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A Bayesian Game Approach for Demand
Response Management Considering

Incomplete Information
Xiaofeng Liu, Difei Tang, and Zhicheng Dai

Abstract——Residential flexible resource is attracting much at‐
tention in demand response (DR) for peak load shifting. This
paper proposes a scenario for multi-stage DR project to sched‐
ule energy consumption of residential communities considering
the incomplete information. Communities in the scenario can
decide whether to participate in DR in each stage, but the deci‐
sion is the private information that is unknown to other commu‐
nities. To optimize the energy consumption, a Bayesian game
approach is formulated, in which the probability characteristic
of the decision-making of residential communities is described
with Markov chain considering human behavior of bounded ra‐
tionality. Simulation results show that the proposed approach
can benefit all residential communities and power grid, but the
optimization effect is slightly inferior to that in complete infor‐
mation game approach.

Index Terms——Demand response (DR), Bayesian game, energy
consumption scheduling, Markov chain.

I. INTRODUCTION

THE development and implementation of new technolo‐
gies and strategies for solving the energy problems are

critical to meeting the increasing energy demand in all walks
of life. The main concern in this field is how to alleviate the
contradiction between the energy supply and demand on the
premise of environmental friendliness. Many advancements
have been achieved in generation side, where distributed gen‐
eration is an effective way to solve the contradiction be‐
tween the energy supply and demand from “source side”
[1], [2]. Except for the way from “source side”, the energy
management from “load side” turns out to be an effective
way to solve the contradiction with the help of advanced
measurement system and communication technology in
smart grid. In the background, demand response (DR) has
been widely used for end consumers, especially for residen‐

tial users [3], [4].
Currently, there exists abundant research on residential

DR problems. For example, [5] presents a mathematical
model for the optimal energy management of a residential
building and proposes a centralized energy management sys‐
tem framework for off-grid operation, to reduce the energy
cost of household. Reference [6] proposes an energy manage‐
ment system for a home, which includes the optimal schedul‐
ing of electric vehicle charging and household appliances to
reduce the energy cost. References [5] and [6] mainly con‐
centrate on the optimization of single decision maker. How‐
ever, in most of DR scenarios, the optimization involves
multiple decision makers. The traditional centralized optimi‐
zation approach is difficult to solve such decision problem,
and the need for a decentralized optimization approach has
been a common consensus [7], [8].

In view of this, game theory, which is excellent in solving
multi-player decision problem, has been widely employed in
the field of DR [9]-[11]. Based on the degree of game infor‐
mation publicity, game-theoretic approaches can be classified
into complete information game approaches and incomplete
information game approaches. In the complete information
game approach, the information of all players is shared,
while in the incomplete information game approach, partial
information of players is not public [12], [13]. Presently,
many works have been done on DR optimization with com‐
plete information game approach. A dynamic non-coopera‐
tive repeated game approach in [14] is utilized as the decen‐
tralized approach to optimize the energy consumption and
energy trading amounts for the next day. A Stackelberg mod‐
el is formulated between DR aggregator and electricity gen‐
erators, in which the DR aggregator plays as the leader to
optimize the bidding strategy, and electricity generators play
as the followers to maximize their own profits [15]. Howev‐
er, it lacks of systematic research on DR with incomplete in‐
formation game approach. Reference [16] proposes a scenar‐
io, where the real-time demand and price are considered in
the incomplete information game approach due to the packet
loss in the communication. Reference [17] proposes a non-
cooperative game approach of incomplete information that
captures the uncertainties on both the operator and user
sides. However, the probability characteristic is not fully con‐
sidered in [16] and [17], which is a significant part in the in‐
complete information game approach.

According to the deficiency of current research, this paper
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proposes a repeated game approach considering incomplete
information to schedule the energy consumption of users,
which considers the construction of probability characteristic
with Markov chain. Considering that a DR project may be
implemented for many years, some users may participate in
the DR while some may exit the project during the period.
In order to facilitate the management and improve the effi‐
ciency, in the proposed scenario, we assume that the DR
project is divided into different stages. The duration time of
each stage can be one week or one month. At the end of
each stage, residential community can re-decide whether to
participate in the DR in the next stage. Additionally, this pa‐
per adopts a kind of agent mechanism, in which residential
community is deployed as an agent of native users to partici‐
pate in the DR decision. In the proposed scenario, the deci‐
sion of one residential community in each stage is private in‐
formation that is unknown to other residential communities,
and one residential community only knows the decisions of
other residential communities in the previous stage. Communi‐
ties with different decisions will have different energy con‐
sumption arrangements that will cause the change of real-time
demand and price.

Since each residential community does not know the deci‐
sions of its opponents, it is difficult to predict the energy de‐
mand and price. Consequently, it is difficult for each residen‐
tial community to schedule its own energy consumption with
complete information game approach. To solve the issue,
each residential community needs to speculate the decisions
of its opponents according to the probability characteristic of
decisions in the previous stage. And then, each residential
community can schedule its energy consumption by consider‐
ing the optimal scheduling strategies of other residential
communities with different decisions. In summary, the contri‐
butions of this paper are as follows.

1) A scenario is proposed for DR project to schedule ener‐
gy consumption of residential communities considering the
incomplete information, in which the dynamic decision-mak‐
ing process of residential community on whether to partici‐
pate in DR is considered in multi-stage DR project.

2) The probability characteristic of the decision-making of
residential communities is described with Markov chain, in
which the absolute rationality assumption for residential com‐
munity is removed and the human behavior of bounded ratio‐
nality, i.e., imitation and randomness, is considered.

3) A Bayesian game approach is proposed for the pro‐
posed scenario to reduce the daily cost with the formulated
probability characteristic of the decision-making of residen‐
tial communities, and the existence of Bayesian Nash equi‐
librium is proven mathematically.

The rest of this paper is organized as follows. The system
model is introduced in Section II. In Section III, the Bayesian
game approach is formulated and the existence of Bayesian
Nash equilibrium is proven. Then, the probability characteris‐
tics for decision-making and Bayesian Nash equilibrium are
analyzed in Section IV. The simulation results are presented in
Section V. Finally, the conclusions are drawn in Section VI.

II. SYSTEM MODEL

The proposed scenario for residential communities partici‐

pating in DR is shown in Fig. 1. There are N residential
communities, whose energy demand is provided by public
power grid. The DR center, which is a service department of
power grid, is employed as an information exchange system,
collecting desired demand information of each residential
community to public power grid and broadcasting DR infor‐
mation such as energy price policy to each residential com‐
munity. The community center is mainly responsible for the
information interaction with the DR center and the energy
management of residential loads. Residential loads are divid‐
ed into non-shiftable load, e.g., lamp, television, and refriger‐
ator, and shiftable load, e. g., electric vehicle, washing ma‐
chine, and dishwasher, in which only shiftable load can be
scheduled by the community center.

When DR project is implemented, the DR center will
broadcast DR information to all communities. Based on the
broadcasted DR information, each residential community
who is willing to participate in DR independently executes
the scheduling algorithm to obtain the optimal energy con‐
sumption. Those communities who are unwilling to partici‐
pate in DR will consume energy in their own ways. After all
communities finish the scheduling, they send the desired de‐
mand information to the DR center. Then, the DR center
sends the desired demand information of all communities to
public power grid. Since residential communities in the sce‐
nario cannot communicate with each other, there are no pri‐
vacy issue and heavy network traffic. In addition, whether a
residential community is willing to participate in DR in the
next stage is generally related with the decision in current
stage. Hence, in the scenario, we assume that the decision-
making of each residential community on whether to partici‐
pate in DR in each stage has Markov property.

The two-state Markov chain for residential community is
shown in Fig. 2, where α is the probability that a residential
community is infected to participate in DR by each neighbor‐
ing residential community who has participated in DR; β is
the probability that a residential community decides to exit
DR; N1 is the number of neighbors of a residential communi‐
ty who participates in DR in the stage s; and (1 - α)N1 is the

DR informationPower line; Information line;
Desired demand information

DR center

Residential
community n

Residential
community 1

Residential
community N

Residential
community 2

Residential
community N�1

Public
power grid

Community
center

Shiftable loads

Non-shiftable loads

……

Fig. 1. Scenario for residential community participating in DR.
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probability that a residential community is not infected by
all neighbors. Probabilities α and β are the parameters to re‐
flect the imitation behavior and random behavior of the resi‐
dential community, respectively. The higher the value of α
or β is, the more serious the imitation behavior or random
behavior is. In fact, human behavior of bounded rationality
is very complex and parameters α and β cannot reveal the
bounded rational behavior from the level of the mechanism.
However, whatever the mechanism is, the bounded rational
behavior will finally be presented via α and β. Therefore, it
is feasible to describe the probability characteristic of the de‐
cision-making of communities based on the two parameters.

Suppose that the set of N residential communities is denot‐
ed by N = {12N} and a day is divided into H time slots
with H = {12H}. In addition, all shiftable household ap‐
pliances of residential community n are denoted by set An.

A. Energy Consumption Model

Assume that for any residential community nÎN in time
slot hÎH, its non-shiftable load consumes energy ln,b,h and
its shiftable load consumes energy ln,h. The shiftable load is
relatively insensitive to energy consumption time, which can
be shifted in a certain time interval. Suppose that any shift‐
able household appliance aÎAn consumes energy xn,a,h in
time slot h, and it has to satisfy (1).

∑
h = ξna

λna

xnah =Ena (1)

where [ξnaλna ] is the shiftable time interval of appliance a;
and En,a is the daily energy demand of appliance a. There‐
fore, the whole energy consumption of residential communi‐
ty n is expressed as:

ì
í
î

ïï

ïïïï

lnh = ∑
aÎAn

xnah

Lnh = lnbh + lnh

(2)

where Ln,h is the whole energy consumption of residential
community n in time slot h. Accordingly, the set of the feasi‐
ble energy consumption scheduling corresponding to residen‐
tial community n can be expressed as:

Xna =
ì
í
î

ïï

ïï
xna

|

|

|
||
|
|
|∑

h = ξna

λna

xnah =Ena ; xnah = 0"hÎH\[ξnaλna ]
ü
ý
þ

ïïïï

ïï
(3)

where xn,a =[xn,a,1xn,a,2xn,a,H ] is the scheduling vector of
appliance a.

B. Energy Price Model

It is clear that the energy price mechanism plays an impor‐
tant role in attracting more residential communities to partici‐
pate in DR. In recent years, various price mechanisms have

been studied, including time-of-use price [18], real-time
price [19], and critical-peak price. In this paper, the real-
time price is adopted as the financial settlement between the
public power grid and residential communities, i.e.,

ph (Lh )= k1h Lh + k2h (4)

Lh =∑
n = 1

N

Lnh (5)

where ph (×) is the function of real-time price; k1h > 0 and
k2h > 0 are the coefficients of energy price with higher val‐
ues during peak hours; and Lh is the whole energy consump‐
tion of all communities.

Based on the energy price model (4), the cost of each resi‐
dential community can be calculated. Accordingly, the total
daily cost of residential community n can be calculated as:

Cn =∑
h = 1

H

ph (Lh )Lnh (6)

The objective of the residential community participating
in DR is to minimize the daily cost, i.e.,

min
xnaÎXna"aÎAn

Cn (xna ) (7)

Residential communities can obtain the optimal result by
solving the optimization problem (7).

III. BAYESIAN GAME APPROACH AMONG RESIDENTIAL

COMMUNITIES

In this section, the complete information game approach
will be firstly formulated among residential communities, in
which the game information of each residential community
is known to all communities. Then, the Bayesian game ap‐
proach for the energy consumption is formulated considering
the incomplete information.

A. Formulation of Complete Information Game Approach

In the complete information game approach, the DR infor‐
mation of each residential community such as the initial en‐
ergy consumption in each time slot and the decision on
whether to participate in DR is well known to all communi‐
ties. Consequently, each residential community will try to
minimize its daily cost by speculating the scheduling strate‐
gies of other communities. Therefore, according to (6), the
complete information game approach among residential com‐
munities can be formulated as follows.

1) Players: all communities who are willing to participate
in DR.

2) Strategies: each residential community n schedules its
energy consumption of shiftable load xn,a to minimize the
daily cost.

3) Payoffs: the payoff of residential community n is de‐
fined as:

Pn (xnax-na )=-Cn (xnax-na ) (8)

where x–n,a =[x1,ax2axn–1,axn + 1,axN,a ] is the schedul‐
ing strategies of other communities except residential com‐
munity n.

It needs to be noted that, the above formulated game ap‐
proach is mainly designed for the communities participating
in DR. For some communities who do not participate in DR,
they just need to consume energy in their initial state and

Decide to
participate in
DR project

Decide to
exit DR
project

 Community in stage
s for DR project

Probability β

Probability 1�(1�α)N1

Fig. 2. Two-state Markov chain for residential community.
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the scheduling strategy xn,a is assigned with initial energy
consumption. When these communities schedule energy con‐
sumption to maximize their own payoff based on the strate‐
gies of opponents until all strategies are unchanged, such
state is called Nash equilibrium. Assume that (x *

nax *
-na ) is

the corresponding Nash equilibrium of the formulated com‐
plete information game approach, we can obtain:

Pn (x *
nax *

-na )³Pn (xnax *
-na ) (9)

Once the Nash equilibrium is reached, no residential com‐
munity will break such equilibrium state. Otherwise its pay‐
off will be reduced.

B. Formulation of Bayesian Game Approach

In the complete information game approach, each residen‐
tial community has the full information of other communi‐
ties and can speculate the scheduling strategies of other com‐
munities via solving the optimization problem (8). However,
a lot of information in reality is not public information. For
example, in the proposed scenario, each residential communi‐
ty only knows the decision of opponents on whether to par‐
ticipate in DR in the historical stage, and it is not easy to
know the decision of opponents in the future stage. That is
to say, when the residential community participates in ener‐
gy management, it is not easy to know if other communities
participate in DR in the next stage. Consequently, one resi‐
dential community cannot speculate the scheduling strategies
of other communities because the payoff function is un‐
known completely. Hence, the modeling process of the com‐
plete information game approach is not suitable for the in‐
complete information game approach. In this paper, Bayes‐
ian game approach is employed to describe the competition
behavior among residential communities considering the in‐
complete information. Different from the complete informa‐
tion game approach, the basic elements of Bayesian game
approach have to introduce the types of players and the prob‐
ability distribution of the types except for players, strategies,
and payoffs.

Assume that residential communities are divided into two
types according to the decision on whether to participate in
DR. That is, the type space Tn of residential community n
has |Tn| = 2 elements and the actual type of residential com‐
munity n is tn. Herein, let tn = 1 represent that the residential
community is willing to participate in DR, otherwise tn = 2.
Accordingly, T = T1 × T2 × × TN represents the type space
combination for all communities and the actual type combi‐
nation of all communities is t =[t1t2tN ]. Since each resi‐
dential community does not know the types of its opponents,
it needs to speculate the types of opponents according to the
probability distribution of the types. On the basis of Bayes‐
ian formula, we can obtain:

Pr(t-n|tn )=
Pr(tnt-n )

Pr(tn )
=

Pr(tnt-n )∑
t-nÎT-n

Pr(tnt-n ) (10)

where T-n = T1 × × Tn - 1 × Tn + 1 × × TN and t-n are the type
combination for other N - 1 communities except residential
community n and the actual type combination of these com‐
munities, respectively; Pr(t-n|tn ) is the conditional probability
of t-n under the condition that the type of residential commu‐
nity n is tn; Pr(tn ) is the probability that the type of residen‐

tial community n is tn; and Pr(tn,t-n )= Pr(t) is the joint proba‐
bility distribution for type combination t.

It is clear that, the types of all communities can be de‐
duced from the prospect of probability with the Bayesian
condition probability (10). In other words, the incomplete in‐
formation game can be translated into various complete in‐
formation games by dividing different type combinations of
all communities and each complete information game ap‐
pears with a certain probability. Therefore, the payoff of the
Bayesian game is actually the expected value of all payoffs
of these complete information games. When the type of resi‐
dential community n is tn, it will speculate the type combina‐
tion of opponents with Bayesian formula Pr(t-n|tn ) and then
formulate the payoff function of Bayesian game. According‐
ly, the payoff of Bayesian game of residential community n
with type tn can be expressed as:

EPn (tn )= ∑
t-nÎT-n

Pn (tnxna (tn )x-na (t-n ))Pr(t-n|tn ) (11)

where xn,a (tn ) is the scheduling strategy of residential com‐
munity n with type tn; and x-na (t-n ) is the scheduling strate‐
gies of other communities with type combination t-n. Equa‐
tion (11) is the objective function of residential community n
with type tn, and the optimal strategy xn,a (tn ) can be obtained
by solving the maximization problem (11). When the sched‐
uling strategies of all communities are unchanged, such equi‐
librium is called Bayesian Nash equilibrium, which is de‐
fined as:

EPn (x *
na (tn )x *

-na (t-n ))³EPn (xna (tn )x *
-na (t-n )) (12)

where [x*
na (tn )x*

-na (t-n )] is the Bayesian Nash equilibrium
corresponding to type combination t =[tnt-n ]. It needs to
point out that, this paper focuses on the multi-stage DR,
hence, the Bayesian game approach in this section is formu‐
lated for any DR stage. In order to have a better expression,
the identifier “s” for DR stage is omitted in the above analy‐
sis, but it will be added in the analysis of joint probability
distribution in next section.

IV. SOLUTION FOR BAYESIAN GAME APPROACH

Based on the formulated Bayesian game approach, one
can know that the determination of joint probability distribu‐
tion is significant for the equilibrium solution. Therefore,
this section mainly focuses on the analysis of joint probabili‐
ty distribution and Bayesian Nash equilibrium.

A. Markov Model for Joint Probability Distribution

In the proposed scenario, the implement process of the
DR project is divided into different stages. At the end of
each stage, residential community can freely decide whether
to participate in DR in the next stage. Since a residential
community whether to participate in DR in next stage is on‐
ly related with the current stage, the decision-making pro‐
cess has the Markov property [20], i.e.,

Pr(tn (s + 1)|tn (1)tn (2)tn (s))= Pr(tn (s + 1)|tn (s)) (13)

where tn (1)tn (2)tn (s) are the actual type of residential
community n from stage 1 to stage s; and Pr(tn (s + 1)|tn (s)) is
the probability of residential community n being type
tn (s + 1) under the condition of being type tn (s). Before
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Bayesian game approach is applied, the state of each residen‐
tial community has to be determined separately. In fact, the
determination of Pr(tn (s + 1)|tn (s)) can be obtained from Fig.
2. According to Fig. 2, there are four cases in total.

1) Case 1: residential community n participates in DR in
stage s, i.e., tn (s)= 1, and still participates in DR in stage s + 1,
i. e., tn (s + 1)= 1. The corresponding conditional probability is
expressed as:

Pr(tn (s + 1)|tn (s))= 1 - β (14)

2) Case 2: residential community n participates in DR in
stage s, i.e., tn (s)= 1, and exits DR in stage s+1, i.e., tn (s +
1)= 2. The corresponding conditional probability is expressed
as:

Pr(tn (s + 1)|tn (s))= β (15)

3) Case 3: residential community n does not participate in
DR in stage s, i.e., tn (s)= 2 and participates in DR in stage
s + 1, i. e., tn (s + 1)= 1. The corresponding conditional proba‐
bility is expressed as:

Pr(tn (s + 1)|tn (s))= 1 - (1 - α)N1 (16)

4) Case 4: residential community n does not participate in
DR in stage s, i. e., tn (s)= 2 and does not participate in DR
in stage s + 1 as well, i. e., tn (s + 1)= 2. The corresponding
conditional probability is expressed as:

Pr(tn (s + 1)|tn (s))= (1 - α)N1 (17)

Therefore, the transition probability of Markov chain for
residential community n can be expressed as:

Pr(tn (s + 1)|tn (s))=

ì

í

î

ï
ïï
ï
ï
ï

ï

ïï
ï
ï

ï

1 - β (tn (s) (tn (s + 1))= (11)

β (tn (s) (tn (s + 1))= (12)

1 - (1 - α)N1 (tn (s) (tn (s + 1))= (21)

(1 - α)N1 (tn (s) (tn (s + 1))= (22)

(18)

According to the characteristic and the transition probabili‐
ty of Markov chain, we can obtain the probability of residen‐
tial community n with type 1 in stage s + 1 as:

Prn (tn (s + 1)= 1)=
é

ë
ê
êê
ê ù

û
ú
úú
úPrn (tn (s)= 1)

Prn (tn (s)= 2)

T
é

ë

ê
êê
ê ù

û

ú
úú
úPr(tn (s + 1)|tn (s)= 1)

Pr(tn (s + 1)|tn (s)= 2)
(19)

Equation (19) can be rewritten as:

Prn (tn (s+ 1)= 1)=(1- β)Prn (tn (s)= 1)+ [ ]1-(1-α)N1 Prn (tn (s)= 2)

(20)

Assume that J is the set of all neighbors of residential
community n and residential community j is any one in the
set J. Clearly, residential community j will participate in DR
with the probability Pr j (tj (s)= 1) and not participate in DR
with the probability Pr j (tj (s)= 2). When residential communi‐
ty j participates in DR, the probability that residential com‐
munity n is not infected is equal to 1 - α; otherwise, the cor‐
responding probability is equal to 1. That is, the probability
that residential community n is not infected by residential
community j can be expressed as:

(1 - α)Pr j (tj (s)= 1)+ Pr j (tj (s)= 2) (21)

Accordingly, the probability that residential community n
is not infected by all neighbors can be rewritten as:

(1 - α)N1 =∏
jÎJ

[(1 - α)Pr j (tj (s)= 1)+ Pr j (tj (s)= 2)] =

∏
jÎJ

(1 - α Pr j (tj (s)= 1)) » 1 - α∑
jÎJ

Pr j (tj (s)= 1) (22)

Therefore, the probability of residential community n with
type 1 and type 2 can be expressed as:

Prn (tn (s + 1)= 1)= (1 - β)Prn (tn (s)= 1)+

é

ë

ê
êê
ê ù

û

ú
úú
ú1 - ( )1 - α∑

jÎJ
Pr j (tj (s)= 1) Prn (tn (s)= 2) (23)

Prn (tn (s + 1)= 2)= β Prn (tn (s)= 1)+

é

ë

ê
êê
ê ù

û

ú
úú
ú1 - α∑

jÎJ
Pr j (tj (s)= 1) Prn (tn (s)= 2) (24)

Considering residential communities are in a well-connect‐
ed information network, the probability characteristic of the
decisions of communities on whether to participate in DR in
previous stage is the public information in the network.
Therefore, the set J can be considered as set N \n, then the
probability of residential community n with type 1 and type
2 is equal to (25) and (26), respectively.

Prn (tn (s + 1)= 1)= (1 - β)Prn (tn (s)= 1)+

α∑
jÎN \n

Pr j (tj (s)= 1) Prn (tn (s)= 2) (25)

Prn (tn (s + 1)= 2)= 1 - Prn (tn (s + 1)= 1) (26)

Based on (25) and (26), the probability of each residential
community with type 1 or 2 in stage s + 1 can be easily ob‐
tained. Consequently, the joint probability distribution Pr(t)
will be determined for all type combinations. Furthermore,
Bayesian conditional probability will be obtained with (10).

B. Bayesian Nash Equilibrium

According to the above analysis, it is obvious that Bayes‐
ian Nash equilibrium is closely correlated with the type of
players. Hence, the residential community will have different
Bayesian Nash equilibriums for different types. In this sub‐
section, the existence and uniqueness of the Bayesian Nash
equilibrium will be proven for any actual type combination t.

Proposition 1: in the formulated complete information
game approach, the Bayesian Nash equilibrium is unique.

Proof: obviously, the payoff function Pn (xn,ax-n,a ) is con‐
tinuously differentiable in xna for the fixed x-na. Hence, the
Hessian matrix of function Pn (xn,ax-n,a ) can be obtained as:

Ñ2
xna

Pn (xnax-na )=-diag
ì
í
î

ïï
ïï

ü
ý
þ

ïïïï

ïï
p̈h∑

aÎAn

xnah + 2ṗh = diag{-2k1h }

h = 12H (27)

Due to the coefficient of energy price k1h > 0,
Ñ2

xna
Pn (xnax-na ) is a diagonal matrix with all negative ele‐

ments. Therefore, the function Pn (xnax-na ) is concave in
xna. Consequently, the existence of Nash equilibrium can be
proven according to Theorem 1 in [21], and the uniqueness
of Nash equilibrium can be proven according to Theorem 3
in [21]. According to Proposition 1, we can easily obtain the
following proposition.

Proposition 2: in the formulated Bayesian game approach,
Bayesian Nash equilibrium is unique for any actual type
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combination t.
Proof: similarly, we just need to prove the concavity of

payoff function EPn (tn ). Accordingly, the corresponding Hes‐
sian matrix is expressed as:

Ñ2
xna (tn )EPn (tn )= ∑

t-nÎT-n

Ñ2
xna

Pn (xna (tn )x-na (t-n ))Pr(t-n|tn ) (28)

Since ∑
t-nÎT-n

Pr(t-n|tn )= 1, (28) can also be rewritten as:

Ñ2
xna (tn )EPn (tn )= diag{-2k1h } h = 12H (29)

Accordingly, the Bayesian Nash equilibrium is unique for
any actual type combination t.

In order to search the optimal solution of the Bayesian
game approach, a distributed algorithm executed by commu‐
nity center is proposed, which is shown in Algorithm 1.

In stage 7, given x-n,a (t-n ), the problem (11) has only local
variable xn,a (tn ) and can be solved with the mature mathe‐
matic programming algorithm. In this paper, CPLEX optimi‐
zation solver is adopted, which has a high convergence and
efficiency. Additionally, for the Bayesian Nash equilibrium,
each residential community has to constantly readjust its
strategy until the equilibrium is reached. The dynamic deci‐
sion-making process of the Bayesian game can be summa‐
rized as follows.

1) Community n calculates the optimal scheduling strate‐
gies of other N - 1 residential communities one by one ac‐
cording to its own strategy.

2) Community n updates the original strategy according to
the new scheduling strategies of other N - 1 residential com‐
munities.

3) Repeat 1) and 2) until the equilibrium is achieved.
Such dynamic process is realized with stages 3-12. Since

the formulated game model has Nash equilibrium, Algorithm
1 will converge to the equilibrium by executing stages 3-12

[22], [23]. Here, it needs to note that, all residential commu‐
nities who are willing to participate in DR have the same
process. In other word, each residential community will ob‐
tain an equilibrium solution by executing Algorithm 1. But,
since the Bayesian Nash equilibrium of the game is unique,
the obtained solution is actually the same equilibrium.

V. SIMULATION RESULTS

In this section, simulation results are presented to show
the effectiveness of the formulated Bayesian game approach
and the performance of the designed distributed algorithm.

Assume that there are 3 residential communities and each
residential community contains 800 users in the case. A day is
divided into 24 time slots and each time slot is 1 hour. Initial
energy consumption of each residential community before DR
is given with a random energy demand value between the up‐
per limit and the lower limit that are set in Fig. 3. Note that,
the initial energy consumption considers the non-shiftable load
and the shiftable load, in which the shiftable load contains
washing machine, dishwasher, and electric vehicle.

Such shiftable loads can be scheduled uniformly by com‐
munity center during the permitted time interval. Herein, we
assume that the permitted time slots of shiftable loads are as
follows: electric vehicle can be charged from 17:00 to 24:00
and 00:00 to 06:00; washing machine can operate from 17:
00 to 23:00; and the dishwasher can operate from 17:00 to
23: 00. In addition, considering the difference of operation
characteristics of the shiftable appliances, we assume that
the electric vehicle can be charged at any time during the
permitted interval, while the washing machine or dishwasher
only works once a day and the operation time is 1 hour
[24]. According to Fig. 3, energy price parameters are set as
follows: k1h = 1.2, k2h = 42.86 (h = 1, 2, , 6); k1h = 1.9, k2h =
71.43 (h = 7, 8, , 17 and h = 24); k1h = 2.5, k2h = 128.57 (h =
18, 19, , 23). Furthermore, suppose that in the initial stage
of conducting DR project, only a third of residential communi‐
ties are willing to participate in DR. That is, the probability
distribution of decisions of residential communities in stage
s = 1 is equal to Prn (tn (1)= 1)= 1/3 and Prn (tn (1)= 2)= 2/3 (n = 1,
2, 3). In the future stage, we assume that a residential commu‐
nity can be infected to participate in DR by each residential
community with probability α= 0.2, and the residential com‐
munity will have the probability β = 0.1 from type 1 to type 2.

Algorithm 1

Input: energy price parameters, initial energy consumption, initial probabil‐
ity distribution of decisions of residential communities on whether to
participate in DR

Output: optimal arrangement of shiftable load

1. Calculate the probability of any residential community with type 1 or 2
in stage s + 1 according to the type of residential communities in
stage s

2. Calculate the joint probability distribution of |T| type combinations in
stage s + 1

3. Repeat

4. n = 1

5. for n ⩽ N do

6. if tn (s + 1)= 1

7. Update the strategy of residential community n xn,a (tn ) by solving
the maximization problem (11)

8. else

9. Update the strategy of residential community n xn,a (tn ) with initial
consumption

10. end

11. n = n + 1

12. end

13. Until no residential community changes its strategy

14. Return strategy xn,a (tn ) of residential community n with type tn

Upper limit 
Lower limit 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 d

em
an

d 
(M

W
h)

5 10 15 20 250
Time slot

Fig. 3. Energy demand range of each residential community.
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A. Optimal Strategy of Residential Community

Since each stage has an equilibrium solution, this subsec‐
tion will take the result of stage s = 2 as an example. Accord‐
ing to (25) and (26), the probability of any residential com‐
munity n with type 1 is equal to Prn (tn (2)= 1)= 0.389 and
Prn (tn (2)= 2)= 0.611. Since 3 residential communities are
considered, there are 23 type combinations. Therefore, the
joint distribution probability for t =[t1, t2, t3 ] is equal to:

Pr(t)= 0.389M × 0.6113 -M (31)

where M = 1, 2, 3 represents the number of residential com‐
munities with type 1 in actual type combination t =[t1, t2, t3 ].
Additionally, we assume that the actual type combination of
3 residential communities is t =[111] in stage s = 2. Based
on the above simulation parameters, the equilibrium can be
obtained by executing Algorithm 1.

Tables I and II show the optimal operation strategy of
shiftable appliances in each time slot in the complete infor‐
mation game and Bayesian game, respectively. In the tables,
“DW”, “WM”, and “EV” represent the dishwasher, washing
machine and electric vehicle, respectively; the identifier “√”
represents that the appliance will consume energy in the cor‐
responding time slot.

From the tables, it can be seen that electric vehicles in 3
residential communities are all shifted to the off-peak hours,
i. e., time slots 1-6, but the operation strategies of the dish‐
washer and washing machine are different between the two
approaches. In the complete information game approach, the
operation time of dishwasher and washing machine in 3 resi‐
dential communities are scheduled into 6 time slots from
time slot 18 to time slot 23. That is, each time slot only has
one shiftable appliance, for example, time slot 18 only has
the dishwasher of residential community 3. However, in
Bayesian game approach, some time slots have more than
one shiftable appliance, for example, time slot 21 has the
washing machine of residential community 1 and the dish‐
washer of residential community 2. The main reason for the
difference is that, since the decision of each residential com‐
munity on whether to participate in DR in stage 2 is un‐
known to other communities, each residential community
cannot deduce the strategy of its opponents precisely. Conse‐
quently, residential community can only make a compromise
strategy to maximize the expected payoff by considering all
possible type combinations.

B. Benefits of Residential Community and Grid

Residential community and public power grid can effec‐
tively obtain the benefits from the proposed Bayesian game
approach. However, due to the lack of game information, the
obtained benefits in the Bayesian game are less than those in
the complete information game.

Figure 4 is the optimal energy demand of each residential
community in the Bayesian game. It can be observed that,
compared with the initial energy demand, the optimal energy
demand of each residential community has a good effect on
load shifting.

TABLE II
OPTIMAL OPERATION STRATEGY OF APPLIANCES IN BAYESIAN GAME

APPROACH

Time
slot

1-6

7-17

18

19

20

21

22

23

24

Residential
community 1

DW

√

WM

√

EV

√

Residential
community 2

DW

√

WM

√

EV

√

Residential
community 3

DW

√

WM

√

EV

√
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Fig. 4. Optimal energy demand of each residential community in Bayesian
game. (a) Residential community 1. (b) Residential community 2. (c) Resi‐
dential community 3.

TABLE I
OPTIMAL OPERATION STRATEGY OF APPLIANCES IN COMPLETE

INFORMATION GAME APPROACH

Time
slot

1-6

7-17

18

19

20

21

22

23

24

Residential
community 1

DW

√

WM

√

EV

√

Residential
community 2

DW

√

WM

√

EV

√

Residential
community 3

DW

√

WM

√

EV

√
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The corresponding energy demand of all communities is
shown in Fig. 5. It can be observed that the maximum ener‐
gy demand is 3.57 MWh in the complete information game,
while the maximum energy demand is 4.05 MWh in the
Bayesian game in time slot 18. The main reason is that, time
slot 18 has dishwashers of two communities simultaneously
in the Bayesian game. It demonstrates that the Bayesian
game approach is liable to cause load aggregation.

In order to quantitatively analyze the variation of energy
demand, peak to average ratio (PAR) can be introduced,
which is calculated as [9]:

PARg =
max
hÎH

Lh

1
H∑hÎHLh

(32)

PARn =
max
hÎH

Lnh

1
H∑hÎHLnh

(33)

where PARg is the PAR in public power grid; and PARn is
the PAR in residential community n. Basically, Fig. 6 de‐
picts the PAR in public power grid (solid lines) and each res‐
idential community (discrete points).

Before DR project is implemented, no matter in public
power grid or in each residential community, the PAR is
very high. However, although the PAR in each residential
community is high after the two game approaches have been
employed, the PAR in public power grid is reduced greatly.
It indicates that the two game approaches can realize the de‐
mand complementation among communities. The daily cost
of each residential community is shown Fig. 7. From the op‐
timal results of the two game approaches, it can be observed
that the optimization effect of Bayesian game approach on
PAR and the daily cost is slightly less than that of the com‐
plete information game approach. It needs to be pointed out
that, although the disclosure of game information will con‐
tribute the optimization effect, players are still unwilling to
completely disclose the private information due to the priva‐
cy protection and human selfishness.

C. Evolution Analysis of Probability in DR

In the above case, for the convenience of analysis, we as‐
sume that the actual types of 3 residential communities are
all type 1, but such probability is only 0.059. In addition,
the above case only concerns the optimal result in a certain
stage. Therefore, this subsection mainly concentrates on the
evolution analysis for the probability of communities partici‐
pating in DR with the execution of DR project. Specially,
the different evolution results for communities with different
degrees of rationality will be analyzed by regulating parame‐
ters α and β. Since different groups of users have various de‐
grees of rationality in the reality, the obtained result can pro‐
vide the reference in the design and implementation of DR
project considering different user groups. The evolution re‐
sult of the probabilities of residential communities with
types 1 and 2 is shown in Fig. 8.

It depicts that the probabilities of communities with types
1 and 2 gradually converge to fixed values after 20 stages.
Finally, each residential community will participate in DR
with the probability of 0.75. In fact, the evolution result of
the probabilities of communities is closely related with pa‐
rameters N, α, and β. Figure 9 shows the probability of type
1 with different parameters.

It is clear that, with the growth of the number of commu‐
nities, the probability of type 1 increases gradually. The
main reason is that, each residential community will have a
higher probability to be attracted into DR with the growth of
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Fig. 5. Energy demand of all communities in complete information and
Bayesian game approaches. (a) Complete information game approach. (b)
Bayesian game approach.
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the number of communities in DR. However, with the
growth of the value of β, the probability of type 1 decreases
dramatically. The values of α and β are correlated with the
DR project such as the DR price and DR experience. The
growth of β demonstrates that the DR project has a low at‐
traction or experience, and the residential community is un‐
willing to participate in DR or wants to exit DR. Therefore,
it is important to design a good DR mechanism for the bet‐
ter performance of DR in smart grid. According to the re‐
sults in Fig. 9, the joint probability distribution of the formu‐
lated Bayesian game approach can be deduced, and then the
equilibrium solution of the Bayesian game approach can be
obtained.

Figure 10 shows the daily cost of 3 residential communi‐
ties with different values of β and α = 0.2. It should be noted
that the results of Fig. 10 are obtained based on the follow‐
ing assumptions: ① the actual number of communities par‐
ticipating in DR is obtained by rounding the value of the
product of N and the probability with type 1; ② communi‐
ties 1 and 2 participate in DR when the actual participation
number is 2, and residential community 1 participates in DR
when the number is 1. It can be observed that in the same

case, the value of β has the limited influence on the daily
cost of each residential community; while in the different
cases, the daily cost of each residential community has a
large fluctuation. It demonstrates that the value of β will af‐
fect the actual participation number of communities and the
joint probability distribution, and then further affect the daily
cost of each residential community. However, the daily cost
of each residential community will be greatly affected with
the change of the actual participation number.

Additionally, Table III shows the running time of the pro‐
posed algorithm in the cases with different numbers of com‐
munities, i.e., N = 3, 4, , 8 and β = 0.1, α = 0.2. It should be
noted that the actual participation number of communities is
equal to N and the algorithm is conducted on the personal
computer with Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz
and RAM 8.00 GB. The table depicts that the running time
of the Algorithm 1 increases gradually with the increasing
number of communities. It can be foreseen that the Algo‐
rithm 1 may take longer running time for dozens or hun‐
dreds of communities on the personal computer. However,
considering the finite running speed of personal computer,
running time can be reduced dramatically if a computing
server is used, which is acceptable in the practical applica‐
tion.

VI. CONCLUSION

In this paper, a Bayesian game approach is formulated to
schedule energy consumption of shiftable load in residential
communities considering the incomplete information. In the
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TABLE III
RUNNING TIME OF ALGORITHM 1

Number of
residential communities

3

4

5

Running
time (s)

61.57

98.43

145.71

Number of
residential communities

6

7

8

Running
time (s)

212.04

286.27

373.18
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proposed scenario, each residential community can decide
whether to participate in DR in any stage of DR project. The
decision of each residential community is the private infor‐
mation, which is unknown to other communities. Therefore,
each residential community needs to evaluate such informa‐
tion based on the probability distribution of decision. Accord‐
ingly, the Markov model for joint probability distribution is
proposed to describe the decision-making process of residen‐
tial community considering human behavior of bounded ra‐
tionality. Simulation results demonstrate that the proposed
approach can reduce the daily cost and PAR of the overall
energy demand. However, compared with the complete infor‐
mation game approach, it shows that the optimization effect
on the Bayesian game approach is weakened due to the loss
of game information.
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