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A Generic Dynamic Load Model Framework

You Lin and Jianhui Wang

Abstract—Formulating accurate dynamic load models is criti-
cal for power system analysis, control, and planning. In this pa-
per, a generic dynamic load model is proposed. The dynamic
power response of the load is directly approximated as the su-
perposition of various mathematical functions that produce a
dynamic response. Basic physical principles of the dynamic pro-
cess are reflected in the mathematical functions utilized in the
proposed model. First, different stages of the dynamic process
are detected based on the continuity of derivatives of the mea-
surement. Second, a complete set of mathematical functions
that produce the dynamic responses in electric devices are for-
mulated. Third, a parsimonious set of mathematical functions is
selected at each stage by performing feature selection using non-
linear principal component analysis. The proposed model is fur-
ther formulated based on the parsimonious set of mathematical
functions at each stage. Finally, the parameters of the proposed
model corresponding to different system events are solved.
Based on the formulated model, its possible application in event
detection is further analyzed. The proposed model is easy to im-
plement given limited data measurement. Various tests on dif-
ferent system event data are performed to validate the effective-
ness of the proposed model. The results show that the proposed
model has excellent accuracy and robustness for different sys-
tem events.

Index Terms—Approximation, dynamic
framework, load model, physical principle.

process, generic

[. INTRODUCTION

OAD modeling for power system is to reproduce the

power response given system variations. Load modeling
is not a forecasting problem but an optimization problem
that searches for optimal and robust models to produce dy-
namic load behavior corresponding to unforeseen system
events [1]. Accurate load modeling for power system is criti-
cal for power system analysis and control.

From the perspective of constructing a load model struc-
ture, relevant methods can be divided into two categories:
component-based and measurement-based [1]. The compo-
nent-based methods are formulated based on the physical be-
haviors of individual load components such as the induction
motors. In [2], a robust method is proposed to identify the
time-varying parameters of the synthesis load modeling
based on a nonlinear least-square algorithm. An open-source
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Western Electricity Coordinating Council (WECC) compos-
ite load model is implemented in GridPACK™ in [3], in
which high-performance computing and parallel simulation
are applied. In [4], a two-stage method based on deep rein-
forcement learning is proposed to solve optimal parameters
of the WECC load model. In [5], a tensor-based parameter
estimation method is proposed to estimate globally optimal
parameters and perform a sensitivity analysis of the constant
impedance, constant current, and constant power (ZIP) + in-
duction motor (IM) load model. The advantage of the com-
ponent-based method is that it requires a small amount of
measurements to find optimal models with good robustness.
However, because of the increasing integration of distributed
energy resources and power electronic devices on the load
side, more load components are expected to supplement the
component-based load models [6], [7], which will add doz-
ens of more parameters. Due to the high nonlinearity and
high dimensionality, it is difficult to obtain accurate compo-
nent-based models. In comparison, the measurement-based
methods formulate the relationship between input and output
depending on data-driven techniques such as statistical meth-
ods, machine learning algorithms, and the powerful deep
learning algorithms [8]-[10]. In [11], a neural network-based
method is proposed to model the highly nonlinear character-
istics of the bulk load such as electric arc furnaces. The ad-
vantage of these methods is that no physical details of the
electrical device are required. However, the data-driven tech-
niques may need a massive number of measurements, which
is difficult to obtain in the real system [12]. Without a com-
prehensive data set, the measurement-based models may
have low robustness for unforeseen events.

In this paper, a generic dynamic load model is proposed
based on the superposition of mathematical functions repre-
senting basic physical principles of the dynamic process.
The proposed model is easy to implement, requires less com-
putation resource and system measurements, and has excel-
lent accuracy and robustness. The proposed model assumes
that the voltage, active power, and reactive power can be
measured in the system buses. Since the dynamic load mod-
el is to reproduce the load behavior in all event scenarios,
the measurements should include at least limited categories
of faults. The proposed model is easy to reproduce and can
provide a good benchmark model for academic research and
real applications. The contributions of this paper are as fol-
lows.

1) Basic physical principles are utilized to formulate the
generic dynamic load model based on the superposition of
mathematical functions, which makes the proposed model
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very robust and accurate.

2) The proposed model is easy to implement without
strong computation requirement or system modeling effort.

3) The unique characteristics and similarities among differ-
ent system events are delineated, providing a valuable refer-
ence for detecting various system events.

The remainder of this paper is organized as follows. Sec-
tion II describes the detailed structure of the generic dynam-
ic load model, selection of mathematical functions, and pa-
rameter estimation. Section III performs various tests on dif-
ferent system events to validate the effectiveness of the pro-
posed model, and it also provides a comprehensive discus-
sion of the potential of the proposed model for event detec-
tion. Finally, Section IV concludes this paper.

II. GENERIC DYNAMIC LOAD MODEL

The load response can be approximated as a superposition
of various mathematical functions producing dynamic re-
sponses to an external input such as voltage or frequency
since the underlying physical equations for almost every
component are known in a load composition. To avoid solv-
ing complicated differential equations, the relationship be-
tween the active power response P(¢) at time ¢ and the sys-
tem measurement vector M such as bus voltage, is approxi-
mated based on the superposition of mathematical functions,
as shown in (1). The mathematical function ¢,(0,,M,, 1) is
formulated considering the physical principles of various
electrical components. This section will introduce how to
choose the parsimonious set of mathematical functions and
formulate the generic dynamic load model.

K
P()~ " §(O.M,1)= "> 0, ¢, (6. M,. 1) (1)

k=1
where K is the number of mathematical functions; =
[w,,®,,....,0,]", which is the vector of weights @, of the ge-

neric dynamic load model; 0=[0,,0,,...,0,]", which is the
vector of parameters 6, of the generic dynamic load model,;
M, is the element of M; and ¢()=[¢,().d,(), ... O,
which is the vector of mathematical functions ¢, (-).

A. Candidate Mathematical Functions

The dynamic response of load corresponding to system op-
erations falls in three categories: slow and smooth change,
abrupt change, and damping.

1) Slow and Smooth Change

The slow and smooth change in a system causes gradual
variations. Any slow and smooth change can be fitted by su-
perimposing multiple functions. Polynomial and trigonomet-
ric functions can be practical, which are widely used in load
components.

2) Abrupt Change

Compared with slow and smooth changes, abrupt changes
are the sudden ones that occur instantly. When a dynamic
system suddenly transfers from a steady state to a new state,
an abrupt change occurs. Once an abrupt change occurs, it
will trigger very different system behaviors and produce sys-
tem discontinuity. Therefore, the abrupt changes can be de-
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tected by searching the discontinuous data points of system
measurements. In system components, the sudden internal or
external force can induce an abrupt change of voltage and
current in a power system, e.g., the short or open circuit
caused by overloading, external natural factors, and automat-
ic or manual control measures. This abrupt change can be
the original force and the beginning of a new dynamic pro-
cess. It means that the sudden force not only occurs when a
system contingency occurs but also appears when system
controls are triggered in the process of recovering to the sta-
ble operation or collapsing. Therefore, it is essential to iden-
tify such a sharp change and divide the dynamic process in-
to different stages to accurately describe the system behav-
iors at different stages with different initial conditions.

As the derivatives of data series provide rich information
on the abrupt changes in the data, all derivatives are studied,
including the independent derivatives of voltage and active
power, the dependent relationships of voltage derivatives and
voltage, and the dependent relationships of voltage deriva-
tives and active power. Each dependent relationship reflects
a specific physical meaning. One example of the curve re-
flecting the scaled voltage and its derivative in one-phase
fault is presented in Fig. 1(a). In this example and all simula-
tions in the following sections, all data are normalized based
on the rated values.
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Fig. 1. Normalized voltage versus its derivative and dynamic voltage
curves. (a) Voltage versus its derivative. (b) Dynamic voltage curve.

As shown in Fig. 1, discontinuities can be detected in this
system, and these discontinuities are marked as blue points.
There are three data points of discontinuity in this system.
Each data point reflects one abrupt change in the system.
These abrupt changes divide the voltage curve into four stag-
es, as shown in Fig. 1(b). It is easy to observe that the first
point leads to a more significant and more apparent abrupt
change than the others. The corresponding time of the first
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point is precisely the fault clearing time, demonstrating the
physical meaning of the discontinuous data points.
3) Damping

After abrupt changes occur, the system tends to oscillate.
Damping has the effect of preventing, limiting, and reducing
the oscillations of the vibratory system [13]. Exponential
functions e, reciprocal 1/x, Gaussian function, etc., are po-
tent functions for describing system damping in engineering.
x is the voltage or its derivative. The dynamic process of
power system load is quite similar to the trajectory of the
damped sinusoidal oscillation curve.

Except for the above candidate mathematical functions
producing dynamic process, other commonly used mathemat-
ical functions are also a useful reference for curve fitting, e.g.,
cardioid and equiangular spiral curves [14].

From the above analysis, the following functions are se-
lected as the complete set of candidate mathematical func-
tions: (D the polynomial function a,+a,x+...+a,x"; 2 the
trigonometric function b, cos(b,(x+b,)); B the exponential
function ¢,e”"; @ the product of any combination of the
above three kinds of functions, e. g., (a, + a;x + ... +
a,x")cos(b,(x + b;)); & other mathematical curve func-
tions. a,, b, and ¢, are the parameters of candidate mathemat-
ical functions.

B. Selecting Parsimonious Set of Mathematical Functions

After determining the candidate mathematical functions, it
is essential to select a parsimonious set of mathematical
functions. Since it is very challenging to find optimal param-
eters of the superposition of all functions, a feature selection
algorithm is utilized to select the parsimonious set of mathe-
matical functions. The nonlinear principal component analy-
sis (NLPCA) is a robust feature selection algorithm for re-
ducing data dimensionality, which has excellent performance
on dealing with nonlinear data sets [15]. Therefore, NLPCA
is utilized to determine the principal functions.

The proposed model is then formulated by superposing
the selected parsimonious set of mathematical functions, as
shown in (1). The corresponding parameters of the proposed
model can be easily calculated using nonlinear curve fitting
algorithms. In this paper, the nonlinear least-squares solver
in MATLAB [16] is applied to solve optimal parameters in
the proposed model.

C. Structure of Proposed Model

The structure of the proposed model is as follows.

1) Identify abrupt changes by analyzing the data deriva-
tives such as the derivative of bus voltage.

2) Divide the data set into different stages according to
the identified abrupt changes of the data.

3) Determine the complete set of the candidate mathemati-
cal functions as mentioned in Section II-A-3). Select a parsi-
monious set of mathematical functions from the complete set
of the candidate mathematical functions utilizing the NLP-
CA.

4) Formulate the proposed model by superposing the parsi-
monious set of mathematical functions, as shown in (1).

5) Calculate optimal parameters of the proposed model uti-
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lizing the nonlinear least-squares algorithm.

III. CASE STUDIES

Various tests are performed with different categories of
faults at different locations. The simulated system is the
IEEE 39-bus system with a WECC composite load model
connected at Bus 20. Various contingencies at different bus-
es are simulated, including a single-phase ground fault, a
two-phase-to-ground fault, and a three-phase fault performed
separately on Buses 6, 14, and 21, respectively. The tran-
sient security assessment tool (TSAT) in DSATools [17] is
utilized to perform all the contingency simulations. In the
simulation of the proposed model and the benchmark mod-
els, the data of the single-phase ground fault of Bus 6 is
used to train the model. The trained model is applied to oth-
er cases such as the case where a single-phase ground fault
is performed on Bus 14 and Bus 21, to compare the perfor-
mance of the proposed model and the benchmark models.

A. Abrupt Change Identification

Abrupt changes are identified based on the voltage deriva-
tives, which are presented in Fig. 1. Abrupt changes are iden-
tified at 0.1 s, 0.1917 s, and 0.4083 s, respectively, as indi-
cated by blue points in Fig. 1(a). These abrupt changes di-
vide the dynamic process into four stages, as shown in
Fig. 1(b).

B. Generic Functions of Dynamic Load Model

In this paper, the complete set of the candidate mathemati-
cal functions is set as:

{ag+a,x+...+a,x",b,cos(b,(x+by)),
c,e™, (ay+a,x+...+a,x")c,e™,

(@p+a,x+...+a,x")c,e? b,cos(b,(x+b,)),

JiGax+js )5 i+ x+ 1)} 2

where j, and /; are the parameters of candidate mathematical
functions. It should be noted that any order polynomial func-
tions can be selected. Only the first-order voltage derivative
is considered since the first-order derivative can produce
enough high accuracy in the proposed model.

Using the NLPCA, the parsimonious set of mathematical
functions is determined. Among all the functions in the com-
plete set shown above, the functions indicating principal fea-
tures are selected to construct the parsimonious set of mathe-
matical functions at each stage of the proposed model. There-
fore, different parsimonious sets of mathematical functions
will be chosen at different stages. In the proposed model,
the linear polynomial function has good performance. Thus,
only the linear polynomial function is selected to represent
the polynomial functions. The parsimonious set at stage 1 is
{a,+a,x,b,cos(b,(x+b;))}. The parsimonious set at stage 2
is the same as stage 1. At stage 3, the parsimonious set is
{ag+a,x,j,(j,x+j;)2,/ E+(x+1,)*}, while it is {a,+a,x}
at stage 4. The proposed model is formed by superposing

the mathematical functions in the selected parsimonious sets,
as shown in (3). By combining the coefficients, the proposed
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model in (3) can be further simplified as (4). Optimal param-
eters of the proposed model are solved using the nonlinear
least-squares algorithm.

wy (@, +a,x)+w,b, cos(b,(x+b,)) stagel
Wy, (@y+a,x)+wy,b, cos(b,(x+b;)) stage?2
Spo= Wy (@t a,x)+ws, j, (jox+j5)° + (3)
Wy [+ (x+15)? stage 3
ayta,x stage 4
a,+a,x,+ay;cos(a,(x,+a;)) stagel
Ay + Ay X, +a, cos(ay, (X, +a,)) stage 2
Spp= A3+ A3y X, + A3 (A3 X5+ 55 ) + 4)
a36\/a§7+(a38x2+a39 )’ stage 3
A, +a,x, stage 4

where S, is the active power P or reactive power O; w; is
the weight of the ;" candidate mathematical function at stage
i; x, is the bus voltage; x, is the bus voltage derivative; and
a; is the parameter of the proposed model.

C. Robustness of Proposed Model

The estimated active and reactive power curves calculated
from the proposed model (4) are presented in Figs. 2-5,
which correspond to different fault types with the fault loca-
tion at Bus 6 or Bus 21. The normalized root mean square
errors (NRMSEs) of the estimated active and reactive power
in different fault scenarios are presented in Tables I and II,
respectively. The dynamic power curves for different fault
types with fault location at Bus 21 are quite different from
those at Bus 6. In Fig. 5, the reactive power curve in the sin-
gle-phase fault is completely different from those in two-
phase-to-ground and three-phase faults. The results show
that the proposed model has high estimation accuracy, excel-
lent robustness, and good generalization performance at all
stages in different fault scenarios.

The traditional ZIP model and the artificial neural network
(ANN) model are used as benchmark models and compared
with the proposed model. The stage detection strategy is also
utilized in the ZIP and ANN models. The same data set is
utilized in ZIP, ANN, and the proposed models. The NRM-
SEs of the three models are presented in Tables I and II.
The results show that the proposed model has much lower
NRMSEs than the ZIP model in all fault scenarios. The mea-
sured data with fault location at Bus 6 are used to train the
ANN model. The ANN model only has good accuracy in the
fault scenarios that are utilized for training the model. The
ANN model in other fault scenarios shows that it has poor
robustness.

Furthermore, the polynomial model is selected as the
benchmark model to compare with the proposed model. The
polynomial regression model is popular in fitting steady-
state data based on the polynomial function shown in (5).

P=B,+p,x+...+8,x" (5)

where B, f,, ..., p, are the coefficients of the polynomial

model.
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Fig. 2. Estimated active power calculated from proposed model for differ-
ent fault types with fault location at Bus 6. (a) Single-phase fault. (b) Two-
phase-to-ground fault. (c) Three-phase fault.
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TABLE I
COMPARISON OF NRMSES FOR ESTIMATED ACTIVE POWER OF DIFFERENT
MODELS
NRMSE (%)
Fault scenario Proposed ZIP ANN
model model model
Single-phase fault (Bus 6) 0.045 0.190 0.032
Two-phase-to-ground fault (Bus 6) 0.100 0.270 0.051
Three-phase fault (Bus 6) 0.079 0.260 0.055
Single-phase fault (Bus 14) 0.082 0.250 0.210
Two-phase-to-ground fault (Bus 14) 0.130 0.260 0.180
Three-phase fault (Bus 14) 0.110 0.230 0.220
Single-phase fault (Bus 21) 0.073 0.240 0.190
Two-phase-to-ground fault (Bus 21) 0.110 0.270 0.240
Three-phase fault (Bus 21) 0.092 0.260 0.250
TABLE 11

COMPARISON OF NRMSES FOR ESTIMATED REACTIVE POWER OF
DIFFERENT MODELS

NRMSE (%)

Fault scenario Proposed ZIP ANN

model model model

Single-phase fault (Bus 6) 0.084 0.220 0.052
Two-phase-to-ground fault (Bus 6) 0.082 0.320 0.066
Three-phase fault (Bus 6) 0.068 0.340 0.048
Single-phase fault (Bus 14) 0.093 0.280 0.390
Two-phase-to-ground fault (Bus 14) 0.110 0.300 0.400
Three-phase fault (Bus 14) 0.095 0.290 0.350
Single-phase fault (Bus 21) 0.085 0.270 0.420
Two-phase-to-ground fault (Bus 21) 0.120 0.330 0.440
Three-phase fault (Bus 21) 0.120 0.390 0.410

Polynomial models with and without the stage detection
strategy proposed in this paper are utilized to compare their
performance with the proposed model. The polynomial mod-
els have the best estimation accuracy with quartic polynomi-
al functions in this paper. Therefore, quartic polynomial mod-
els are utilized as benchmark models and n=4 in (5). The es-
timated active power curves calculated by the polynomial
model with and without stage detection strategy in the same
fault types are presented in Figs. 6-9. The average NRMSEs
of the active and reactive power estimated by the polynomi-
al model are shown in Table IIl. The results show that the
stage detection strategy can greatly improve the estimation
accuracy of active power. However, the results show that the
polynomial model has much worse robustness than the pro-
posed model in different fault scenarios.

D. Applications in Fault Detection

Different categories of faults at various locations may
cause significant differences in the dynamic response of
load. However, the same type of fault may produce very sim-
ilar dynamic responses at different locations. It can be ob-
served that the voltage variations of the two-phase-to-ground
fault are closer to the three-phase fault than the single-phase
fault, which can be identified qualitatively in Fig. 10.



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 2, March 2022

404
~ 1.02
3
2 1.00
5 0.98
é 0.96
o 094
.z
5 092
< 090
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(2)
~ 1.02
5
& 1.00 g
5 0.98
é 0.96
o 094
£ 092
5 0.
2 ool : : : : ;
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(b)
= 1.02
s 1.00f
5 098}
é 0.96
o 094+
£ 092 "
< 0.90 : ~ ~ ~ ~
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(©)
* True value; — Estimated value at stage 1; — Estimated value at stage 2
—— Estimated value at stage 3; — Estimated value at stage 4
Fig. 6. Estimated active power calculated from polynomial model with

stage detection strategy for different fault types with fault location at Bus 6.
(a) Single-phase fault. (b) Two-phase-to-ground fault. (c) Three-phase fault.

1.4
1.2 F
1.0

0.8
0.6

Active power (p.u.)

0 0.5 1.0 1.5
Time (s)
(a)

2.0 2.5

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0

Active power (p.u.)

0.5 1.0 1.5
Time (s)
(b)

2.0 2.5

1.8
1.6
1.4
1.2
1.0
0.8
0.6

Active power (p.u.)

0 0.5 1.0 1.5
Time (s)
(©)

2.0 2.5

* True value; — Estimated value at stage 1; — Estimated value at stage 2

Fig. 7.

—— Estimated value at stage 3; — Estimated value at stage 4

Estimated active power calculated from polynomial model with stage

detection strategy for different fault types with fault location at Bus 21. (a)
Single-phase fault. (b) Two-phase-to-ground fault. (c) Three-phase fault.

= 1.02
£ 1.00 !
g 0.98 ¢
) 0.96
o 0.94
2 0.92
Q
< 0.90 : : : : ]
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(a)
= 1.02
£ 1.00
g 0.98 :
2 0.96
5 0.94
2 092
Q
< 0.90
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(b)
B
R
o)
z
o
o
[
2
< 0.90 . . . . |
0.5 1.0 1.5 2.0 2.5
Time (s)
(©)
 True value; — Estimated value

Fig. 8. Estimated active power calculated from polynomial model without
stage detection strategy for different fault types with fault location at Bus 6.
(a) Single-phase fault. (b) Two-phase-to-ground fault. (c) Three-phase fault.

S 14
s, o
= 1.2
o
2 1.0
o
g 08
S 0.6
< 0 0.5 1.0 1.5 2.0 2.5
Time (s)
(a)
~ 1.8
=
5 1.6
5 1.4
é 12
o 1.0
2
5 0.8
< 06
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(b)
3
&
o)
z
o
o
[}
2
‘5 .
< 0.6 : : : : ;
0 0.5 1.0 1.5 2.0 2.5
Time (s)
(©)
 True value; — Estimated value

Fig. 9. Estimated active power calculated from polynomial model without
stage detection strategy for different fault types with fault location at Bus
21. (a) Single-phase fault. (b) Two-phase-to-ground fault. (c) Three-phase
fault.



LIN et al.: A GENERIC DYNAMIC LOAD MODEL FRAMEWORK

TABLE III
AVERAGE NRMSES OF ACTIVE AND REACTIVE POWER ESTIMATED BY
POLYNOMIAL MODEL WITH AND WITHOUT STAGE DETECTION STRATEGY

Average NRMSE (%)

Fault scenario

With Without
Single-phase fault (Bus 6) 0.17 1.18
Two-phase-to-ground fault (Bus 6) 0.36 1.37
Three-phase fault (Bus 6) 0.32 1.69
Single-phase fault (Bus 14) 0.21 1.25
Two-phase-to-ground fault (Bus 14) 0.29 1.24
Three-phase fault (Bus 14) 0.33 2.21
Single-phase fault (Bus 21) 1.70 1.86
Two-phase-to-ground fault (Bus 21) 23.02 33.83
Three-phase fault (Bus 21) 23.53 33.53
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Fig. 10. Dynamic responses of different fault types with fault location at
Bus 6 at stage 3. (a) Single-phase fault. (b) Two-phase-to-ground fault. (c)
Three-phase fault.

Figure 10 shows that the two-phase-to-ground and three-
phase faults have similar dynamic responses, while the sin-
gle-phase fault has quite different dynamic response. Using
the proposed model, it is possible to quantitatively show the
similarities and differences of various fault types at different
locations, which can be utilized to detect different fault sce-
narios.

Table IV shows the estimated parameter values of the pro-
posed model in different fault scenarios at stage 2. It should
be noted that the value of parameter a,, is zero in different
fault scenarios. Thus, the parameter a,, is not presented in
Table IV. Only parameters a,,, a,;, @,,, and a,; are shown in
Table IV for comparison. The values of parameters a,;, a,,,
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and a,; in two-phase-to-ground and three-phase fault scenari-
os are very close, which can be set as the same value in
these fault scenarios. Therefore, in future events, if the fair
values of parameters a,,, a,,, and a,; are similar, the events
have a high probability of two-phase-to-ground and three-
phase faults. In contrast, the values of parameters a,, and a,;
have the same values in the single-phase fault scenario,
which can be utilized to detect the single-phase fault. The pa-
rameter values of the proposed model at other dynamic stag-
es have similar properties.

TABLE IV
ESTIMATED PARAMETER VALUES OF PROPOSED MODEL IN DIFFERENT
FAULT SCENARIOS AT STAGE 2

Parameter value

Fault scenario

ay (5] Aoy ays
Single-phase fault (Bus 6) 0.970000  0.029600 27.89170  0.925000
Two-phase-to-ground fault 970000 0034600 2541180  0.925000
(Bus 6)
Three-phase fault (Bus 6) 0.970000  0.036400 25.03420  0.925000
Single-phase fault (Bus 14) 1.073997 —0.044140 —16.60360 —0.917442
Two-phase-to-ground fault , | 6ene 0 045550 ~16.07070 —0.947801
(Bus 14)
Three-phase fault (Bus 14) 1.121513 —0.046080 —15.91240 —0.957614
Single-phase fault (Bus 21) 1.128098  0.189656 13.10717 —1.169593
Two-phase-to-ground fault , ,5999; (511831 1241628 —1.234661
(Bus 21)
Three-phase fault (Bus 21) 1.300374 0.218619 12.23548 -1.252918

IV. CONCLUSION

In this paper, a generic dynamic load model is derived
from the basic physical principles. The proposed model is
easy to implement in a real system. The proposed model can
be quickly implemented without strong modeling back-
ground in an application only with a few data points and mi-
nor computation resources. Since it is derived from basic
physical principles, it has excellent robustness and general-
ization capability. The proposed model is demonstrated to
have the possibility of detecting different system fault types
at different locations. This paper provides a framework on
how the generic dynamic load model is formulated. Further
work will focus on its robustness verification for more sys-
tems and smart detection of different faults. In this paper,
the discontinuous data points are selected manually, and the
parameters of the model are initialized by experience, which
will be further improved to be smarter in discontinuity detec-
tion and parameter optimization.
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