of different direc‐
tions between graph nodes. The existing studies typically use
matrix M to calculate matrix A, where Aij and Aji correspond
to the edges of nodes i and j in different directions. Using
(7) produces the spectral graph convolution of the directed
graph (Laplacian matrix L remains a symmetric constant ma‐
trix). Therefore, this study proposes a directed spectral
graph convolutional structure to match the novel graph struc‐
ture. The first-order directed spectral graph convolution can
be transformed into [33]:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

gθ (Λ)*x =[θ1 (D-1
O A)+ θ2 (D-1

I AT )]x

DO = diag ( )∑
i

Aij

DI = diag ( )∑
j

Aij

(9)

where D-1
O A and D-1

I AT are the Laplacian matrices of the
output and input processes, respectively. Note that although
a directed graph is used, no real two-way transmission pro‐
cess exists between wind farms. As an example, Aij repre‐
sents only the spatial correlation of wind farm i to wind
farm j. When forecasting the power of wind farm j, there is
no need to consider the spatial correlation of wind farm j to
wind farm i. Therefore, in the power forecasting problem for
multiple wind farms, the graph convolution needs to consid‐
er only the input process.

In the graph structure, the nodes have a connection with
the outside. Therefore, we propose two self-adaptive diago‐
nal matrices to capture the hidden spatial correlation with
the outside. In summary, the first-order graph convolution is:

ì

í

î

ïïïï

ïïïï

gθ (Λ)*x =[θ(D-1
O A + θI )]x

DO = diag ( )∑
i

Aij + θO (ii)
(10)

where θO = diag(θ') and θI = diag(θ'') describe the correlation
of each node to the outside and the correlation of the outside

to each node, respectively; and θ'θ''ÎRN. One self-adaptive
matrix has N learnable parameters. Off-diagonal elements of
matrix A are represented by 1/dij and Aii = 0, and therefore
D-1

O A + θI is the Laplacian matrix of the proposed directed
graph convolution. When the element θO (ii) increases, it
can effectively describe the characteristics that node i has a
high spatial correlation with the outside and a weak correla‐
tion with the other nodes. When the element θI (ii) increas‐
es, it can effectively describe the characteristics that the out‐
side has a strong correlation with node i but the other nodes
have a weak correlation with node i.

The directed graph convolutional structure is based on the
directed graph structure. Because the two adaptive matrices
have learnable parameters, the spatial correlation between
multiple wind farms is not completely limited by prior dis‐
tance information. In addition, the graph structure of multi‐
ple wind farms is a fully-connected graph so that the spatial
correlation learning can be realized using the first-order
graph convolution. There is no need to rely on high-order
GCNs to transmit non-adjacent node information.

C. STCN Structure

Although the first-order graph convolutional layer can real‐
ize the transmission of spatial correlation features, the spatio-
temporal features are not similar at different temporal scales.
Therefore, this paper uses multiple first-order GCN layers to
extract spatial features at different temporal scales. Consider‐
ing the multi-layer TCN can extract the temporal features at
different temporal scales, the GCN layer is combined with
the TCN layer to form a GCN-TCN layer that can realize
the spatial feature transmission at the corresponding tempo‐
ral scales.

The STCN mainly consists of three stacked GCN-TCN
layers, as shown in Fig. 3. With the stacking of multiple
GCN-TCN layers, the GCN layer transmits short- and long-
term spatial features at the bottom and top layers, respective‐
ly. To extract the spatio-temporal correlation features of vari‐
ous temporal scales to forecast wind power, STCN adds a
skip connection to transmit output values of different GCN-
TCN layers.

It should be noted that the TCN layer only contains one
layer of the TCN network. This is due to the reasonable de‐
sign of the dilation and kernel sizes of multiple TCN layers.

Finally, the input data temporal scale can be compressed to
one dimension in output, and overall features of all sequen‐
tial data can be extracted effectively.

Graph
data

TCN

…

GCN-TCN

… …

GCN-TCN

…

GCN-TCN

Residual connection

�

Input
historical

data

Output
forecasting

dataSkip connection
Skip connection

Residual connection

TCN

TCN

…

TCN

TCN

…

TCN Graph
data

Fig. 3. Structure of STCN.
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In addition to the output layer, each GCN-TCN layer has
a residual connection to the next layer. A residual connection
can be integrated into various layers of neural networks to
prevent network degradation resulting from the deep layer
[34]. In the STCN, a residual connection is used to avoid
the spatial correlation of the underlying network that affects
the feature extraction of the upper network. Therefore, using
a residual connection can improve the fitting ability of the
STCN. The prior information is fully integrated into the ST‐
CN design to improve the interpretability of this model.

V. NUMERICAL RESULTS

A. Dataset

In this case study, historical power data of 15 wind farms
are considered to train and evaluate the proposed power fore‐
casting model for multiple wind farms. The 15 wind farms
(wind farms A-O) are located in Australia, are shown in Fig.
4. The historical wind power data are obtained from the Aus‐
tralian Energy Market over 3 years from January 2018 to Fe‐
buary 2021 in 5-min intervals [35]. Each set of day data con‐
tains 288 data samples. Wind power data from 2018 to 2019
are treated as a training set. Wind power data from 2020 to
2021 are treated as a testing set to evaluate the model perfor‐
mance. All data are normalized during the training process.

B. Evaluation Indices

Root mean square error (RMSE) and mean absolute error
(MAE) are widely employed as evaluation indices of wind
power forecasting.

RMSE =
1
N∑i = 1

N 1
C∑t = 1

C

(P̂ i
t -P i

t )2 (11)

MAE =
1
N∑i = 1

N ( )1
C∑t = 1

C

|P̂ i
t -P i

t | (12)

where P̂ i
t is the forecasting value of wind power at site i at

time t; and C is the total number of test samples.
MAE and RMSE can be used as the indices of prediction

accuracy and precision for short-term wind power forecast‐
ing, respectively. Accuracy refers to the difference between
the forecasting and measured values. MAE can better reflect
the actual situation of the forecasting error. Precision de‐
scribes the stability of the forecasting error, and thus RMSE
gives more weight to large residual samples. With similar
MAEs, a smaller RMSE represents a more stable forecasting
result [36], [37].

C. Model Architecture and Details of Training

The basic STCN model in this study uses three GCN-
TCN layers, as shown in Fig. 3. The temporal dimension of
input historical wind power data involves 12 steps to predict
the wind power after one step. The kernel sizes and dilation
coefficients of the three TCN layers are given as {(2 ´
11) (2 ´ 12) (3 ´ 14)}, as shown in Fig. 1. Leaky-ReLU ac‐
tivation function is employed after the GCN and TCN layers
with a coefficient of 0.2. ReLU activation is used in the out‐
put layer to ensure that the wind power forecasting value is
greater than zero. Off-diagonal and diagonal elements of ad‐
jacent matrix A are represented by 1/dij and 0, respectively.

The model is implemented on a computer with an NVID‐
IA TITAN V graphics card and Intel Core i9-7900X 3.30
GHz. The proposed STCN model is designed using Python 3
and Pytorch 1.6.0 backend, CUDA 10.1, and cuDNN 7.5 li‐
braries. The learning rate is set to be 10-3 and the number of
training epochs is 100 with a batch size of 50. All models
trained in this study use the Adam optimizer algorithm [38].
The autograd mechanism of PyTorch is used for gradient der‐
ivation. The detailed training process of the Adam optimizer
algorithm is shown in Algorithm 1.

D. Comparison with State-of-the-art Methods

To verify the superiority of the proposed STCN, four mod‐
els including the persistence (PSS) method, fully-connected
network (FCN), RNN, and LSTM are adopted as baselines.
Tables I and II show the average RMSEs and MAEs of 15
wind farms with 5-min-, 15-min-, 30-min-, 1-hour-, 2-hour-,
and 3-hour-ahead power forecasting tasks, respectively. Thir‐
ty samples with 1-hour-ahead forecasting values and forecast‐
ing absolute errors for wind farm A on July 2-3, 2020, are
shown in Fig. 5.

A

B

C

D
E F

G H
I

J

K

L

M

N

O

Fig. 4. Locations of 15 wind farms in Australia.

Algorithm 1: Adam optimizer algorithm

Input: input objective function with parameters loss(θ); initialize learning
rate lr; model parameters θ0; smoothing constant β1 = 0.9 and β2 = 0.999;
the first-moment coefficient m0 = 0; the second-moment coefficient
v0 = 0; t = 0; ε = 10-8

While θt is not converged do
t¬ t + 1
Get gradients at timestep t: gt¬Ñlosst (θt -1 )
Update biased first-moment estimate: mt¬ β1mt -1 + (1 - β1 )gt

Update biased second-moment estimate: vt¬ β2vt -1 + (1 - β2 )g 2
t

Correct the first-moment estimate: m̂t¬ mt (1 - β1 )

Correct the second-moment estimate: v̂t¬ vt (1 - β2 )

Update model parameters: θt¬ θt - 1 - lr × m̂t ( )v̂t + ε

end
return θt
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The PSS only considers the smoothness assumption in the
time series and thus does not consider the spatial correlation.
When the forecasting temporal interval is extended, the cor‐
relation of future wind power values with current values is
decreased. As shown in Tables I and II, PSS produces accu‐
rate short-term wind power forecasting values under the 5-
min-ahead condition. However, the corresponding RMSE
and MAE increase at very fast rates as the forecasting tem‐

poral interval is extended.
The FCN only considers the temporal correlation but does

not consider the spatial correlation. Because the temporal
features are considered, the MAE and RMSE of FCN are
smaller than those of PSS in 1- to 3-hour-ahead wind power
forecasting.

For the 5-, 15-, and 30-min-ahead wind power forecasting
of multiple wind farms, the MAEs and RMSEs of the RNN
and LSTM are higher than those of the PSS and FCN. This
is due to the recurrent network structure, which can extract
the temporal features but cannot effectively process non-Eu‐
ropean data of multiple wind farms. Although the RMSE of
RNN is smaller than that of any other test model in the 2-
hour and 3-hour-ahead wind power forecasting, the corre‐
sponding MAE of RNN shows unsatisfactory results. This
shows that RNN has a higher precision in this case, but is
less accurate. As shown in Fig. 5, RNN and LSTM have
higher absolute errors. Overall, LSTM is more stable and ac‐
curate than RNN.

STCN obtains the minimum MAEs and RMSEs in 5-
min-, 15-min-, 30-min-, and 1-hour-ahead wind power fore‐
casting of multiple wind farms. Although the RMSE of ST‐
CN is slightly more than RNN under the 2-hour and 3-hour-
ahead conditions, when the MAE and RMSE are combined,
the STCN performs the best. In the case of 3-hour-ahead
forecasting, STCN is the only model with MAE less than 19
MW, which is much lower than those of other models. In
summary, the STCN model achieves better results in power
forecasting for multiple wind farms than the traditional mod‐
els.

E. STCN Model Analysis

This section analyzes the effects of STCN on the accuracy
and precision by adjusting the graph convolutional structure,
different input predictors, and different season data.

To verify the efficacy of the directed graph structure and
directed graph convolution, the following four graph convo‐
lutional models are integrated into the STCN for compari‐
son: ① a constant Laplacian matrix with an undirected
graph structure using a Chebyshev polynomial first-order ap‐

proximation GCN as given in (7); ② a Laplacian matrix us‐
ing an output matrix θO; ③ a Laplacian matrix using an in‐
put matrix θI; ④ a Laplacian matrix using an output matrix
θO and input matrix θI. Table III shows the average scores
of RMSE and MAE in the 3-hour-ahead forecasting tasks.

The constant Laplacian matrix is unable to learn spatial
correlation dynamically at various temporal scales. The mod‐
el that only uses a single self-adaptive matrix performs bet‐
ter than the constant Laplacian matrix model in terms of

TABLE I
RMSES OF FORECASTING MODELS

Model

PSS

FCN

RNN

LSTM

STCN

RMSE with forecasting intervals (MW)

5-min

4.835

5.407

6.576

4.901

4.709

15-min

9.696

9.652

10.783

9.901

9.600

30-min

13.519

13.384

14.057

13.546

13.263

1-hour

17.902

17.806

17.743

17.896

17.417

2-hour

24.557

23.972

23.219

23.543

23.382

3-hour

29.198

27.819

27.067

27.427

27.184

TABLE II
MAES OF FORECASTING MODELS

Model

PSS

FCN

RNN

LSTM

STCN

MAE with forecasting intervals (MW)

5-min

2.653

3.351

4.471

2.853

2.604

15-min

5.343

5.367

6.750

5.662

5.298

30-min

7.856

7.941

9.130

8.306

7.812

1-hour

11.216

11.205

12.422

12.049

11.096

2-hour

16.194

16.088

16.692

16.481

15.731

3-hour

19.420

19.116

19.391

19.314

18.716
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Fig. 5. Thirty samples with 1-hour-ahead forecasting values and forecasting absolute errors for wind farm A on July 2-3, 2020.
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RMSE and MAE. It is shown that adding a self-adaptive ma‐
trix can improve the learning ability of spatio-temporal corre‐
lation. The STCN model includes two self-adaptive matrices,
which achieve the lowest scores on two evaluation metrics.

To analyze the impact of different wind farm predictors
on the accuracy of wind power forecasting, the data from
different numbers of wind farms are selected for model train‐
ing and comparison with the forecasting results of three tar‐
get wind farms (wind farms C, G, and M). Table IV shows
the average RMSEs and MAEs in the testset for 3-hour-
ahead wind power forecasting of target wind farms.

As shown in Table IV, the increase in the number of ob‐
servable wind farms reduces the MAEs and RMSEs with
three target wind farms. When 15 observable wind farms are
used as the input, the STCN model improves the MAEs and
RMSEs by 3.17% and 2.88%, respectively. It is also verified
that the power data of the other wind farms could be used as
effective spatial input for target wind power forecasting to
improve the forecasting accuracy.

The increase in spatial information can improve the accu‐
racy of wind power forecasting. In this study, the wind pow‐
er data with different time steps are input into the STCN
model for analysis. Table V shows the kernel sizes and dila‐
tion coefficients of the TCN layers as well as the average
RMSEs and MAEs of 1-hour-ahead wind power forecasting
with different input time steps.

As shown in Table V, with four input time series, the fore‐
casting accuracy is unsatisfactory. Fewer input time steps
cause the STCN model to learn temporal features insuffi‐
ciently, which in turn affects the forecasting results. With 12
and 6 input time series, the minimum values of RMSE and
MAE are achieved, respectively. When the number of time
steps increases, the RMSE and MAE become stable. Wind
power data have a positive correlation in a short-term time
series, but overlong input time steps have insignificant ef‐
fects on forecasting results. With an increase in the number
of input temporal predictors, the results of STCN tends to be

stable and does not deteriorate, thus verifying the effective‐
ness of the skip and residual connections in the STCN mod‐
el. The results thus show that the proposed model can flexi‐
bly extract wind power features at various temporal scales
without being affected by overlong temporal predictors.

Finally, wind power forecasting in different seasons is ana‐
lyzed. PSS is used as a benchmark of wind power volatility
to compare with STCN forecasting. Table VI shows the aver‐
age RMSEs and MAEs of 1-hour-ahead wind power forecast‐
ing in different seasons.

As shown in Table VI, the STCN model has the smallest
RMSEs and MAEs in winter. Spring and summer have larg‐
er forecasting errors. It can be shown that the wind power
fluctuations of the PSS in spring and summer are significant‐
ly greater than those in autumn and winter. However, com‐
pared with the PSS, the STCN can improve the prediction
accuracy in each season.

In summary, the STCN model can effectively process non-
Euclidean structural data. The directed GCN with self-adap‐
tive diagonal matrices can increase the accuracy and preci‐
sion of forecasting results, and the GCN-TCN layers com‐
bined with skip and residual connections can identify spatio-
temporal features at different temporal scales. The STCN
model has high accuracy in power forecasting of multiple
wind farms.

F. Model Complexity

The model complexity of deep learning models is a criti‐
cal consideration when a new model is devised for real-
world problems. In this section, we discuss two main aspects
of model complexity, which are presented in Table VII.

In terms of the number of model parameters, FCN has the
highest number as it fully connects all units between layers.
The number of the parameters of RNN is significantly less

TABLE V
AVERAGE RMSES AND MAES WITH DIFFERENT INPUT TIME STEPS

Time steps

4

6

8

12

18

24

(Kernel size, dilation
coefficient)

(2×1,1), (2×1,2)

(2×1,1), (3×1,2)

(2×1,1), (2×1,2), (2×1,4)

(2×1,1), (2×1,2), (3×1,4)

(2×1,1), (3×1,2), (3×1,4)

(2×1,1), (3×1,2), (4×1,4)

RMSE (MW)

18.231

17.616

17.606

17.417

17.829

17.739

MAE (MW)

11.310

11.018

11.012

11.096

11.030

11.014

TABLE III
AVERAGE RMSES AND MAES OF DIFFERENT LAPLACIAN MATRICES

Form

Constant

Output

Input

Output-input

Laplacian matrix
configuration

A

AθI

AθO

AθIθO

RMSE (MW)

27.986

27.523

27.199

27.184

MAE (MW)

19.275

18.811

19.005

18.716

TABLE IV
AVERAGE RMSES AND MAES WITH DIFFERENT NUMBERS OF TARGET

WIND FARM

Number

3

5

10

15

Wind farms

C, G, M

D, J, C, G, M

A, D, F, J, K, L, O, C, G, M

All

RMSE (MW)

28.330

28.215

27.648

27.513

MAE (MW)

19.464

19.460

19.203

18.847

TABLE VI
AVERAGE RMSES AND MAES OF 1-HOUR-AHEAD WIND POWER

FORECASTING IN DIFFERENT SEASONS

Season

Spring

Summer

Autumn

Winter

STCN

RMSE (MW)

20.627

19.581

17.660

16.757

MAE (MW)

13.109

12.644

11.236

10.375

PSS

RMSE (MW)

21.049

20.800

18.486

17.821

MAE (MW)

13.222

13.303

11.667

11.073
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than that in the FCN. Regardless of the length of the sequen‐
tial data, the RNN only requires a set of network parame‐
ters. In addition, the LSTM contains multiple gate units, and
therefore the number of the parameters is much greater than
that of the RNN. The proposed GCN contains two self-adap‐
tive matrices, and therefore the number of parameters of the
STCN is slightly more than that of the STCN with constant
Laplacian matrix. More parameters mean the model is more
complex. However, the FCN and LSTM do not show better
results than the STCN. It should be noted that more parame‐
ters usually can learn more accurate forecasting information
in model training, however, STCN obtains more accurate
forecasting results with relatively fewer model parameters.
Therefore, the structure of STCN is confirmed to be excel‐
lent.

For the forecasting task, the STCN requires longer train‐
ing time than the other models. The STCN contains skip and
residual connections that result in an increase in network
structure complexity. The training time of the RNN and
LSTM is longer than the FCN because a recurrent structure
is not suitable for parallel acceleration. Compared with other
models, the STCN improves the forecasting accuracy of mul‐
tiple wind farm within the acceptable training time range.

G. Spatio-temporal Analysis

The directed graph convolutional structure represents the
major contribution of the proposed model. Although the ac‐
curacy of the STCN model is higher than those of existing
models, to show the effectiveness of spatial feature extrac‐
tion for directed graph models, we use the Laplacian matrix
of STCN for qualitative analysis of the spatial correlation.
The non-diagonal elements in the matrix represent the spa‐
tial correlation. To show the non-diagonal elements more
clearly, diagonal elements are set to be zero in this case. The
resulting value could be normalized as:

L̂ =
L - Lmin

Lmax - Lmin
(13)

where Lmax and Lmin are the maximum and minimum values
of L, respectively.

Geographical distance is the prior knowledge necessary to
reflect the spatial correlation of multiple wind farms. Geo‐
graphical distance data between wind farms can be used to
construct the adjacency matrix A. However, the constant La‐
placian matrix obtained by Chebyshev polynomial first-order
approximation is symmetric, as shown in Fig. 6.

The Laplacian matrix is a major factor affecting spatial
correlation in the GCN model. The constant Laplacian ma‐

trix is a symmetric matrix, which means that the spatial cor‐
relation between wind farms is equal. In addition, the con‐
stant Laplacian matrix does not change with the various tem‐
poral scales.

To qualitatively illustrate the asymmetry of the spatial cor‐
relation of multiple wind farms, the cross-correlation func‐
tion (CCF) is introduced. CCF measures the similarity be‐
tween time series and lagged versions of another time series,
which is a function of the lag. Here, considering two time se‐
ries x(t) and y(t), CCF at lag d is defined as:

CCF =
∑

t

(x(t)- x̄)(y(t - d)- ȳ)

∑
t

(x(t)- x̄))
2 ∑

t

(y(t - d)- ȳ)2
(14)

where x̄ and ȳ are the average values of the two time series.
CCF can be used to analyze the correlation of two wind

farms at different time lags. Historical data of wind farms A,
B, and C are used to calculate the CCFs, as shown in Fig. 7.
The unit lag temporal interval is 3 hours. The correlation of
A to C is higher than C to A. Therefore, in spatio-temporal
forecasting, the historical data of A play a more important
role in the forecasting of wind farm C. Similarly, the spatial
correlation of A to B is higher than B to A at lag temporal
interval 1-4. However, B and C have similar correlations at
lag temporal interval 1-2.

It can be observed from Fig. 7 that the spatial correlation
among wind farms is not completely symmetrical and equal
and may change over time. The proposed directed graph con‐
volution can describe the asymmetric spatial features. The
Laplacian matrix is extracted for analysis, as shown in
Fig. 8.

In the asymmetric Laplacian matrix, L(ij) denotes the spa‐
tial correlation of farms i to j. As shown in Fig. 8(a), L(A,B)
is higher than L(B,A), L(A,C) is higher than L(C,A), and
L(B,C) is similar to L(C,B). Qualitative spatial features are
consistent with the CCF analysis. Note that the wind farms
G, H, and I have weak spatial correlations in the 3-hour-
ahead forecasting. However, Fig. 6 shows that they have a
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Fig. 6. Constant Laplacian matrix calculated by (7).

TABLE VII
NUMBERS OF PARAMETERS AND COMPUTATION TIME OF DIFFERENT MODELS

Model

FCN

RNN

LSTM

STCN (constant L)

STCN

Number

3025

480

1920

567

657

Time (s)

23.67

22.72

23.72

69.54

88.33
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close geographical distance. Considering that the temporal
scale can affect the spatial correlation, the Laplacian matrix
is extracted in the 1-hour-ahead wind power forecasting, as
shown in Fig. 8(b). The spatial correlation of wind farms G,
H, and I can be compared with Fig. 8(a). It can be consid‐
ered that the wind farms are too close to each other, and
neighboring wind farms cannot provide a more effective spa‐
tial correlation for 3-hour-ahead forecasting. However, in 1-
hour-ahead forecasting, the neighboring wind farms have a
high spatial correlation.

The results demonstrate that the directed graph convolu‐
tional structure with adaptive parameters has more powerful
extraction capabilities of spatio-temporal feature. Because of
the symmetry of the adjacent matrix A, the traditional spec‐
tral GCN cannot effectively describe the asymmetry features
in spatial correlation. The constant Laplacian matrix cannot
adapt to the spatial correlation of various temporal scales

and may cause excessive smoothing after passing through
the high-order GCN [39]. The STCN model can not only
use adaptive parameters to extract asymmetric spatial correla‐
tion but also learn spatial correlation at various temporal
scales.

The STCN model can capture the complex nonlinearity
spatio-temporal mapping of a time series of multiple wind
farms. Compared with the undirected graph model, the di‐
rected graph model combines with adaptive parameters and
thus has better adaptability and interpretability for spatio-
temporal forecasting.

VI. CONCLUSION

In this study, a deep learning architecture STCN is pro‐
posed based on a graph model for spatio-temporal wind pow‐
er forecasting. To effectively describe the asymmetry of the
spatial correlation between multiple wind farms, a novel di‐
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Fig. 7. CCFs among wind farms A, B, and C. (a) A and B. (b) A and C.
(c) B and C.
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rected graph model and the corresponding GCN structure are
proposed. The directed GCN layer adds self-adaptive diago‐
nal matrices for spatial feature extraction, and the TCN layer
extracts temporal features of each wind farm. The multiple
GCN-TCN layers extract spatio-temporal correlation of dif‐
ferent temporal scales. Compared with the traditional GCN
model, the novel model can not only describe the asymmet‐
ric spatial correlation but also adaptively learn the correla‐
tion characteristics at different temporal scales.

The superiority of the proposed model is demonstrated on
real-world data in an example. Compared with the existing
models, the proposed model improves the RMSEs and
MAEs in power forecasting for multiple wind farms. In addi‐
tion, it extracts asymmetric spatial correlation at various tem‐
poral scales more accurately. It is interesting to note that in
this study, the STCN model exhibit certain interpretability,
which is not available in traditional deep learning models.

The proposed model can improve the accuracy of power
forecasting for multiple wind farms. However, wind farms in
an area are usually owned by different companies and these
companies are typically unwilling to share private data be‐
cause of security considerations. In the follow-up study, a
wind power forecasting framework will be investigated to en‐
sure data security for multiple wind farms.
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