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A Multi-parametric Programming Based
Analytic Method to Compute Consumer

Offer Curve for Reserves
Weiye Zheng, David J. Hill, and Wenchuan Wu

Abstract——An analytic method is proposed to compute the
price-reserve offer curve at the consumer level in hierarchical
direct load control. The convexification of the consumer reserve
provision is examined, and the analytic expression of the opti‐
mal solution within each critical region is derived. Then, based
on multi-parametric programming, a combinatorial enumera‐
tion method in conjunction with efficient reduction and pruning
strategy is proposed to compute the optimal response of con‐
sumers in the whole price space. Numerical tests along with an
application example in the bi-level aggregator pricing problem
demonstrate the merit of this method.

Index Terms——Direct load control, multi-parametric program‐
ming, price-reserve offer curve, analytic solution.

I. INTRODUCTION

WITH the integration of an increasing amount of re‐
newable sources, power systems need more reserve

capacity to keep power balance. As demand response has
been recognized as an effective and convenient way for ener‐
gy management [1], [2], responsive loads are utilized by in‐
stituted programs in several electricity markets for reserve
provision. But the control strategy is relatively crude in most
cases. To achieve fine control, a mathematical method is nec‐
essary. Since the third party aggregators are entering the re‐
serve market, direct load control (DLC) involves the interac‐
tion between aggregators and consumers, which is a bi-level
optimization problem. Then, one of the most fundamental is‐
sues is how to characterize the optimal response of the low‐
er level, i.e., the reserve provided by consumers with a cer‐
tain price signal. Substituting the Karush-Kuhn-Tucker

(KKT) conditions of the lower-level problem into the upper-
level problem, which is also known as mathematical pro‐
gramming with equilibrium constraints (mpECs), is a prevail‐
ing method [3]. However, serious privacy concerns are
raised since this practice requires the aggregator to collect
the full model from all consumers [4]. This issue could be al‐
leviated by a probing method (PM) [5], where the aggrega‐
tor sends a certain price to the consumers, observes their of‐
fered reserve capacity, and iterates until a stepwise constant
price-reserve estimate for each consumer is developed. How‐
ever, an accurate estimate requires a large number of prob‐
ing events and communications, which is impractical for re‐
al-time DLC that requires both the accuracy and efficiency.

To tackle these issues, an efficient method is proposed to
obtain the optimal price-reserve offer curve [6] in an analyt‐
ic form. The idea is inspired by network equivalent represen‐
tation in integrated systems [7], [8]. In the proposed scheme,
the aggregator just specifies the price bounds, and then con‐
sumers calculate and upload their offer curve to the aggrega‐
tor for further dispatch. Figure 1 presents the comparison of
three methods to characterize consumers’ response in DLC.

To achieve this, multi-parametric programming is em‐
ployed [9], which has also been applied in power system op‐
eration such as economic dispatch (ED). However, this letter
differs from relevant multi-parametric programming research
in both the aim and methodology. Multi-parametric is em‐
ployed in [10] for decomposition, where only a few critical
regions (CRs) are explored to achieve the decomposition in
multi-area ED. While the multi-parametric programming
based enumeration procedure (MPEP) is investigated along
with the convexification technique to compute the optimal re‐
serve provision curve in the whole price space for DLC.

The merits of this short letter are summarized as follows.
1) Most existing literature adopts stepwise constant price-
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Fig. 1. Comparison of three methods to characterize consumers’ response
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reserve offer curves, which may be convenient but not opti‐
mal. An MPEP is proposed, for the first time, to accurately
describe the optimal reserve provision.

2) Calculating the optimal reserve with a specific price
signal has been well studied by the existing works. Howev‐
er, the difficulty is how to obtain the optimal reserve in the
whole price space where numerous cases of price signals
should be considered. To this end, a reduction and pruning
method is proposed to explore all CRs efficiently.

3) A bi-level aggregator pricing (AP) problem is listed as
an example to demonstrate the application of the proposed
method. Numerical results show that even in this simple
case, the economic improvement due to more accurate price-
reserve offer curves is still substantial.

II. PROBLEM OF CONSUMER RESERVE PROVISION (CRP)

With a certain pt = (pt,up, pt,down)
T, i.e., the price signal sent

from the aggregator to the consumer for up- and down-re‐
serve capacity at time t, the problem of CRP where each
consumer determines its optimal up- and down-reserve ca‐
pacity rtuprtdown is formulated as follows for any time t [5]:

max
rtuprtdown

ptuprtup + ptdownrtdown -Ctshift (rtshift )-

Ctshed (rtshed )-Cinc (rtinc ) (1)

s.t.

dt + rtdown £ d̄t (2)

-d t
+ rtup £ dt (3)

rtshift =min(rtuprtdown ) (4)

rtshed =max(rtup - rtdown0) (5)

rtinc =max(rtdown - rtup0) (6)

Ctshift (rtshift )= atshift + btshfitrtshift + ctshiftr
2
tshift (7)

Ctshed (rtshed )= atshed + btshedrtshed + ctshedr 2
tshed (8)

Ctinc (rtinc )= atinc + btincrtinc + ctincr
2
tinc (9)

where dt , d̄t , -d t
are the current, maximum, and minimum

power consumptions of the consumer at time t, respectively;
r t = (rtshiftrtshedrtinc )T denotes the approximated load shifting,
load shedding, and load increasing components of the re‐
serve capacity at time t, respectively; Ctshift (×), Ctshed (×), Ctinc (×)
are the corresponding costs, respectively; and at( )× , bt( )× , ct( )×
are the cost coefficients.

The model can be described as follows. The objective in
(1) is the total profit maximization of CRP. Constraints (2)
and (3) bound up- and down-reserve by load consumption,
respectively. Constraints (4) - (6) factorize the reserve into
shifting, shedding, and increasing components, while con‐
straints (7)-(9) represent the corresponding costs.

Note that rtup = rtshift + rtshed and rtdown = rtshift + rtinc. To avoid
non-differential representation of (4)-(6), CRP can be rewrit‐
ten equivalently as CRP′ in the following form [5], which in‐
cludes (10)-(16) and (7)-(9):

max
rtshiftrtshedrtinc

ptup (rtshift + rtshed )+ ptdown (rtshift + rtinc )-

Ctshift (rtshift )-Ctshed (rtshed )-Ctinc (rtinc ) (10)

s.t.

rt,shift + rt,inc £ d̄t - dt λt,down £ 0 (11)

rt,shift + rt,shed £ dt - -d t λt,up £ 0 (12)

rt,shift ³ 0 λt,1 ³ 0 (13)

rt,shed ³ 0 λt,2 ³ 0 (14)

rt,inc ³ 0 λt,3 ³ 0 (15)

rt,shedrt,inc = 0 (16)

where λ t = (λtdown λtup λt1 λt2 λt3 )T is the multipliers of the
corresponding constraints under the KKT conditions. Bilin‐
ear constraint (16) makes this model strongly nonconvex and
hard to solve.

III. MULTI-PARAMETRIC PROGRAMMING BASED

ENUMERATION PROCEDURE

CRP′ can be written as two convex problems (CRP1 and
CRP2) by nulling rt,shed and rt,inc, respectively, which provides
two solutions of reserve provision. The final decision made
by the consumer will be the solution that brings more prof‐
its. However, this procedure will involve solving two prob‐
lems. To further speed up the solution, the condition where
constraint (16) can be relaxed is discussed, and the analytic
price-reserve offer curve among the whole investigated price
space P t ={p t } can be obtained via solving one convex prob‐
lem instead of two. rCRP is denoted as the convex relaxed
version of CRP by removing (16).

Proposition 1: the optimal solution of rCRP is denoted as
r *

t =[r *
tshift r *

tshed r *
tinc ]T. Then relaxing (16) is exact under

the following sufficient conditions with regard to the margin‐
al costs, where C′(×) is the first-order derivative of the cost
function C(×).

1) Condition 1: C′tshift (0)<C′tshed (r *
tshed )+C′tinc (r *

tinc ).
2) Condition 2: C′tshift (r

*
tshift )¹C′tshed (r *

tshed )+C′tinc (r *
tinc ).

Before proving Proposition 1, a lemma is stated as fol‐
lows.

Lemma 1: if there exists r *
tshed > 0 and r *

tinc > 0 in the opti‐
mal solution of rCRP, then r *

tshift > 0 under condition 1.
Proof of Lemma 1: assume r *

tshift = 0. With a small enough
positive ε, δ =min(ε r *

tshed r *
tinc ) is set, and it follows that

r′t = (δ r *
tshed - δ r *

tinc - δ)T is also a feasible solution of rCRP.
The difference of corresponding objectives between solu‐
tions r′t and r *

t is [C′tshed (r *
tshed )+C′tinc (r *

tinc )-C′tshift (0)]δ + o(δ),
which is positive under condition 1, and o(δ) is an infinitesi‐
mal of higher order than δ. This contradicts with the optimal‐
ity of solution r *

t .
Proof of Proposition 1: assume there exists r *

tshed > 0 and
r *

tinc > 0 in the optimal solution of rCRP, then we have
r *

tshift>0 under condition 1 according to Lemma 1. Then λt1=
0 λt2 = 0, λt3 = 0. Let L denote the Lagrangian of rCRP. Us‐
ing KKT conditions, we can obtain ¶L/¶rtshed =C′tshed (r *

tshed )-
ptup - λtup - λt2 = 0 and ¶L/¶rtinc =C′tinc (r *

tinc )- ptdown - λtdown -
λt3 = 0.

Combining these with the fact that λt1λt2λt3 = 0 yields
¶L ¶rtshift = C′tshift (r

*
tshift ) - (ptup + ptdown ) - (λtup + λtdown ) - λt1 =

C′tshift (r
*
tshift )-C′tshed (r *

tshed )-C′tinc (r *
tinc )¹ 0 under condition 2,
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which violates KKT conditions. Hence, r *
tshed > 0 and r *

tinc > 0
cannot appear simultaneously in the optimal solution of
rCRP. Therefore, the relaxation is exact under sufficient con‐
ditions 1 and 2.

Remark: the aim of condition 1 is to avoid zero load shift‐
ing at the optimal point. In fact, compared with the load
shedding, the cost of load shifting is relatively lower, and is
usually prioritized. Conditions 1 and 2 can also be replaced
by a stricter condition, which can be checked beforehand.

sup{C′tshift }< inf {C′tshed }+ inf {C′tinc } (17)

Although condition (17) may not hold all the time, CRP1,
CRP2, and rCRP are all convex quadratic programming prob‐
lems, where the following MPEP is applicable to obtain the
price-reserve offer curve from these problems. The set of
binding constraints is denoted as the active set A. Without
the loss of generality, CRP1, CRP2, and rCRP can be com‐
pacted as CPR-A in the following form:

max
rt ( )pT

t ETr t -
1
2

r T
t C t r t - bT

t r t (18)

s.t.

BAr t = d t,A λ t,A £ 0 (19)

BIr t £ d t,I λ t,I= 0 (20)

where B is a constant coefficient matrix determined by con‐
straints; and d is a corresponding right-hand side vector; a
matrix or vector with a subscript I denotes the sub-matrix or
vector associated with active or inactive constraints; C t =
diag(2ctshift 2ctshed 2ctinc ); b t = (btshift btshed btinc )T; and E
is a 3 × 2 constant matrix [1, 1; 1, 0; 0, 1]. With a price sig‐
nal p t, the optimal response, i. e., reserve provision, from a
consumer can be derived in an analytic form:

r *
tA = (Q tAE ) p t + ( RT

tAd tA -Q tAb t ) (21)

which holds for any pt in the following CR:

ì

í

î
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ïïïï
p t
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|
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| λ tA £ 0ÞRT
tAEp t £RT

tAb t - S tAd tA

BIr
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tA £ d tIÞAIQ tAEp t £ d tI -AIRT
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(22)

where S tA =- ( BAC -1
t BT

A ) -1
, R tA =-S tABAC -1

t , and Q tA =

C -1
t -C -1

t BT
ARtA, which are all constant matrices.

To enumerate all active sets A, a combinatorial tree listing
all possibilities for A is established as shown in Fig. 2. The
reduction and pruning are proposed to further improve the ef‐
ficiency when exploring different CRs that cover the whole
price space Pt. If condition (17) is satisfied, then at least one
of (14) and (15) should be active. Active sets denoted by the
dashed blue box in Fig. 2 can be removed a priori, and the
scale of the tree has reduced from 26 sets to 12 sets. The re‐
duced tree is enumerated from level 1. For each candidate
A, the feasibility of (19) and (20) is checked. For instance,
if {14} is infeasible, all active sets containing {14} will be
pruned [11], as shown by the red solid box in Fig. 2.

To sum up, Fig. 3 presents the whole flowchart to obtain
the price-reserve offer curve using the proposed MPEP meth‐
od, which shows that the proposed method does not rely on
condition (17). If condition (17) holds, the price-reserve of‐

fer curve can be readily calculated. Otherwise, the offer
curve can be still obtained by solving CRP1 and CRP2, re‐
spectively, and comparing their profits.

IV. SIMULATION RESULT

The parameter setting remains the same as type III con‐
sumer in [9], except that [-d t

 d̄t ] is set to be [7.5, 9] for 9 £
t £ 19 and [1.5,4.0] for other time slots, and bt,shift is set to
be 50 for a clearer presentation of the price-reserve offer
curve; pt,up ³ 0 and ptdown £ 100. A time horizon of 24 hours is
investigated. For each time t, 10201 benchmark price-reserve
samples (r Bench

tup  r Bench
tdown pBench

tup  pBench
tdown )T uniformly distributed in

Pt are obtained by solving CRP repeatedly. PM(n) represents
PM with a step of Dp = n solved by IPOPT. The error com‐
pared with each sample of the benchmark is defined as
max(|rtup - r Bench

tup ||rtdown - r Bench
tdown|).

In Fig. 4, the proposed method achieves the most accurate
price-reserve offer curve within the 24-hour horizon, which
also validates the exactness of the relaxation in Proposition
1. As shown by the detailed comparison at t = 17 hour in Ta‐
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ble I, there must to be a trade-off between the accuracy de‐
pending on the resolution and efficiency in PM, while the
proposed method is significantly superior in accuracy and ef‐
ficiency. As shown in Fig. 5, the piece-wise affine price-re‐
serve offer curve is in accordance with (21) and (22). In Fig.
5, up-reserve is not presented due to limited space. When
the prices are too low, the consumer will find that it is not
profitable to provide reserves, as shown in the CR1. As the
prices increases, the optimal reserve is influenced by both
pt,up and pt,down. It is intuitive that a higher pt,down encourages
more down-reserves, while a higher pt,up may induce more
down-reserves indirectly via the load shifting component.
When the prices increase to a certain level, e. g., the CR5,
the consumer has reached the physical limit, and the down-
reserve will remain at the maximal available value. The
curve may help upper-level aggregators with further analysis
and operation.

V. APPLICATION IN BI-LEVEL AP PROBLEM

To further demonstrate how the proposed method can be
applied to help the upper-level aggregator for decision mak‐
ing, the following problem of bi-level AP [12], including
(23)-(26) and (11)-(15), is considered as an illustrating exam‐
ple as:

max
{pit }

f ({ p it} {r *
it (p it )}) = ζ T

t∑
i = 1

N

E Tr *
it - pT

it E
Tr *

it (p it )

(23)

s.t.

-r £E Tr *
it (p it )£ r̄ (24)

p itÎP t (25)

r *
it (p it )= arg max

rit

pT
it E

Tr it -
1
2

r T
itC t r it - bT

t r it "i (26)

where ζ t is the clearing prices for up- and down-reserve ca‐
pacities determined through the electricity market clearing
by system operator (SO) at time t; -r r̄ are the lower- and
upper- bounds of up- and down-reserve capacities required
by SO, respectively; p it is the price signal from the aggrega‐
tor to consumer i for up- and down-reserve capacities at
time t, which should lie in a price interval specified by (25);
r *

it is the optimal response, which depends on p it, from con‐
sumer i determined by the lower-level CRP′ problem, i. e.,
(26) and (11)-(15). After receiving -r  r̄ required by SO, the
goal of AP problem is to optimally decide its price signal
{p it }, so that its profit in (23) is maximized, while the total
up- and down-reserve capacities gathered from consumers
through the incentive meet the requirement of SO in (24).

For comparison, three methods are implemented to solve
the AP problem using mpEC, PM and the proposed method,
respectively. Note that when using the proposed method, the
lower-level CRP′ problem can be replaced by the piece-wise
affine offer curve in (21) and (22). Finally, the bi-level prob‐
lem is transformed equivalently into a mixed-integer quadrat‐
ic program (MIQP), which can be solved efficiently by the
existing commercial solvers such as Gurobi. The reserve re‐
quirement is set to be -r = (0.8 0.95)T and r̄ = (1.0 1.1)T. For
simplicity, N = 1 is considered in the simulation. ζ t is simpli‐
fied as a constant vector arbitrarily, setting to be (90.0, 90.0)T

when pt,up ³ 20, and pt,down £ 100.
Simulation results are compared in Table II. The results of

mpEC can serve as a benchmark since the full model of con‐
sumers, i. e., cost functions, load profiles and other parame‐
ters in constraints, is collected by the aggregator and the ex‐
actness is guaranteed. Technically, the full model is repre‐
sented by KKT conditions of the lower-level problem. How‐
ever, the method cannot protect the privacy of consumers
and thus may not be compatible with the electricity market.
Instead of disclosing all the information of consumers, i. e.,
cost coefficients and load profiles, to the upper-level aggre‐
gator, a price-reserve offer curve that characterizes the re‐
sponse of consumers is submitted to the aggregator in both
PM and the proposed MPEP, which preserves the privacy of
consumers.

TABLE II
COMPARISON OF APPLYING THREE METHODS INTO BI-LEVEL AP PROBLEM

Method

mpEC

PM(20)

Proposed

{pt,down, pt,up} ($)

{75.86, 20.0}

{100.0, 20.0}

{75.86, 20.0}

{rt,down, rtup} (p.u.)

{0.95, 0.9}

{1.1, 0.9}

{0.95, 0.9}

Objective value
($)

76.44

52.00

76.44

Computation
time (ms)

190.2

400.0

272.9

Information collected
from consumer

Full model

Estimated offer curve

Analytic offer curve

Privacy
protection

No

Yes

Yes

Optimality

Yes

No

Yes

100
100

5050
0

0

0.5

1.0

1.5

r t,
do
w
n (

p.
u.

)

pt,up ($) p t,down
 ($)

CR5CR4

CR3

CR2

CR1

Fig. 5. Price-reserve offer curve (t = 17 hour) divided by 5 CRs using pro‐
posed MPEP method.

TABLE I
DETAILED COMPARISON OF PRICE-RESERVE CURVE GENERATION USING

DIFFERENT METHODS

Method

PM(20)

PM(10)

PM(5)

PM(2)

Proposed

Resolution

36

121

441

2601

Average error

9.85×10-2

7.20×10-2

3.23×10-2

5.95×10-2

2.54×10-2

Time (s)

0.308

1.058

5.335

22.169

0.048
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If using PM(20), the aggregator will misprice the down-re‐
serve due to the error of the estimated offer curve, which un‐
necessarily costs itself 31.97% of the profit even in the sim‐
ple case. As shown in Table I, tremendous extra computation
time are required to reduce the error. Since the offer curve is
obtained analytically, the price and reserve obtained by the
proposed method are identical to the benchmark, while the
privacy of the consumer is protected.

VI. CONCLUSION AND DISCUSSION

Based on the proposed MPEP, an efficient analytic meth‐
od is presented to compute the price-reserve offer curve at
the consumer level. An example of its application in the bi-
level AP problem is also discussed. Numerical results show
that the proposed method is both efficient and accurate com‐
pared with the existing methods, while the privacy of con‐
sumers is well preserved. Even in the simple illustrating ex‐
ample, the proposed method brings significant economic im‐
provement due to the accuracy of the calculated offer curve
compared with the existing methods that use stepwise con‐
stant offer curves. The improvement is due to a more accu‐
rate description of the optimal reserve using the proposed an‐
alytic method.

Temporal constraints can be readily considered if the vari‐
ables are extended to incorporate all time slots in the prob‐
lem of CRP-A. Also, the proposed MPEP does not rely on
the specific formulation of CRP model. If other problems
can be written in the form of CRP-A, which is a quadratic
programming problem, MPEP is still applicable.

However, this research work is preliminary. Large-scale
demand-side flexibility aggregation is left open, where effi‐
cient decomposition, e.g., based on the alternating direction
method of multipliers, is worthy of further study. In the fu‐
ture, we will also investigate a more detailed load model of
consumers [13], and complicated physical constraints of
three-phase power flow [14]. Uncertainties of loads could be
addressed via the deep neural network in [15], which war‐
rants future efforts.

REFERENCES

[1] W. Zheng, W. Wu, B. Zhang et al., “Distributed optimal residential de‐
mand response considering operational constraints of unbalanced distri‐
bution networks,” IET Generation, Transmission, and Distribution,
vol. 12, no. 9, pp. 1970-1979, May 2018.

[2] D. S. Callaway and I. A. Hiskens, “Achieving controllability of elec‐
tric loads,” Proceedings of the IEEE, vol. 99, no. 1, pp. 184-199, Jan.
2011.

[3] W. Zheng and D. J. Hill, “Incentive-based coordination mechanism for
distributed operation of integrated electricity and heat systems,” Ap‐
plied Energy, vol. 285, p. 116373, Jan. 2021.

[4] S. M. Amin, “Smart grid security, privacy, and resilient architectures:
opportunities and challenges,” in Proceedings of 2012 IEEE PES Gen‐
eral Meeting, San Diego, USA, Jul. 2012, p. 2

[5] T. W. Haring, J. L. Mathieu, and G. Andersson, “Comparing central‐
ized and decentralized contract design enabling direct load control for
reserves,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp.

2044-2054, May 2016.
[6] M. Bozorg, A. Ahmadi-Khatir, and R. Cherkaoui, “Developing offer

curves for an electric railway company in reserve markets based on ro‐
bust energy and reserve scheduling,” IEEE Transactions on Power Sys‐
tems, vol. 31, no. 4, pp. 2609-2620, Jul. 2016.

[7] W. Zheng, Y. Hou, and Z. Li, “A dynamic equivalent model for dis‐
trict heating networks: formulation, existence and application in distrib‐
uted electricity-heat operation,” IEEE Transactions on Smart Grid,
doi: 10.1109/TSG.2020.3048957

[8] W. Zheng, W. Wu, Z. Li et al., “A non-iterative decoupled solution for
robust integrated electricity-heat scheduling based on network reduc‐
tion,” IEEE Transactions on Sustainable Energy, doi: 10.1109/
TSTE.2021.3052235

[9] T. Gal, Postoptimal Analyses, Parametric Programming, and Related
Topics. Prinston: De Gruyter, 2010.

[10] Y. Guo, L. Tong, W. Wu et al., “Coordinated multi-area economic dis‐
patch via critical region projection,” IEEE Transactions on Power Sys‐
tems, vol. 32, no. 5, pp. 3736-3746, Sept. 2017.

[11] A. Gupta, S. Bhartiya, and P. S. V. Nataraj, “A novel approach to mul‐
tiparametric quadratic programming,” Automatica, vol. 47, no. 9, pp.
2112-2117, Nov. 2011.

[12] Z. Xu, T. Deng, Z. Hu et al., “Data-driven pricing strategy for de‐
mand-side resource aggregators,” IEEE Transactions on Smart Grid,
vol. 9, no. 1, pp. 57-66, Jan. 2018.

[13] X. Zhang, C. Lu, Y. Wang et al., “Identifiability analysis of load mod‐
el by estimating parameters’ confidential intervals,” CSEE Journal of
Power and Energy Systems, doi: 10.17775/CSEEJPES.2020.02780

[14] Y. Ju, J. Wang, Z. Zhang et al., “A calculation method for three-phase
power flow in micro-grid based on smooth function,” IEEE Transac‐
tions on Power Systems, vol. 35, no. 6, pp. 4896-4903, Nov. 2020.

[15] W. Zheng, W. Huang, D. J. Hill et al., “An adaptive distributionally
robust model for three-phase distribution network reconfiguration,”
IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3030299

Weiye Zheng received the B.S. and Ph.D degrees from the Department of
Electrical Engineering, Tsinghua University, Beijing, China. He received the
excellent graduate with thesis award from Tsinghua University in 2013 and
Outstanding Ph. D. of Beijing City in 2018, respectively. From 2016 to
2017, he was a Visiting Scholar in H. Milton Stewart School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, USA.
His research interest includes energy management in smart grid.

David J. Hill received the Ph.D. degree in electrical engineering from the
University of Newcastle, Newcastle, Australia, in 1976. He holds the Chair
of Electrical Engineering in the Department of Electrical and Electronic En‐
gineering at the University of Hong Kong, Hong Kong, China. He is also a
part-time Professor and Director of the Centre for Future Energy Networks
at The University of Sydney, Sydney, Australia. Since 1994, he has held var‐
ious positions at the University of Sydney, including the Chair of Electrical
Engineering until 2002 and again during 2010-2013 along with an Austra‐
lian Research Council Professorial Fellowship. During 2005-2010, he was
an ARC Federation Fellow at the Australian National University, Canberra,
Australia. He has also held academic and substantial visiting positions at the
universities of Melbourne, California, Newcastle, Lund, Munich and Hong
Kong. Professor Hill is a Fellow of the Society for Industrial and Applied
Mathematics, USA, the Australian Academy of Science, the Australian Acad‐
emy of Technological Sciences and Engineering and the Hong Kong Acade‐
my of Engineering Sciences. He is also a Foreign Member of the Royal
Swedish Academy of Engineering Sciences. His research interests include
control systems, complex networks, power systems and stability analysis.

Wenchuan Wu received the B.S., M.S., and Ph.D. degrees from the Electri‐
cal Engineering Department, Tsinghua University, Beijing, China. He is cur‐
rently a Professor in the Department of Electrical Engineering of Tsinghua
University. He is an Associate Editor of IET Generation, Transmission &
Distribution and Electric Power Components and Systems. His research in‐
terests include energy management system, active distribution system opera‐
tion and control, and EMTP-TSA hybrid real-time simulation.

546


