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Distributionally Robust Co-optimization of
Transmission Network Expansion Planning and

Penetration Level of Renewable Generation
Jingwei Hu, Xiaoyuan Xu, Hongyan Ma, and Zheng Yan

Abstract——Transmission network expansion can significantly
improve the penetration level of renewable generation. Howev‐
er, existing studies have not explicitly revealed and quantified
the trade-off between the investment cost and penetration level
of renewable generation. This paper proposes a distributionally
robust optimization model to minimize the cost of transmission
network expansion under uncertainty and maximize the pene‐
tration level of renewable generation. The proposed model in‐
cludes distributionally robust joint chance constraints, which
maximize the minimum expectation of the renewable utilization
probability among a set of certain probability distributions
within an ambiguity set. The proposed formulation yields a two-
stage robust optimization model with variable bounds of the un‐
certain sets, which is hard to solve. By applying the affine deci‐
sion rule, second-order conic reformulation, and duality, we re‐
formulate it into a single-stage standard robust optimization
model and solve it efficiently via commercial solvers. Case stud‐
ies are carried on the Garver 6-bus and IEEE 118-bus systems
to illustrate the validity of the proposed method.

Index Terms——Affine decision rule, distributionally robust op‐
timization, joint chance constraint, renewable generation, trans‐
mission network expansion planning.

NOMENCLATURE

A. Indices

g Index of thermal generator

i, j Indices of node

k Index of renewable generator

l Index of corridor

m Index of transmission line

t Index of time interval

B. Sets

Ω Set of candidate corridors
T, N, G, K Sets of time, nodes, thermal generators, and

renewable generators
Ni, Ωi, Gi, Ki Sets of nodes, candidate corridors, thermal

generators, and renewable generators connect‐
ed to node i

Nl Set of nodes connected by transmission lines
over corridor l

Ml Set of transmission lines over corridor l

C. Parameters

δ Weight factor representing system planners’
willingness for renewable utilization

θmin
i , θmax

i The minimum and maximum phase angles of
node i

μkt, σkt Empirical mean and variance of power output
of renewable generator k at time t

cl Investment cost of each line over corridor l
F min

l , F max
l The minimum and maximum power flows of

transmission lines over corridor l
nmin

l , nmax
l The minimum and maximum numbers of

transmission lines over corridor l

-
p gen

g
, p̄gen

g The minimum and maximum outputs of ther‐
mal generator g

u0 Lower bound of the minimum possibility with
which system can fully accommodate renew‐
able generation

xl Reactance of each line over corridor l

D. Variables

α(m)
l Binary variable representing built/not-built

status of the mth line over corridor l
θit Phase angle of node i at time t
ξkt Power output of renewable generator k at time

t
ξt Power output of all renewable generators at

time t
ξ L

kt, ξ
U
kt The minimum and maximum outputs of re‐

newable generator k at time t that power sys‐
tem can fully accommodate

ξ L
t , ξ U

t The minimum and maximum outputs of all re‐
newable generators at time t that power sys‐
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tem can fully accommodate
f (m)

lt Power flow of the mth line over corridor l at
time t

flt Sum of power flow of each line built over cor‐
ridor l at time t

pdem
it Power demand of node i at time t

pgen
gt Power output of thermal generator g at time t

u The minimum possibility with which system
can fully accommodate renewable generation

I. INTRODUCTION

THE spatial and temporal mismatches between the renew‐
able energy generation and load centers trigger a series

of economic, ecological, and safe problems. To resolve the
mismatches, many researchers focus on the transmission net‐
work expansion problems (TNEPs), which aim to provide
the best way to expand or reinforce the existing transmission
networks to adequately balance the forecasting power genera‐
tions and demand over a given horizon [1]. The TNEPs are
challenging to solve due to various uncertainties that opera‐
tors need to consider. Traditionally, the uncertainties at the
demand side draw specific attention because it is considered
as the main source of uncertainties. However, the growing
penetration level of renewable generation amplifies the un‐
certainties and needs more consideration [2], [3].

The most widely-used methods to model the uncertainties
in TNEPs are stochastic optimization (SO) and robust optimi‐
zation (RO) approaches [4], [5]. SO minimizes a weighted
sum of the total cost related to typical scenarios generated
based on a certain probability distribution of the uncertain
parameters [6]-[8]. In RO, decisions are made in the worst-
case scenario within an uncertain set depicting the uncertain
parameters, to ensure that the optimal results are feasible re‐
gardless of uncertainties [9], [10]. In a market-based deregu‐
lated context, the SO-based [11] - [13] or RO-based [14]
TNEP model is applied to optimize the public and private
welfare. From the perspective of central planner, reliability
and joint planning are popular topics in this field [15]-[17].
In the aspect of joint planning, SO- or RO-based TNEP mod‐
el is proposed to co-optimize the generation expansion, ener‐
gy storage expansion, transmission switching, and various
flexibility products [18]-[22]. In the aspect of reliability, [23]
proposes an SO framework and [24] presents a two-stage
RO-based model.

Such SO and RO approaches face challenges in practice
[25], [26]. On one hand, it is usually difficult to obtain the
exact distributions of random variables, which are necessary
for SO and affect the out-of-sample performances of the opti‐
mal results. With the increase of scenario numbers, the com‐
putation time will increase dramatically with exponential
complexity [27]. On the other hand, for the RO approaches,
decisions are made considering the worst-case scenario of
the uncertain parameters, thus leading to conservative solu‐
tions. Besides, this approach employs limited information to
construct the uncertainty set, which does not fully utilize the
available historical data. For the two-stage RO methods, nu‐
merous dual variables or Lagrange multipliers introduced by

the reformulation of the second-stage model cause a heavy
computational burden [28].

The distributionally robust optimization (DRO) method, as
an improved approach, has been put forward to address the
aforementioned challenges [29], [30]. A trade-off between
the resilience and cost is achieved by minimizing the expec‐
tation under the worst-case probability distribution within
the ambiguous set predefined based on the historical data
[31], [32]. The DRO method is less conservative than the tra‐
ditional RO method because the former considers the expec‐
tation of the worst-case probability distribution rather than
the single worst-case scenario. Moreover, it is more reliable
than the SO method and utilizes less knowledge of the uncer‐
tain parameters instead of assuming that the uncertainties fol‐
low prescribed probability distributions [33], [34].

Regarding the current application of DRO to TNEP, [35]
proposes a DRO-based TNEP model with multi-scale uncer‐
tainties, i. e., long- and short-term uncertainties, considering
conditional ambig-uity sets such as economic growth or re‐
newable energy disruption. In [36], a DRO-based TNEP
model is proposed considering the post-contingency services
where the first-stage problem determines the investment
plans and the scheduling of renewable energy post-contingen‐
cy services. The second-stage problem minimizes the expect‐
ed cost of corrective actions under various contingencies.
Reference [37] applies a DRO tool for TNEP under the N - k
security criterion to handle the problem that the probability
of contingencies is often unknown and cannot be estimated
precisely.

However, current studies on TNEP have not explicitly
quantified the renewable energy that a power system can ful‐
ly accommodate without load shedding or renewable curtail‐
ment, which are highly related to investment decisions. For
example, to accommodate a higher level of renewable gener‐
ation, the system planners need to invest in more new trans‐
mission lines or strengthen the existing lines to transmit the
substantial sustainable energy from the remote areas to load
centers. The explicit penetration level is a clear guideline for
system planners to seek a trade-off between the renewable
utilization and investment costs.

To bridge the research gap between the TNEP and penetra‐
tion level of renewable energy, we develop a DRO-based co-
optimization model for the TNEP under uncertainty, yielding
the minimum investment costs and the maximum penetration
levels of renewable generation. The definition of the penetra‐
tion level of renewable generation in this paper consists of
two aspects. One is the accommodation range of renewable
generation, within which the power system can fully accom‐
modate renewable outputs by power dispatch without load or
renewable shedding. The other aspect is the renewable utili‐
zation probability, with which the renewable outputs lay
within the accommodation range so that the system can fully
accommodate them. The main contributions of this paper are
fourfold as follows.

1) To our best knowledge, it is the first time to co-opti‐
mize the TNEP investment and the penetration level of re‐
newable generation considering the distributionally robust
joint chance constraints. On one hand, the optimal penetra‐

578



HU et al.: DISTRIBUTIONALLY ROBUST CO-OPTIMIZATION OF TRANSMISSION NETWORK EXPANSION PLANNING AND PENETRATION LEVEL...

tion level of renewable generation gives an explicit guideline
for renewable development while keeping the power system
away from load shedding or wind power curtailment. On the
other hand, the distributionally robust joint chance con‐
straints depict a trade-off between the investment cost and re‐
newable utilization with clear physical meanings in a moder‐
ately conservative way.

2) The proposed model is originally a two-stage DRO for‐
mulation. It is noted that the distributionally robust joint
chance constraint is nonconvex and the stochastic bounds
are variables instead of parameters as commonly used in lit‐
erature. Thus, the application of duality is not straightfor‐
ward. In this paper, we reformulate the distributionally ro‐
bust joint chance constraint into a second-order conic formu‐
lation. And we substitute the stochastic variable with a com‐
bination of its lower bound variables and auxiliary variables
to further apply duality. Finally, the proposed model is refor‐
mulated to a single-stage RO model and is efficiently solved
via commercial solvers.

3) We demonstrate the validity and scalability of the pro‐
posed method in Garver 6-bus and IEEE 118-bus systems.
The testing results show that the proposed method obtains
the minimum investment cost and the maximum penetration
level of renewable generation under a predefined weight fac‐
tor, which represents the system planners’ willingness for re‐
newable utilization. Besides, the proposed method is less
conservative compared with the traditional RO method.
Moreover, the proposed method shows its scalability in a
large system test.

The rest of this paper is organized as follows. Section II
gives the detailed mathematical formulation of the proposed
co-optimization model. In Section III, we present the solu‐
tion technique used to reformulate the proposed two-stage
distributionally robust model into a single-stage standard ro‐
bust model. In Section IV, we carry out case studies on the
Garver 6-bus and IEEE 118-bus systems and compare the
proposed method with the traditional RO method. The re‐
sults show the validity and scalability of the proposed meth‐
od. Finally, we give the conclusions in Section V.

II. MATHEMATICAL FORMULATION

To give a clear guideline for system planners to seek a
trade-off between the penetration level of renewable genera‐
tion and investment cost, we formulate a co-optimization
model considering the renewable uncertainty. In this section,
we first give the objective function of the proposed model
and then introduce the first- and second-stage constraints.
Among them, adjustable distributionally robust joint chance
constraints are noted in detail. It should be emphasized that
this co-optimization model differs from general two-stage
distributionally robust models in that the bounds of the un‐
certainty sets are decision variables instead of known param‐
eters.

A. Objective Function

The objective function (1) aims to minimize the invest‐
ment cost and maximize the penetration level of renewable
generation under a predefined weight factor, which is ex‐

pressed as:

min
α(m)

l  u ξ L
kt ξ

U
kt ( )∑

lÎΩ
∑

m = nmin
l + 1

nmax
l

clα
(m)
l - δu (1)

It is noted that operational costs are usually considered in
the objective function of TNEP models. The reason why
they are not considered in (1) is that this paper focuses on
exploring the penetration level of renewable generation,
which is different from the traditional TNEP model. The
modeling of accommodation ranges has implicitly incorporat‐
ed the wind power curtailment instead of setting the load/re‐
newable shedding costs as a penalty in the objective func‐
tion. Moreover, this paper aims to highlight the relationship
between the transmission capacity and the penetration level
of renewable generation. Operators of the networks pay
more attention to minimizing the investment cost of transmis‐
sion lines than to minimizing the operational costs. There‐
fore, the generation-related terms have been simplified.

B. The First-stage Constraints

The first-stage constraints restrict the first-stage variables
α(m)

l , which are optimized before the uncertainty realization.

α(m)
l Î {01} "lÎΩ"mÎMl (2)

nmin
l £∑

m = 1

nmax
l

α(m)
l £ nmax

l "lÎΩ (3)

α(m)
l £ α(m- 1)

l "lÎΩ"mÎMl (4)

Constraint (2) represents the built/not-built status of each
line, and binary variable α(m)

l = 1 if the mth line over corridor l
is built; otherwise, α(m)

l = 0. Constraint (3) ensures the mini‐
mum and maximum numbers of transmission lines over each
corridor. Constraint (4) represents the sequential building or‐
der of new lines.

C. The Second-stage Constraints

The second-stage constraints are activated after the uncer‐
tainty realization, thus involving the uncertain variables ξk,t.
Accordingly, some system operating variables, such as the
power flows, phase angles, and thermal generation outputs,
are regarded as the function of ξk,t. In this context, parts of
the second-stage constraints are written as:

flt (ξkt )=∑
m = 1

nmax
l

f (m)
lt (ξkt ) "lÎΩ"kÎK"tÎ T (5)

F min
l α(m)

l £ f (m)
lt (ξkt )£F max

l α(m)
l

"lÎΩ"mÎMl"kÎK"tÎ T (6)

2θmin
i (1 - α(m)

l )£ θit (ξkt )- θjt (ξkt )- xl f (m)
lt (ξkt )£ 2θmax

i (1 - α(m)
l )

"ijÎNl"lÎ Ω "mÎMl"kÎK"tÎ T (7)

θmin
i £ θit (ξkt )£ θ

max
i "iÎN"kÎK"tÎ T (8)

pgen
gt (ξkt )+ ξkt - pdem

it =∑
lÎΩi

flt (ξkt )

"gÎGi"kÎKi"iÎN"tÎ T (9)

-
p gen

g
£ pgen

gt (ξkt )£ p̄gen
g "gÎG"kÎK"tÎ T (10)

Constraint (5) represents the total power flow over the cor‐
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ridor l. Constraint (6) ensures the power flow of each line is
within the capacity limits. Constraint (7) represents the di‐
rect current power flow function if α(m)

l = 1; otherwise, the
constraint is relaxed. Constraint (8) ensures the phase angle
of each node is within technical bounds. Constraint (9) repre‐
sents the power balance of each node, comprising the out‐
puts of thermal generators and renewable generators, de‐
mand, and nodal power injections. Constraint (10) ensures
the outputs of thermal generators lay within technical
bounds.

To further deliver the second-stage constraints, we intro‐
duce the concept of penetration level of renewable genera‐
tion and then explain the distributionally robust joint chance
constraints.
1) Penetration Levels

Once the transmission investment decisions are made, the
penetration level of renewable generation is given, which is
[ξ L

kt, ξ
U
kt ]. The output of renewable generation ξkt is the

source of uncertainties. Only if the renewable outputs are
within the penetration level, the power system can fully ac‐
commodate them by power dispatch without sacrificing the
system reliability such as load shedding or renewable curtail‐
ment. Similar concepts have been discussed in the power
system operation field. The Independent System Operator
(ISO) in New England firstly puts forward the concept of do-
not-exceed (DNE) limits, which indicates the maximum re‐
newable generation ranges that the power grid can accommo‐
date without load or renewable shedding [38].

With the above-mentioned concept of penetration level of
renewable generation, the problem of finding the penetration
level is formulated as an optimization problem that finds the
minimum and maximum output levels of renewable energy
while satisfying certain constraints, which is expressed as:

-
p ren

k
£ ξ L

kt £ ξ
U
kt £ p̄ren

k "kÎK"tÎ T (11)

Constraint (11) represents that the lower and upper bounds
of renewable outputs are between the technical limits
[
-
p ren

k
 p̄ren

k ].

2) Distributionally Robust Joint Chance Constraints
The modeling of the uncertainty in this paper is based on

three aspects. The first aspect is the stochastic outputs of re‐
newable generator, represented by ξkt. The second one is the
probability distribution of the renewable generation based on
the historical data, represented by probability distribution P.
The third one is a set consisting of a series of probability
distributions following the same characteristics, represented
by the ambiguity set D.

We first build an ambiguity set D consisting of probability
distribution P of the renewable outputs ξkt. The ambiguity
set D has the following two characteristics: ① ξkt has the
same empirical mean μkt and variance σ 2

kt; and ② ξkt is uni‐
modal about μkt, which is referred to:

D : = {P: EP (ξkt )= μktVar(ξkt )= σ
2
kt "kÎK "tÎ T }

(12)

Compared with the unimodality assumption of the joint
probability, the unimodality assumption of ξkt is weaker and
is easier to verify by the historical data. Moreover, the ambi‐

guity set D yields a second-order conic constraint that needs
moderate computational complexity (see Section III).

Proceeding to the distributionally robust joint chance con‐
straints, we need to quantify the probability of the utilization
of renewable generation lying within the penetration level
[39], i.e.,

infPÎD P(ξtÎ[ξ L
t ξ

U
t ])³ u "tÎ T (13)

u0 £ u £ 1 (14)

Constraint (13) represents that the renewable outputs lying
within the penetration levels are likely to happen with the
smallest possibility u so that the system can run without
load shedding or renewable curtailment. The lower bound of
u is u0, which is assumed to be 2/3. This assumption is relat‐
ed to the model reformulation applying the second-order con‐
ic relaxation and is reasonable because the power system
usually requires a high penetration level of renewable energy.
3) Co-optimization Model: Compact Formulation

The co-optimization model comprising (1)-(11), (13), and
(14) is cast compactly using the following matrices and vec‐
tors, which is expressed as:

min
αuξLξU

(cΤα - δu) (15)

s.t.

αÎΧ (16)

T(α)+Wy(ξ)£Hξ "ξÎ[ξLξU ] (17)

ì
í
î

ïï
ïï

infPÎD P(ξÎ[ξLξU ])³ u

Pu £ p
(18)

ì
í
î

QξL £ q

RξU £ r
(19)

where vector α refers to the first-stage decision variables rep‐
resenting transmission network investment decisions; vector
c represents the coefficients in the objective function (15); u
is a decision variable related to the minimum utilization
probability of renewable generation and is adjusted by δ to
optimize the trade-off between the cost and the renewable
utilization; and vector y(ξ) represents the second-stage deci‐
sion variables including the outputs of thermal generators,
the power flow, and the phase angles. Constraint (16) en‐
sures α is binary to represent the built/not-built status of
each candidate transmission line. Constraint (17) is related
to the operating constraints with uncertainty. The distribution‐
ally robust joint chance constraints are represented by (18).
Constraint (19) represents the restrictions on the upper and
lower bounds of the uncertainty sets.

III. SOLUTION TECHNIQUES

It is noted that the co-optimization model formulated in
Section II cannot be easily solved owing to the variable
bounds of the uncertain sets, which are decision variables in‐
stead of known parameters, and the distributionally robust
joint chance constraints. Hence, in this section, we first give
the solution techniques to reformulate the distributionally ro‐
bust joint chance constraints and the variable bounds of the
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uncertain sets. And then we transform the two-stage robust
model into a single-stage model using the standard robust
technique, which yields a solvable conservative approxima‐
tion model.

A. Affine Decision Rules

Given the outputs of renewable energy, the second-stage
decision variables are represented by the affine decision
rules as:

y(ξ)=Bξ + b (20)

where variables B and b represent the responses of corre‐
sponding operating variables to the renewable outputs.

This approximation physically represents the system cor‐
rective actions after uncertainty realization. In this context,
the second-stage constraints given in Section II also include:

pgen
gt (ξt )=∑

kÎK
(Bgktξkt + bgkt ) "gÎG"tÎ T (21)

f (m)
lt (ξt )=∑

kÎK
(Blktξkt + blkt ) "lÎΩ"tÎ T (22)

θit (ξt )=∑
kÎK

(Biktξkt + bikt ) "iÎN"tÎ T (23)

By applying the affine decision rule, the searching space
of the optimization problem is restricted to a recourse func‐
tion and thus yields a conservative approximation that re‐
quires moderate computational solving time.

B. Reformulation of Distributionally Robust Joint Chance
Constraints

The distributionally robust joint chance constraints in Sec‐
tion II are nonconvex and difficult to apply in practice. In
this subsection, we reformulate the constraint (18) into a sec‐
ond-order conic formulation using the Bonferroni approxima‐
tion, Gauss inequality, and second-order conic relaxation
technique, which is expressed as:









 







é

ë
ê
êê
ê ù

û
ú
úú
ú8/3

vkt - zkt 2

£ vkt + zkt "kÎK"tÎ T (24)







 





é

ë
êêêê

ù
û
úúúú

gkt - 1

2zkt 2

£ gkt + 1 "kÎK"tÎ T (25)

σktvkt £ μkt - ξ
L
kt "kÎK"tÎ T (26)

σktvkt £ ξ
U
kt - μkt "kÎK"tÎ T (27)

∑
kÎK

gkt £ 1 - u "tÎ T (28)

gktvktzkt ³ 0 "kÎK"tÎ T (29)

where gkt, vkt, and zkt are auxiliary variables. Detailed proof
can be found in Appendix A.

C. Bounds of Uncertainty Sets

To reformulate the variable bounds of the uncertainty sets,
we substitute the renewable outputs ξ with ξL + Ev, where E
is a diagonal matrix of ξU - ξL; and v ∈[0e], and e is a vec‐
tor of 1. Hence, the constraint (17) is reformulated as:

T(α)+W (BEv +BξL + b)£HξL +HEv "vÎ[0e] (30)

Furthermore, we substitute the bilinear part BE and BξL +

b with S and s, respectively. And then (30) is transformed in‐
to:

T(α)+W (Sv + s)£HξL +HEv "vÎ[0e] (31)

Next, the standard robust formulation of constraint (31) is
rewritten as:

sup
vÎ[0e]

(WS -HE)v £HξL -T(α)-Ws "vÎ[0e] (32)

Finally, referring to the duality, the equivalent model of
(32) is cast as:

Re £HξL -T(α)-Ws (33)

{R ³WS -HE
R ³ 0

(34)

D. Reformulated Co-optimization Model: Detailed Formula‐
tion

In detail, the co-optimization model in Section II is re‐
duced to a single-stage RO model, which is a mixed-integer
second-order cone programming (MISOCP) problem and is
rewritten as:

min ( )∑
lÎΩ
∑

m = nmin
l + 1

nmax
l

clα
(m)
l - δu (35)

s.t.

slt =∑
m = 1

nmax
l

s(m)
lt "lÎΩ"tÎ T (36)

Slkt =∑
m = 1

nmax
l

S (m)
lkt "lÎΩ"kÎK"tÎ T (37)

F min
l α(m)

l £∑
kÎK
λ1

k + s(m)
lt "lÎΩ"mÎMl"tÎ T (38)

∑
kÎK
γ1

k + s(m)
lt £F max

l α(m)
l "lÎΩ"mÎMl"tÎ T (39)

λ1
k £ S (m)

lktλ
1
k £ 0γ1

k ³ S (m)
lktγ

1
k ³ 0

"lÎΩ"kÎK"mÎMl"tÎ T (40)

2θmin
i (1 - α(m)

l )£∑
kÎK
λ2

k + sit - sjt - xl s
(m)
lt

"ijÎNl"lÎΩ"mÎMl"tÎ T (41)

∑
kÎK
γ2

k + sit - sjt - xl s
(m)
lt £ 2θmax

i (1 - α(m)
l )

"ijÎNl"lÎΩ"mÎMl"tÎ T (42)

λ2
k £ Sikt - Sjkt - xlS

(m)
lkt

"ijÎNl"lÎΩ"kÎK"mÎMl"tÎ T
(43)

λ2
k £ 0 "kÎK (44)

γ2
k ³ Sikt - Sjkt - xlS

(m)
lkt

"ijÎNl"kÎK"lÎΩ"mÎMl"tÎ T
(45)

γ2
k ³ 0 "kÎK (46)

θmin
i £∑

kÎK
λ3

k + sit "iÎN"tÎ T (47)

∑
kÎK
γ3

k + sit £ θ
max
i "iÎN"tÎ T (48)
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ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

λ3
k £ Sit "iÎN"kÎK"tÎ T
λ3

k £ 0 "iÎN"kÎK"tÎ T
γ3

k ³ Sit "iÎN"kÎK"tÎ T
γ3

k ³ 0 "iÎN"kÎK"tÎ T

(49)

-ξ L
kt - sgt + pdem

it +∑
lÎΩi

∑
m = 1

nmax
l

s(m)
lt = 0

"kÎKi"gÎGi"iÎN"tÎ T (50)

Ekt + Sikt -∑
lÎNi

∑
m = 1

nmax
l

Slkt = 0 "kÎKi"iÎN"tÎ T (51)

-
p gen

g
£∑

kÎK
λ4

k + sgt "gÎG"tÎ T (52)

∑
kÎK
γ4

k + sgt £ p̄gen
g "gÎG"tÎ T (53)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

λ4
k £ Sgkt "gÎG"kÎK"tÎ T
λ4

k £ 0 "gÎG"kÎK"tÎ T
γ4

k ³ Sgkt "gÎG"kÎK"tÎ T
γ4

k ³ 0 "gÎG"kÎK"tÎ T

(54)

(2)-(4), (11), (24)-(29)
where λ1

k, γ
1
k, λ

2
k, γ

2
k, λ

3
k, γ

3
k, λ

4
k, γ

4
k, s(m)

lt , slt, sit, sjt, sgt, S (m)
lkt,

Slkt, Sikt, Sjkt, Sgkt, and Ekt are auxiliary variables.
Constraints (36) and (37) are reformulated from constraint

(5), representing that the total power flow over corridor l is
the sum of power flow of each line built over corridor l.
Constraints (38) - (40) are reformulated from constraint (6),
ensuring the power flow of each line is within the capacity
limits. Constraints (41)-(46) are reformulated from constraint
(7), representing the direct current power flow equation. Con‐
straints (47)-(49) are reformulated from constraint (8), ensur‐
ing the phase angle of each node is within technical bounds.
Constraints (50) and (51) are reformulated from constraint
(9), representing the power balance of each node. Con‐
straints (52) - (54) are reformulated from constraint (10), en‐
suring the outputs of thermal generators lay within technical
bounds.

IV. CASE STUDY

In this section, we carry out numerical experiments of the
proposed model and compare them with the traditional RO
method. We use an illustrative example (i. e., the Garver 6-
bus system) and a realistic example (i.e., the IEEE 118-bus
system). All examples are implemented and solved using the
Gurobi API for MATLAB with default parameters. The rela‐
tive optimality gap tolerance is set to be 0.01%. The simula‐
tions are carried out on an Intel Core i5 CPU running at
3.20 GHz with 8 GB of RAM.

We generate a set of wind generation output data via
Gaussian distribution, whose mean and variance are set at its
predicted value and increases from 10% of the installed ca‐
pacity by 0.1% as t increases from 1 to T, respectively. The
set of data is then divided into two parts: the calibration part
and the out-of-sample testing part. For the calibration of am‐
biguity set, we use the first-part data to calibrate the mean

and variance. Next, we solve the proposed model to obtain
the optimal accommodation ranges [ξL*, ξU* ] and the optimal
investment cost. For the out-of-sample testing part, we apply
the second-part data to obtain out-of-sample performances
on the utilization probability of renewable energy
P{ξ ∈ (ξL*, ξU* ]). In this paper, we carry out 1000 out-of-sam‐
ple tests to verify the effectiveness of the proposed method.

In practice, we determine an appropriate δ by trials. First‐
ly, we roughly estimate the investment cost such as 1 ´
106 M$ or 1 ´ 107 M$, and then set a small δ such as 100 or
1000, which is relatively much smaller than the estimated in‐
vestment cost. By using the small δ, we obtain an optimal in‐
vestment cost and an optimal probability of fully accommo‐
dating the renewable generation u*. Now, we have a better
knowledge of the investment cost and the renewable utiliza‐
tion probability u. Next, we conduct fine-tuning: setting δ
the same as the investment cost. Since the renewable utiliza‐
tion probability u is a value between 0 to 1, usually between
0.6 to 1, the product of δ and u is close to and smaller than
the investment cost. Then, by gradually increasing δ by an
appropriate step, we obtain a frontier of the investment cost
and the renewable utilization probability u. Finally, accord‐
ing to the investment budget and the policy goal of renew‐
able generation utilization, we determine δ to balance the in‐
vestment cost and penetration level of renewable generation.

A. Illustrative Example: Garver 6-bus System

The initial topology and electric data of the Garver 6-bus
system can be found in [40]. In this paper, we use a modi‐
fied Garver system to illustrate the influences of renewable
energy on investment decisions. The topology and parame‐
ters are shown in Fig. 1 and Table I, respectively. It is noted
that bus 6 is initially isolated. The line parameters of corri‐
dor 2-6 and corridor 4-6 refer to the parameters of candidate
lines. The minimum and maximum outputs of each generator
are set to be 5% and 100% of the nominal outputs, respective‐
ly. The maximum number of transmission lines over each cor‐
ridor is 6. Besides, the construction price per kilometer is
20 k$ . The coefficients of wind generation outputs and de‐
mand are shown in Fig. 2.

240 MW

600 MW

80 MW

40 MW

240 MW

180 MW

1

2

3

4

5

6

G

W

G

2×120 MW+2×240 MW

3×60 MW+1×120 MW

WG Thermal generator; Wind generator

Fig. 1. Topology of modified Garver 6-bus system.
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In Fig. 3, we exhibit the wind generation outputs from
1000 scenarios with error bars. These error bars represent
the mean and variance of wind generation outputs. It can be
observed from Fig. 3 that although the wind generation out‐
puts vary, most of them are within a certain range, which
can be accommodated with a moderate investment cost.

In the meantime, we can observe that several wind genera‐
tion outputs depart away from the mean, which requires
more transmission lines and more flexible system resources,
thereby more investment costs. From the perspective of sys‐
tem planners, the trade-off is necessary when their willing‐

ness for renewable accommodation is limited, which means
they are not willing to pay too many extra costs for scenari‐
os that seldom exist. Given the proposed method in this pa‐
per, the trade-off is easier to decide and the penetration level
is more intuitive for reference.

B. Trade-off Between Cost and Accommodation Ranges

The optimal investment plans with proposed DRO method
are shown in Table II. As can be observed from Table II,
when δ increases, more new lines will be built, thereby
yielding higher investment costs. This is because δ repre‐
sents the weighting factor for renewable utilization, which
can be regarded as the willingness of the system to fully ac‐
commodate wind generation outputs. The increase of δ
means that the system wants to fully accommodate more
wind generation outputs, which calls for more new lines for
power transmission, thus increasing the investment cost.

To demonstrate the trade-off between the investment cost
and renewable accommodation ranges, we gradually increase
the value of δ and solve the proposed model with each δ to
obtain the corresponding accommodation ranges. Because
the investment cost does not change continuously, the
change of δ may not cause the change of the investment cost
every time. For example, when δ changes from 100 to
10000, the investment cost remains the same at 6600 k$.
When δ changes from 17000 to 18000, the investment cost
changes from 6600 k$ to 7600 k$, which can be regarded as
a changing point. To illustrate the results briefly and clearly,
we choose those changing points for the exhibition. The
trade-off between the investment cost and accommodation
ranges is shown in Fig. 4.
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Fig. 4. Trade-off between investment cost and accommodation ranges for
Garver 6-bus system.

TABLE II
OPTIMAL INVESTMENT PLANS FOR GARVER 6-BUS SYSTEM WITH PROPOSED

DRO METHOD

δ

10000

18000

100000

Corridor (number of newly-built lines)

2-3 (3), 2-6 (4), 3-5 (3), 4-6 (3)

2-3 (4), 2-6 (5), 3-5 (3), 4-6 (3)

2-3 (5), 2-6 (6), 3-5 (3), 4-6 (3)

Cost (k$)

6600

7600

8600

TABLE I
PARAMETERS OF MODIFIED GARVER 6-BUS SYSTEM

Corridor

1-2

1-4

1-5

2-3

2-4

2-6

3-5

4-6

Length (km)

40
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20

20

40
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20

30

Reactance (p.u.)

0.04

0.06
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0.02

0.04

0.03
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0.03

Capacity (MW)

70

70

70

70

70

70

70

70
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Fig. 2. Coefficients of wind generation outputs and demand. (a) Ratio of
wind generation output to nominal value. (b) Ratio of demand to benchmark
for modified Garver 6-bus and IEEE 118-bus systems.
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Fig. 3. Distribution of wind generation outputs with error bars.
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Taking the cost of 6600 k$ as an example, the space be‐
tween the upper and lower red lines represents the amount
of renewable energy which the system can accommodate
without load shedding or wind curtailment. In other words,
we need to spend at least 6600 k$ on strengthening the
transmission network to accommodate any total wind power
output within the interval between two red lines. It is shown
that when we increase investment costs, the penetration lev‐
els of renewable energy grow. At the 15th hour, the accom‐
modation ranges corresponding to different investment costs
of 6600 k$ , 7600 k$ , and 8600 k$ are 143.42-444.9 MW,
74.22-505.44 MW, and 10.45-584.84 MW, respectively.
When the investment increases, more transmission lines will
be built, and thus having a more reliable and flexible trans‐
mission network. The enhanced transmission network has an
improved admissible capacity for renewable energy. It is not‐
ed that although the dotted yellow line is lower than the dot‐
ted blue line at some times (e. g., at the 2nd and 3rd hours),
the interval width of yellow lines is still smaller than that of
blue lines. At the 2nd hour, the accommodation ranges corre‐
sponding to different investment costs of 7600 k$ and 8600 k$
are 6.23-491.90 MW and 35.73-570.41 MW, respectively. At
the 3rd hour, the accommodation ranges of yellow lines and
blue lines are 0-517.56 MW and 27.28-570.26 MW, respec‐
tively.

C. Comparisons with Traditional RO Method

To compare the proposed method and the traditional RO
[5], [14], we first give the optimal investment plans using
the traditional RO method in Table III. Furthermore, we
compare the out-of-sample performances of the proposed
DRO method and the traditional RO method as shown in
Fig. 5.

On one hand, when the investment cost goes up, the re‐
newable utilization probability increases. For instance, at the
cost of 6600 k $ , the renewable utilization probability with
the proposed DRO method is 0.785, which interprets that
when we spend 6600 k$ on transmission network expansion,
the renewable fully utilization probability for the system is
0.785. In other words, the system takes a risk with a proba‐
bility of 0.215 to take emergency regulations, such as load
shedding or wind power curtailment, to completely accom‐
modate the wind generation outputs. On the other hand, the
traditional RO method shows its conservativeness in that
with a lower utilization probability, the RO method requires
a higher investment cost compared with the proposed meth‐
od. For instance, with the proposed DRO method, the sys‐
tem needs to spend 7600 k$ to obtain the utilization proba‐
bility of 0.991, while with RO method, the system needs to
pay 7800 k$ to obtain the utilization probability of 0.874.
This is because the proposed DRO method considers the ex‐
pectation of the worst-case probability distribution rather
than the single worst-case scenario used in the RO method.
In this context, the proposed method is less conservative
than the traditional RO method.

D. Realistic Example: IEEE 118-bus System

We use a modified IEEE 118-bus system to verify the ef‐
fectiveness of the proposed method. As shown in Fig. 6, the
IEEE 118-bus system contains 19 generators, 35 synchro‐
nous condensers, 186 lines, 9 transformers, and 91 loads. Be‐
sides, two wind farms with an identical installed capacity of
300 MW are located at buses 32 and 88, respectively. In
Fig. 6, the 30 candidate corridors are red. The initial parame‐
ters are from MATPOWER 7.1. The length of each transmis‐
sion corridor is assumed to be the floored integral part of
250 times the corresponding reactance. The coefficients of
the demands and wind generation outputs are shown in Ap‐
pendix A. Other settings of the testing parameters keep the
same as those in the Garver 6-bus system.

Like the Garver 6-bus system, when δ increases, more
new lines will be built, thereby yielding higher investment
costs, as can be observed from Table IV. This is because δ
represents the weight factor for renewable utilization, which
is regarded as the willingness of the system to fully accom‐
modate wind generation outputs.

The trade-off between investment cost and accommoda‐
tion ranges for IEEE 118-bus system is shown in Fig. 7. It is
shown that when we increase investment costs, the accom‐
modation ranges of renewable energy grow. At the 15th

hour, the accommodation ranges corresponding to different
investment costs of 20 k$, 360 k$, and 700 k$ are 51.15-
391.61 MW, 25.99-405.25 MW, and 0-422.10 MW, respec‐
tively. Furthermore, we can observe from Fig. 8, that when
the investment cost goes up, the renewable utilization proba‐
bility increases. For example, at the cost of 20 k$, the renew‐
able utilization probability is 0.85, which interprets that
when we spend 20 k$ on transmission network expansion,
the renewable full utilization probability for the system
is 0.85.
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Fig. 5. Out-of-sample results of renewable utilization probability versus
cost for Garver 6-bus system.

TABLE III
OPTIMAL INVESTMENT PLANS FOR GARVER 6-BUS SYSTEM WITH

TRADITIONAL RO METHOD

δ

105000

500000

1000000

Corridor (number of newly-built lines)

1-5 (1), 2-3 (3), 2-6 (6), 3-5 (2), 4-6 (3)

1-5 (1), 2-3 (3), 2-6 (6), 3-5 (2), 4-6 (4)

1-4 (1), 1-5 (1), 2-3 (3), 2-6 (6), 3-5 (2), 4-6 (5)

Cost (k$)

7800

8400

10200
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V. CONCLUSION

In this paper, we develop a DRO-based co-optimization
model for the TNEP, yielding the minimum investment cost
and the maximum penetration level of renewable generation.

The proposed model is characterized by a two-stage deci‐
sion framework with variable bounds of the uncertain sets
and distributionally robust joint chance constraints, which
are hard to solve.

By applying the affine decision rule, second-order conic
reformulation, and duality techniques, we reformulate the
problem into a single-stage robust model, which is an
MISOCP problem and is efficiently solved by commercial
solvers. The case study shows that the proposed method ex‐
plicitly quantifies the penetration level of renewable genera‐
tion instead of implicitly setting them as constraints, which
is intuitive for reference. Compared with the traditional RO
method, the proposed method significantly improves conser‐
vativeness. An explicit trade-off between the cost and the

TABLE IV
OPTIMAL INVESTMENT PLANS FOR IEEE 118-BUS SYSTEM

δ

4000

5000

100000

Corridors (number of newly-built lines)

68-116 (1)

68-116 (1), 21-22 (1)

68-116 (1), 21-22 (2)

Cost (k$)

20

360

700
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Fig. 8. Out-of-sample results of renewable utilization probability versus
cost for IEEE 118-bus system.
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penetration level is expected to give the system planners a
clear guideline for transmission network expansion planning
under a high penetration level of renewable generation.

APPENDIX A

In Appendix A, we give the reformulation about the distri‐
butionally robust joint chance constraints (14). More details
can be found in [39].

The ambiguity set (12) satisfies assumption (A1) in [41],
and the distributionally robust joint chance constraint (13)
can be expressed by its Bonferroni approximation.

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

infPktÎDkt

Pkt (ξktÎ[ξ L
ktξ

U
kt ])³ 1 - gkt "kÎK "tÎ T

∑
kÎK

gkt £ 1 - u "tÎ T

gkt ³ 0 "kÎK"tÎ T

(A1)

The equivalent formulation of (A1) is given as:

infPktÎDkt

Pkt (|ξkt - μkt| £min(μkt - ξ
L
ktξ

U
kt - μkt ))³ 1 - gkt

"kÎK"tÎ T (A2)

Due to (A1), we have 1 - gkt ³ u > 2/3. Then, by the Gauss
inequality, we reformulate (A2) as:

1 -
4

9κ 2
kt

³ 1 - skt "kÎK"tÎ T (A3)

κkt: =
min(μkt - ξ

L
ktξ

U
kt - μkt )

σkt
"kÎK"tÎ T (A4)

Due to (A3), we have sktκ
2
kt ³ 4/9. Then, by introducing

the auxiliary variables vkt and zkt, we recast sktκ
2
kt ³ 4/9 as

second-order conic constraints (24)-(29).
The formulas (24) - (29) are the reformulations of con‐

straint (13).
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