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Physical-data Fusion Modeling Method for Energy
Consumption Analysis of Smart Building
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Abstract——The energy consumption of buildings accounts for
approximately 40% of total energy consumption. An accurate
energy consumption analysis of buildings can not only promise
significant energy savings but also help estimate the demand re‐
sponse potential more accurately, and consequently brings bene‐
fits to the upstream power grid. This paper proposes a novel
physical-data fusion modeling (PFM) method for modeling
smart buildings that can accurately assess energy consumption.
First, a thermal process model of buildings and an electrical
load model that focus on building heating, ventilation, and air
conditioning (HVAC) systems are presented to analyze the ther‐
mal-electrical conversion process of energy consumption of
buildings. Second, the PFM method is used to improve the accu‐
racy of the energy consumption analysis model for buildings by
modifying the parameters that are difficult to measure in the
physical model (i. e., it effectively modifies the electrical load
model based on the proposed PFM method). Finally, case stud‐
ies involving a real-world dataset recorded in a high-tech park
in Changzhou, China, demonstrate that the proposed method
exhibits superior performance with respect to the traditional
physical modeling (TPM) method and data-driven modeling
(DDM) method in terms of the achieved accuracy.

Index Terms——Smart building, physical-data fusion modeling
method, energy consumption, precision model, thermal-electri‐
cal conversion.

I. INTRODUCTION

WITH the continuous increase in urbanization and in‐
dustrial restructuring, the energy consumption of

buildings in urban cities has increased rapidly over the
world [1], [2]. According to [3], the energy consumption of
buildings accounts for 40% of total energy consumption, and
approximately 80% of energy consumption of buildings is at‐
tributed to heating, ventilation, and air conditioning (HVAC)
systems [3], [4]. Therefore, driven by the rapid development

and deployment of smart sensors, information, communica‐
tion, and artificial intelligence (AI) technologies [5], the en‐
ergy consumption of smart buildings can be analyzed and
evaluated more accurately to achieve energy conservation
[6], [7]. As a result, it promises a significant demand re‐
sponse potential to support the secure and economic opera‐
tion of power grids [8], [9].

With the advances in physical measurement tools and
monitoring systems for buildings, the energy consumption
can be measured more accurately [10]. Modeling methods
for energy consumption of buildings can be classified into
three types, i. e., physical modeling methods, data-driven
modeling (DDM) methods, and physical-data fusion model‐
ing (PFM) methods [11].

Physical modeling methods can be further subdivided into
simplified and precise physical models [12]. Simplified phys‐
ical models make certain assumptions and simplify the com‐
plex physical processes in building operations, such as the
interaction of internal areas, thermal processes, and air con‐
vection [13]. These modeling methods also neglect many
physical quantities that are difficult to be measured such as
the heat exchange coefficient and energy efficiency ratio
(EER) of HVAC systems. In addition, the simplified physi‐
cal models are not very scalable. Therefore, they pose con‐
siderable challenges in accurately accounting for the time-
varying thermal-electrical conversion process of a building,
which leads to poor generalization performances.

Precise modeling methods construct the models for ther‐
mal processes, fluids, and electrical equipment of buildings
and then combine them to build complex physical process
models. Therefore, a precise physical model is generally im‐
plemented using available commercial software such as
eQUEST, PowerDOE, DeST, and FloVENT [14], which par‐
tially consider certain complexities associated with the physi‐
cal models of buildings. However, these software programs
have certain limitations.

1) The time-varying characteristics of building informa‐
tion at multiple time scales are not properly considered in
these programs [15].

2) The energy consumption analysis of buildings may re‐
quire the use and coordination of multiple software pro‐
grams, which are assigned different tasks according to their
design features.

Reference [16] uses eQUEST to simulate the energy con‐
sumption of buildings and then uses FloVENT to simulate
the heat distribution in the internal area of buildings. Both
software programs are limited in their abilities to consider
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the effects of critical aspects such as the social and behavior‐
al factors of building residents on building modeling tasks.

DDM or statistical modeling methods are based on vari‐
ous statistical or machine learning methods to describe or
predict the energy consumption of buildings through exten‐
sive real-time and historical measurement data. These meth‐
ods do not rely on the accurate modeling of physical charac‐
teristics of buildings [17], [18]. The data collection is usual‐
ly implemented through real-time online monitoring systems
such as the building energy management system (BEMS)
[19]. Through the collection of a large amount of environ‐
mental and electrical data by the BEMS, DDM methods can
achieve relatively high accuracy through extensive training
on large-scale datasets [20]. However, the training accuracy
of DDM methods can be significantly affected by the poor
data quality of the samples [2], [4].

The results of DDM methods mostly depend on the quali‐
ty of historical data. However, historical data have many
problems such as poor data quality and low data density,
which result in a loss of information. Consequently, the sup‐
port from sophisticated algorithms is required [21]. In [21],
an energy consumption modeling method is proposed to
solve the problem of lacking the information about build‐
ings, and the accuracy of this method is verified through its
application to multiple buildings. These buildings may have
the equipment that is missing or damaged or have communi‐
cation problems. Simultaneously, other cases may occur in
special scenarios such as with equipment maintenance and
during holidays, which may lead to not only missing data
but also incorrect data. In [22], a modeling method of data
relevance is considered, and the comprehensiveness of the
model is improved by integrating external information such
as the external environment, social policies, and user behav‐
iors. However, this method has poor physical interpretation
and is difficult to understand. In addition, there may be dif‐
ferent situations of incomplete information collection in dif‐
ferent environments, which is not considered in the DDM
methods for buildings. Furthermore, the accuracy of measure‐
ment data significantly affects the accuracy of the model.
Moreover, the calculation algorithm plays a key role in im‐
proving the accuracy of the model. In [17], a bicubic interpo‐
lation algorithm and convolutional neural network are used
for the spatial prediction of energy consumption. In [18], the
evolutionary algorithms are discussed to solve the model for
energy consumption of buildings. However, a heavy compu‐
tational burden makes it difficult to apply AI algorithms to
online analysis on the energy consumption of buildings. In
other words, the simplified online DDM methods neglect the
physical characteristics and causality of buildings.

Therefore, the main contribution of this study is to estab‐
lish a detailed physical model for smart buildings and ensure
that the energy consumption analysis is more precise by
modifying the model through a PFM method. The energy
consumption analysis model of buildings is based on the
PFM method, which considers not only the interpretation
ability of the physical mechanism but also the incidence rela‐
tion of DDM methods. Physical methods can provide high-
entropy information for DDM methods. In addition, physical
methods can ensure that the parameters of physical model

are more targeted and can prevent the modeling method
from falling into a partial learning space. The critical factor
is that an accurate analysis model for energy consumption of
buildings based on the PFM method does not require exten‐
sive training data and can be run online. Finally, the PFM
method has a high initial training accuracy rate, which
means that this method is more scalable. Therefore, a de‐
tailed and accurate physical model needs to be constructed
using DDM methods to compensate for the loss of rules de‐
rived from the simplification of physical processes.

The remainder of this paper is organized as follows. Sec‐
tion II presents the thermal process model that considers the
structures and internal thermal-electrical conversion process‐
es of buildings. Section III investigates a solution for im‐
proving the accuracy of the model, namely, a PFM method,
which is used first to modify the key parameters in the phys‐
ical model and then to determine the accuracy of the power
load model while also providing a replacement strategy. The
results of case studies are presented in Section IV, and con‐
clusions are given in Section V.

II. PRECISE PHYSICAL MODELS OF BUILDINGS

A. Dataset Collection of Buildings

The premise of establishing a precise energy consumption
analysis model for buildings is to create a comprehensive
and high-quality dataset. The dataset should include structur‐
al, environmental, electrical, and behavioral data of build‐
ings, as shown in Fig. 1.

In addition, with a large amount of heterogeneous data, it
is necessary to consider multiple time-scale characteristics
and perform data preprocessing.

The structural data of buildings mainly include measure‐
ment parameters such as area and floor height, structural pa‐
rameters such as orientation and shape, material parameters
such as roof materials, wall materials, and vent types, and
empirical parameters such as heat transfer coefficients and
specific heat capacities. Because most of this information is
static data, the data processing is not necessary. However,
problems of inaccurate measurement data and empirical pa‐
rameters often arise and affect the accuracy of physical mod‐
el. Therefore, a PFM method needs to be employed to solve
these problems.

Correspondingly, the environmental information, electrical
data, and behavioral data are dynamic parameters. These da‐
tasets can be collected by monitoring equipment such as cir‐
cuit breakers and smart plugs, intelligent sensors, and envi‐
ronmental monitoring devices installed both inside and out‐
side the building. The environmental data are categorized in‐
to external and internal environmental data. These data main‐
ly include temperature, humidity, light intensity, and climate
data, etc. The acquisition of these data can also be divided
into fixed-period collection and trigger-mode collection. The
trigger-mode collection means that some data such as CO2

concentration do not change considerably over a short peri‐
od. We only needs to wait until a significant change is de‐
tected before collecting the data. Electrical data include the
voltage, current, frequency, active power, reactive power,
and accumulated electrical energy collected by each electri‐
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cal device and each power node, EER, and coefficient of per‐
formance (COP), personal computer (PC) load, photovoltaic
(PV), etc. Based on different types of electrical equipment,
the collection period can be set to be seconds, minutes, or
hours. Finally, the behavioral data include status data and op‐

erational logs of electrical equipment, doors, windows, and
other vents as well as personnel data for each area, running
scenarios, and others. Most of these data are collected in trig‐
ger mode.

B. Structural Model of Buildings

To establish a refined physical model of a building, it is
necessary to perform a detailed model of several internal ar‐
eas such as rooms and aisles in the entire building. In this
manner, the effects of the external environment and internal
areas of the building can be fully considered. Simultaneous‐
ly, this can also improve the accuracy of the thermal process
and energy consumption analysis. Therefore, this study con‐
structs two matrices to describe the structural relationships
and corresponding parameters of each internal area of a
building. The first is the structural association matrix of the
building, which is given as:
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where A(m)
nect is the internal structural association matrix of the

mth building; ai is the property of the ith area, which includes
rooms, open areas, corridors, etc; bconij denotes whether one
or more enclosure structures exist between the ith and j th ar‐
eas of the building; bvenji denotes whether one or more vent
structures exist between the j th and ith areas of the building;
and n is the number of areas in the building.

Next, the structural parameter matrix of the building is
given as (2), which provides detailed information about the
internal areas.
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where A(m)
parm is the structural parameter matrix of the mth

building; ci contains the volume of the ith area inside the

building; dconij and dvenji are the parameter matrices of the
enclosure structures and vents between the ith and j th areas,
respectively, as given in (3) and (4).
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where the superscripts vc and vv are the numbers of enve‐
lope structures and vents between the ith and j th areas of the
building, respectively; sconij, hconij, oconij, and rconij are the
acreage, heat transfer coefficient, material type, and orienta‐
tion of the envelope structures between the ith and j th areas
of the building, respectively; and svenji, hvenji, ovenji, and rvenji

are the acreage, heat transfer coefficient, material type, and
orientation of the vents between the ith and j th areas of the
building, respectively.

C. Thermal Process Model of Buildings

A dynamic thermal process model of a building needs to
be established based on the structural model of building. Tak‐
ing a single area inside the building as an example, the dy‐
namic thermal process of a single area refers to the heat
transfer process of internal and external disturbances, as
shown in Fig. 2. The external heat transfer qEXT includes the
outdoor environment (e.g., ambient temperature and solar ra‐
diation) and external thermal conditions (e.g., thermal condi‐
tions in adjacent areas). The external heat transfer mainly af‐
fects the internal temperature of the room through the heat
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Fig. 1. Dataset collection system of building.

484



HAN et al.: PHYSICAL-DATA FUSION MODELING METHOD FOR ENERGY CONSUMPTION ANALYSIS OF SMART BUILDING

transfer through the wall and other enclosure structures or
through windows and other vents. Indoor air is affected by
heat convection and heat radiation. By contrast, internal heat
transfer qINT includes latent heat and sensible heat of furni‐
ture, equipment, and human bodies. The latent heat of hu‐
man bodies and equipment directly acts on the air in an ar‐
ea, which can immediately devalue the air in the area. The
sensible heat of HVAC, lights, computers, and other equip‐
ment is directly transferred to indoor air through thermal
convection.

To obtain a refined thermal process model for each area
in a building, it is important to solve the partial differential
equations for heat transfer of the enclosure structure in each
area. In addition, the connectivity between regions needs to
be considered. The model of dynamic thermal process for a
single area is given as:

dTi (t)

dt
=

1
Ci ρ ici

(qEXTi (t)+ qINTi (t)) (5)

where Ti (t) is the temperature of the ith area inside the build‐
ing at time t; dTi (t)/dt is the change of temperature in the ith

area inside the building at time t; Ci is the specific heat ca‐
pacity of air in the ith area; ρ i is the air density in the ith ar‐
ea; qEXTi (t) is the heat transferred by the external disturbance
heat process in the ith area at time t; and qINTi (t) is the heat
transferred by the internal disturbance heat process in the ith

area at time t.
Based on (5) and Fig. 2, the heat obtained by the external

disturbance can be further calculated using (6) - (9). Heat
transferred by the external disturbance heat process in build‐
ings mainly includes heat transfer from the enclosure struc‐
ture, vents, and sun radiation.

qEXTi (t)= qconi (t)+ qveni (t)+ qsuni (t) (6)
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where qconi (t), qveni (t), and qsuni (t) are the heat transferred
from the external area to the ith area through the enclosure
structure, vent, and solar radiation at time t, respectively,
and qsuni (t) is calculated by measuring the intensity of light
[23], [24]; DT(t) is the temperature difference between the ith

and j th areas; and Anect(ij) and Anect( ji) are the numbers of en‐
closure structures and vents between the ith and j th areas in‐
side the building, respectively.

The heat transferred by the internal disturbance heat pro‐
cess in buildings mainly includes heat transfer from HVAC,
lights, personnel, and other equipment, as shown in (10).

qINTi (t)= qHVACi (t)+ qlighti (t)+ qpersi (t)+ qequii (t) (10)

where qHVACi (t), qlighti (t), qpersi (t), and qequii (t) are the heat
transferred from the HVAC, lights, personnel [23], and other
equipment to the ith area at time t, respectively, and
qHVACi (t), qlighti (t), and qequii (t) are calculated by measuring
or predicting the power of the corresponding equipment.

D. Thermal-electrical Conversion Model of Buildings

To analyze the energy consumption of buildings, a ther‐
mal-electrical conversion model of buildings is established.
First, the total power calculation model for a building is giv‐
en as:

P(t)=∑
i = 0

n

(PHVACi (t)+Plighti (t)+Pequii (t))-PPVi (t) (11)
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where PHVACi (t), Plighti (t), Pequii (t), and PPVi (t) are the elec‐
tric power of HVAC, lights, other equipment, and PV genera‐
tion in the ith area at time t; gHVAC (×), glight (×), and gequi (×) are
the thermal-electric conversion coefficient functions for
HVAC, lights, and other equipment, respectively; KNPLVi,
Klighti, and Kequii are the thermal-electric conversion coeffi‐
cients of HVAC, lights, and other equipment in the ith area,
respectively; xwsi, xstlighti, and xstequii are the operating states
of the HVAC, lights, and other equipment in the ith area, re‐
spectively; and ηi is the thermal-electric conversion efficien‐
cy.

xws ={xmodexstxspeed } (13)

gHVAC (KNPLVxwsη)=KNPLV (xmode )(1 + η(xspeed )) (14)

where xmode is the operating mode of HVAC (refrigeration,
heating, air supply); xst is the operating switch status (on/off)
of HVAC; xspeed is the wind speed of HVAC; and KNPLV,
Klight, and Kequi are the EER corresponding to HVAC, lights,
and other equipment, respectively, which indicates the inher‐
ent energy efficiency of equipment. Under the specific cir‐
cumstances, the EERs of different devices are differently de‐
fined. The calculation methods for the energy consumption
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Fig. 2. Dynamic thermal process model for a building.
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and power of other electrical loads (e.g., lights, water boil‐
ers, PCs) in buildings are similar, and the formulas are
shown as:

I(Γ)=∑
i = 0

n

(IHVACi (Γ)+ Ilighti (Γ)+ Iequii (Γ))- IPVi (Γ) (15)
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where Γ is the period required to calculate the energy con‐
sumption; and IHVACi (Γ), Ilighti (Γ), Iequii (Γ), and IPVi (Γ) are
the energy consumptions of HVAC, lights, other equipment,
and PV generation in the ith area during time period Γ, re‐
spectively.

III. PFM METHOD

A. PFM Algorithm

The basis of the PFM method is the fusion mode. The
physical analysis method can provide high-entropy informa‐
tion, which helps improve the efficiency of the data model
analysis. In other words, the input features contain the target
features to be predicted, which can narrow the search space
and reduce the computational complexity when solving the
parameters of data model through the optimization process.
However, the PFM method can be used to construct a better
data model with high-entropy input features, achieving the
goal of building a data model. This also ensures that the
model parameter optimization is more targeted. To avoid fall‐
ing into local optimization, the PFM method improves the ra‐
tionality of the data model. This approach can compensate
for the loss of physical discipline rules in physical analysis
methods due to the model simplification.

This study proposes two PFM correction methods. One
(method 1) modifies the key parameters in the physical mod‐
el through the DDM method; the other (method 2) replaces
the submodels in the PFM method through the model modifi‐
cation. The process flow of method 1 is shown in Fig. 3.
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Fig. 3. Process flow of method 1.

The PFM method for energy consumption analysis of
smart buildings requires the configuration of model parame‐
ters. The parameters include the static parameters that are in‐
put when the model is built and the dynamic parameters ob‐
tained in real-time collection when the model is running. In
this paper, the parameters of thermal-electrical conversion
model for a smart building that need to be modified mainly

include the heat exchange coefficient and EER. Therefore,
the final PFM can be obtained by guiding and correcting a
simple physical model using the measurement data. The
methodology for correcting the key parameters in the physi‐
cal model through a DDM method is given as:

Y ' (τ + 1)= fP (X(τ)K)+ u = fH (X(τ)K (Ω) )+ v (17)

K (Ω)= fD (X(τ)K [Y (τ + 1)Y ' (τ + 1)]) (18)

where fP and fD are the functions of physical model and
DDM methods, respectively; fH is the function of PFM meth‐
od, which uses the same algorithm as fP; X(τ) is the input da‐
taset of the model at time τ; Y (τ + 1) and Y ' (τ + 1) are the out‐
put datasets of the model at time τ + 1; K is the parameter
vector in the model; K (Ω) is the parameter vector after DDM
correction; and u and v are the random errors. In this study,
K (Ω) may include the parameters such as the heat exchange
coefficient and EER.

Figure 4 depicts the process flow for modifying the ther‐
mal-electrical conversion model of the building using the
PFM (method 2). The physical and statistical mapping mod‐
els are represented by (19) and (20), respectively.

Y ' (τ + 1)= fP (X(τ)K)+ u = f (Ω)
H (X(τ)K)+ v (19)

f (Ω)
H = fD (X(τ) K [Y (τ + 1)Y ' (τ + 1)]) (20)

where f (Ω)
H is the function set of the modified PFM, which is

obtained after replacing the submodels with DDM. The re‐
placement method and selection mechanism of submodels in
PFM are later analyzed in detail in conjunction with the
building.

B. Key Parameter Modification Based on PFM

Based on the PFM method, this study divides the process
for energy consumption analysis of the building into two
steps. The first step involves modifying the key parameters
in the precise physical model through DDM method. The
second step involves modifying some of the submodels in
the entire energy consumption analysis model and then build‐
ing a model selection mechanism to improve the accuracy of
PFM. The overall process is shown in Fig. 5.

In Section II, a precise physical model of the building is
established. Next, the key parameter modification in a physi‐
cal model using DDM method is discussed. The parameters
to be modified include the heat transfer coefficient of enclo‐
sure structures and vents and the conversion efficiency of
HVAC. These parameters are difficult to be measured or cal‐
culated. For example, the heat transfer coefficient can be af‐
fected by the wall material, shape, aging degree, and other
factors.
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Fig. 4. Process flow of method 2.
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In this paper, a long short-term memory (LSTM) algo‐
rithm is used to modify the key parameters. LSTM has been
a popular machine learning algorithm in recent years [19].
Because of the temporal characteristics of the electrical, envi‐
ronmental, and behavioral data of buildings, LSTM is select‐
ed because it has advantages in dealing with time-sequenced
modeling. In addition, LSTM can be used to process global
sample datasets.

As a recurrent neural network, the input, output, and error
calculation forms of LSTM are explained in this study. The
input of the DDM method is a matrix. The horizontal axis
represents the characteristic quantity of sample datasets that
includes electrical, environmental, and behavioral informa‐
tion as well as key parameters that must be modified. The
vertical axis represents the time-sequenced values. In the
case studies, each sample dataset is selected for one day,
with an interval period of 5 min. The output of LSTM is di‐
vided into two data parts: thermal process data of various ar‐
eas in the building including the external and internal heat
exchange at various time, and power and status information
of different power loads in the building. The error is generat‐
ed between the output of each loop and the target measure‐
ment. The error is also calculated backwards, affecting every
gate in the output back to the input stage until this value is
filtered out.

C. Model Modification and Selection Mechanism

The second process involves modifying the submodels. In
the process of energy consumption analysis of an entire
building, problems may occur in which the physical model‐
ing of some links is inaccurate or the parameters are diffi‐
cult to modify. Therefore, this study proposes a model modi‐
fication mechanism. Other modeling methods can be used to
replace some of the modeling aspects in the energy analysis,
such as thermal process links, HVAC modeling, or other
electrical load modeling, as shown in Fig. 5.

The HVAC model is selected as a submodel for discus‐
sion. This study presents two typical HVAC algorithms and
provides a simple introduction. First, the modification and se‐
lection mechanism in this study are discussed through these
two typical models. Second, two models, i.e., the traditional
physical modeling (TPM) and DDM are used for compari‐
son purposes in the case studies to evaluate the effects of
the PFM proposed in this paper.
1) TPM

In [25], a classic HVAC model is proposed to evaluate the
HVAC energy consumption through three types of tempera‐

ture parameters, i. e., outdoor, indoor, and set temperatures,
combined with air conditioning power and cooling/heating
efficiency. The model also adds the users’ comfort limit on
the power consumption of HVAC, as shown in (21) and (22).

C HVAC
it = γi (θ

in
it - 1 - θ

ref
it )2 (21)

θ in
it = θ

in
it - 1 + αi (θ

out
it - θ

in
it - 1 )- βiq

HVAC
it (22)

where C HVAC
it is the cost of HVAC considering the users’

comfort [25]; θ in
it and θ out

it are the indoor and outdoor temper‐
atures of building i at time t, respectively; γi is the environ‐
mental preferences (i.e., the temperature sensitivities) of the
occupants in the building i; αi is the thermal insulation; and
βi is the energy efficiency of HVAC.

In [22], an HVAC model could be dynamically adjusted
automatically by personnel according to their levels of com‐
fort. The model considers the effects of air temperature, aver‐
age radiant temperature, relative humidity, air speed, cloth‐
ing insulation, and metabolic rates on levels of comfort.

T in
t + 1 = εT

in
t + (1 - ε) ( )T out

t -
ηHVAC

A
et (23)

where T in
t and T out

t are the indoor and outdoor temperatures
of the building, respectively; ε, ηHVAC, and A are the conver‐
sion coefficients, and their specific meanings and values are
described in [22]; and et is the power of HVAC at time t.
2) DDM

In [19], the LSTM is also used to predict the energy con‐
sumption of residential buildings. The proposed approach in‐
tegrates preprocessing and data organization mechanisms to
refine the data and remove anomalies. A deep learning net‐
work is adopted to input refined sequence data into a convo‐
lutional neural network through a multi-layer bidirectional
LSTM network to learn sequence patterns effectively. Final‐
ly, a high-precision result is obtained in the evaluation of res‐
idential energy consumption of the buildings.

It should be noted that the role of the data-driven module
in PFM is to modify the key parameters and to select sub‐
models. However, the DDM mentioned above is an option in
the optional model list for the HVAC submodel. Further‐
more, an accuracy evaluation method needs to be established
to improve the model correction and selection mechanism.
This paper chooses the conventional average relative error to
measure the accuracy of the algorithm fitting. The algorithm
also calculates the average relative error from the two per‐
spectives of area temperature and total electricity consump‐
tion of the building.
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Electrical data

Structural data

Thermal process

Thermal-electrical
 conversion model

Parameter matrix

Structural matrix

Key parameter modification of PFM Model modification of DDM
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Key parameters

Process simulation

Value evaluation

Value table

Modification

Model list
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Parameter
 modification model
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Output
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Fig. 5. PFM process for energy consumption analysis of building.
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IV. CASE STUDIES

A. Application and Data Introduction

In this case study, a high-tech park with multiple types of
buildings in Changzhou, China, is selected as an example.
The park covers an area of approximately 4 km2 in eastern
China, which locates in the geometric center of the Yangtze
River Delta. It has a subtropical monsoon climate with four
distinct levels. Approximately 40 buildings are located in the
park, which include office buildings, dormitories, factories,
and research institutes. Approximately 5000 employees work
in the park. Two 10 kV cables supply the power to the en‐
tire park, and the monthly electricity consumption of this
park is approximately 65 × 106 kWh. There are abundant
forms of energy supplies in the park such as distributed PV,
energy storage, and geothermal energy. Energy monitoring
systems have been installed for most of the buildings in the
park to achieve the data collection and the smart manage‐
ment and control.

In this study, a typical office building in the park is select‐
ed, which is an L-shaped structure with four floors and a to‐
tal area of approximately 11000 m2. The envelope structure
of the building is mainly composed of a steel tube concrete
frame. The interior of the building can be divided into many
areas that include power distribution rooms, offices, laborato‐
ries, open office areas, corridors, and halls. The energy sup‐
ply form of the building is mainly composed of the power
grid and rooftop PV. The main energy load of the building
consists of HVAC, office computers, lights, and water boil‐
ers. The number of daily office and maintenance personnel
in the building is approximately 80. The time periods of per‐
sonnel activities are from 08: 00 to 20: 00 in summer and
from 08:30 to 19:00 in winter.

Both environmental energy monitoring system and BEMS
are installed in the building. Environmental monitoring out‐
side the building mainly relies on a miniature weather sta‐
tion installed on the roof. The weather station monitors the
environmental information, including temperature, humidity,
light intensity, carbon dioxide concentration, PM2.5, wind
speed, and rainfall. The monitoring period is 5 min. Similar‐
ly, the environmental monitoring inside the building is real‐
ized using numerous environmental monitoring sensors
throughout the building. The BEMS measures the amount of
distributed PV power generation and the power consumption
of various internal areas. The electricity consumption in the
internal areas inside the building is mainly composed of the
electricity consumption of HVAC, lights, office computers,
and other equipment. The collection period of the electrical
quantity is also 5 min. Simultaneously, the building is
equipped with a variety of smart sensing devices to monitor
the opening and closing statuses of doors, windows, and the
equipment, and the flow of people throughout the building.
Most of these information collection cycles are triggered.
The buildings selected in this study have a year-and-a-half’s
worth of sample data.

B. Performance Comparison of Three Modeling Methods

Typical days in summer and winter are selected as the cal‐

culation periods. Based on the two aspects of regional tem‐
perature and energy consumption of the building, the accura‐
cies of the PFM, TPM, and DDM methods are compared.
First, a refined physical model is established for the building
selected in the calculation example to analyze the energy
consumption. The LSTM algorithm is then used to modify
the key parameters in the refined physical model to obtain
the temperature and electric power of each area in the build‐
ing. The partial load model in the PFM is replaced with a
TPM method to obtain the TPM-based calculation results.
The partial load model in the PFM is replaced with a DDM,
and the DDM-based calculation results are obtained. Finally,
the results obtained by PFM and other two methods on a typ‐
ical day in summer are compared, as shown in Fig. 6.

It can be observed from Fig. 6 that the temperature and
power obtained based on the PFM method are more in line
with the actual values. Therefore, the accuracy rate is higher
than that of the TPM and DDM methods.

Figure 7 presents the box plot of accuracy comparison of
the PFM and other two methods on a typical day in summer.
The box is divided into three horizontal lines, which are the
upper quartile, median, and lower quartile of accuracy, re‐
spectively. The edges of the two vertical lines on the top and
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bottom of the box indicate the top and bottom edges of accu‐
racy, respectively. Some discrete points can also be ob‐
served, which represent some outliers that occasionally ap‐
pear. In the calculation example, 100 sets of sample data are
used to verify the accuracy results. The accuracy of PFM
method is approximately 91.3% and clearly higher than that

of the other two methods, and it is relatively stable (revealed
by the fact that the height of the cabinet is relatively low).
The TPM method has the lowest accuracy and the worst
scalability. The DDM method has the medium calculation ac‐
curacy and scalability with a small amount (100 to 300
days) of sample data.

We then consider an example of a typical day in winter.
Three differences from the calculation examples on a typical
day in summer are observed. First, the working hours of em‐
ployees in winter are shorter than those in summer; there‐
fore, it is necessary to fully consider the behavioral parame‐
ters of employees in the building. Second, the working mode
of HVAC changes from cooling to heating; therefore, the op‐
erating status of HVAC varies, which makes HVAC have dif‐
ferent electrical characteristics. The third point is that in sum‐
mer, the main function of HVAC is cooling, but the solar ra‐
diation increases the temperature, which is the opposite of
air conditioning. However, in winter, the main function of
HVAC is heating, which is similar to solar radiation. The re‐
sults of comparison between the PFM and other two meth‐
ods on a typical day in winter are shown in Fig. 8.

It can be concluded that the temperature and power values
obtained based on the PFM method are more in line with
the actual values, and thus the accuracy rate is higher than
that of the TPM and DDM methods.

Figure 9 presents the box plot of accuracy comparison of
the PFM and other two methods on a typical day in winter.
In the calculation example, 100 sets of sample data are used
to verify the accuracy results. The accuracy of the PFM
method is approximately 92.6%, which is clearly higher than
that of the other two methods, and it is relatively stable. The
TPM method has the lowest accuracy and the worst scalabili‐
ty. The DDM method has the medium calculation accuracy
and scalability with a small amount (100 to 300 days) of
sample data.

Finally, we present the accuracy comparison of the PFM
and other two methods in the training process, as shown in
Fig. 10.

The PFM method has a higher training accuracy and a
higher starting point for training accuracy. This is because
the PFM method is based on an accurate physical model and
thus has a high training accuracy from the beginning. The fi‐
nal training accuracy of TPM method is low at only 70% to
80%. However, due to the inherent characteristics of the
physical model, the TPM methods could also have a certain
initial training accuracy. Because the DDM method is com‐

pletely based on data, the initial training accuracy is 0, but
the DDM method shows a good learning effect and thus the
final accuracy is basically the same as that of the PFM meth‐
od. However, because of its dependence on sample data, the
DDM method could not achieve high training accuracy
when the amount of training data is relatively small. As
shown by the dotted blue line, when the training accuracy of
PFM method reaches 90%, the accuracies of the TPM and
DDM methods are less than 70% and 80%, respectively.
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Fig. 7. Box plot of accuracy comparison between PFM and other two methods on a typical day in summer.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
-5

0

5

10

15

20

25

30

Te
m

pe
ra

tu
re

 (°
C)

Outdoor
Indoor (actual)

Indoor (PFM method)
Indoor (TPM method)
Indoor (DDM method)

Time

Time

0

50

100

150

200

250

300

350

400

Po
w

er
 (k

W
)

Actual

PFM method
TPM method
DDM method

(a)

(b)

00:00 04:00 08:00 12:00 16:00 20:00 24:00

Fig. 8. Results of comparison between PFM and other two methods on a
typical day in winter. (a) Comparison of regional temperature. (b) Compari‐
son of regional energy consumption.

489



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 2, March 2022

V. CONCLUSION

An office building in a high-tech park is used as an exam‐
ple to construct a precision physical model of the building.
A PFM method is proposed to correct the accuracy of the
model through the parameter and model correction. The rele‐
vant conclusions are as follows.

1) Existing studies on the architectures for energy con‐
sumption analysis have given little attention to precise physi‐
cal models. This paper constructs a refined physical model
for energy consumption analysis of buildings. This model de‐
scribes in detail the structural matrix and the thermal and
thermal-electric conversion processes of a building through
physical modeling. In particular, the interaction between the
interior areas of the building and behavioral information is
considered in the form of a structural matrix.

2) This paper proposes a method for analyzing energy con‐
sumption of building through the PFM method. The accura‐
cy of the energy consumption analysis could be improved by
modifying the parameters and model. The interactive mecha‐
nism of energy conversion in buildings could be retained
through a physical model, and the accuracy of the energy
consumption analysis could be improved by the DDM meth‐
od.

3) The energy consumption analysis based on the PFM
method proposed in this study can obtain higher accuracy
(over 90%) when the sample data volume is relatively small.
The problem that the DDM method for building energy con‐
sumption analysis of buildings requires a large amount of
sample data is solved.
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