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Comprehensive Evaluation of Electric Power
Prediction Models Based on D-S Evidence Theory
Combined with Multiple Accuracy Indicators

Qiong Cui, Jizhong Zhu, Jie Shu, Lei Huang, and Zetao Ma

Abstract—A comprehensive evaluation method of electric pow-
er prediction models using multiple accuracy indicators is pro-
posed. To obtain the preferred models, this paper selects a num-
ber of accuracy indicators that can reflect the accuracy of
single-point prediction and the correlation of predicted data,
and carries out a comprehensive evaluation. First, according to
Dempster-Shafer (D-S) evidence theory, a new accuracy indica-
tor based on the relative error (RE) is proposed to solve the
problem that RE is inconsistent with other indicators in the
quantity of evaluation values and cannot be adopted at the
same time. Next, a new dimensionless method is proposed,
which combines the efficiency coefficient method with the ex-
treme value method to unify the accuracy indicator into a di-
mensionless positive indicator, to avoid the conflict between
pieces of evidence caused by the minimum value of zero. On
this basis, the evidence fusion is used to obtain the comprehen-
sive evaluation value of each model. Then, the principle and the
process of consistency checking of the proposed method using
the entropy method and the linear combination formula are de-
scribed. Finally, the effectiveness and the superiority of the pro-
posed method are validated by an illustrative instance.

Index Terms—Dempster-Shafer (D-S) evidence theory, multi-
ple accuracy indicators, electric power prediction model, com-
prehensive evaluation.

I. INTRODUCTION

CCURATE electric power prediction is the basis and
premise of power planning and design, and is also an
important guarantee for the safe and economic operation of
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power grids. Electric power prediction mainly include wind
power forecasting, photovoltaic power forecasting and load
forecasting. At present, there are many methods for electric
power prediction. For example, some methods are based on
statistical models: grey linear regression model (GLRM), au-
toregressive moving average model, Markov model, etc. Al-
so, some methods are based on artificial intelligence: wave-
let neural network (WNN), least squares support vector ma-
chine (LSSVM), fuzzy prediction method, etc. [1]-[4]. To im-
prove the accuracy of electric power prediction and obtain
the preferred models, it is necessary to evaluate the predic-
tion accuracy of the models first.

At present, many references such as [5], [6], have evaluat-
ed the prediction accuracy of the models, which normalize
the accuracy indicators of the evaluation prediction model,
multiply the coordination factors of different indicators, and
finally integrate them into a comprehensive indicator to eval-
uate the prediction accuracy of the model. Reference [7]
evaluates the effect of each prediction model with three accu-
racy indicators: mean absolute error (MAE), mean absolute
percentage error (MAPE), and sum of squared error (SSE).
Reference [8] adopts a single indicator, i.e., relative error
(RE), to evaluate and combine different models. Reference
[9] measures MAPE in model parameter identification, and
then combines and evaluates the models based on the vari-
able weight coefficients of the optimization algorithm. Most
of the commonly used screening methods of prediction mod-
els are carried out through a single accuracy indicator, i.e.,
the single indicator value of each model is calculated, and
the model whose indicator value exceeds the threshold value
is removed to complete the screening process. In fact, any
single indicator cannot fully reflect the effectiveness of the
prediction models [10], [11]. Different indicators can reveal
the generation mechanism and characteristics of the predic-
tion accuracy of the models from different perspectives. If
the models are screened by a single indicator, some useful
data and information may be lost. Therefore, this paper propos-
es a comprehensive evaluation method of electric power pre-
diction models based on multiple accuracy indicators to illumi-
nate the prediction effect of the models from multiple aspects.

Dempster-Shafer (D-S) evidence theory was first proposed
by Dempster and further promoted and developed by Shafer.
D-S evidence theory deals with uncertain problems [12]. It
has the advantage of integrating multiple types of random
and fuzzy information and can optimize the decision-making
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scheme [13]-[16]. This paper uses D-S evidence theory for
reference, combines independent evaluation results of the
prediction models by multiple accuracy indicators, and pro-
poses a new method for comprehensive evaluation of the
models based on D-S evidence theory combined with multi-
ple indicators.

II. CHARACTERISTICS OF ACCURACY INDICATORS

At present, the commonly used accuracy indicators are
mainly divided into two categories: single-point prediction
accuracy indicators and predicted data correlation indicators.
The former includes RE, MAE, MAPE, root mean square er-
ror (RMSE), and standard deviation of error (SDE). The lat-
ter includes relative coefficient (RC) and forecasting effec-
tive measure (FEM) [17].

Among the above indicators, RE is based on the individu-
al sample, and the number of its evaluation values is that of
samples. Other indicators are based on the total sample and
each has a single evaluation value. The indicators of MAE
and MAPE are error measurement tools based on the idea of
point-by-point summation and then averaging, which reflect
the overall average performance of the prediction models.
RMSE measures the dispersion of the deviation between the
predicted power and the actual power. SDE reflects the pre-
diction accuracy and the discretization level of the error,
which is independent of the average value of the prediction
error. RC reflects the correlation level between the predicted
value and the actual value, and can be used to analyze the
errors caused by uncertain factors. The value of FEM re-
flects the effectiveness of the prediction method, and it de-
scribes the mean value of the prediction accuracy and the
mean variance of the dispersion degree. FEM can reflect the
fitting situation between the predicted sequence and the actu-
al sequence.

When a single accuracy indicator is used to evaluate the
electric power prediction models, it is difficult to fully re-
flect the prediction effect of the models. The single-point
prediction accuracy indicator only reflects the single-point er-
ror of the prediction models, which can indicate the predic-
tion accuracy of the models to a certain extent, but cannot
accurately illuminate the trend of the prediction errors.
While the single-point error values of two models may be
the same, the curves of the prediction errors may be very dif-
ferent. Therefore, it is necessary to evaluate the models with
the predicted data correlation indicators. Considering the av-
erage value of the prediction errors, the level of discretiza-
tion, the correlation between the predicted values and the ac-
tual values, and other factors, the indicators that can reflect
the different prediction conditions of the models from differ-
ent aspects are selected to independently or comprehensively
evaluate the prediction models. When different indicators are
used to independently evaluate the prediction models, the
evaluation results may change or even conflict with each oth-
er, which causes difficulties in exploring the change rules of
the prediction accuracy of the models. Meanwhile, it brings
difficulties to the optimal selection or combination of the
prediction models. Therefore, it is a problem to be solved
how to use the independent evaluation results of different in-
dicators to comprehensively evaluate the model.
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III. D-S EVIDENCE THEORY

The evidence theory can integrate information from multi-
ple evidence sources and provide correct analysis and deci-
sion-making.

A. Relevant Definitions of Evidence Theory

For set C, if set 4 satisfies: 4A={B|B < C}, then the power
set of 4 is C. For a discriminant problem, it corresponds to a
subset of C. Set C represents all possible results that can be
recognized, so set C is called a frame of discernment, record-
ed as Q.

If m(C)€[0, 1], m(J)=0 and zm(C): 1, then m is the ba-

CcQ
sic probability assignment in ©. The probability assignment
reflects the size of reliability. m(C) is the basic probability
number for C, where VCc Q. If m(C)>0, then set C of all
elements that satisfy this condition is called the focal elements
of m. If Bel(C)= 2 m(B) and VC <= Q, then Bel is called the

AcC
belief function in Q. The belief function reflects the degree of
reliability, and it follows that Bel(J)=0 and Bel(Q)=1.

B. Belief Functions Fused by Using Dempster’s Rule

Dempster’s rule is an important part of the evidence theo-
ry, which reflects the joint effect of pieces of evidence. We
use it to calculate a new belief function, marked as Bel,,,
which is generated by the combined action of n pieces of ev-
idence. Bel ., is called the direct sum of the pre-synthesis be-
lief functions, expressed by Bel,., = Bel @Bel,®...DBel,. As-
sume that Bel, and Bel, are the belief functions based on
two independent pieces of evidence in the same Q. m, and
m, are the corresponding basic probability assignments, and
the number of focal elements is N,. Suppose the focal ele-

ele*
ments corresponding to m, are £, ,E,,,....E, , and the fo-
” Ez-Nclc’

cal elements corresponding to m, are E,, E,,, ..

which satisfy z m,(E,,)m,(E,,) <1, where p,g=
El.pﬂEZ.q:®
1, 2, ..., Ny Then the basic probability assignment of the

composition can be expressed as:
0 E=0

2 m, (ELp)mZ (EZ.q)

E,NE, =E

1= > m(E,)m(E,,)
E NE, =2

m,,,(E)= (1)

where E is the focus element, and it satisfies £, ,(E, =E.

Equation (1) is the expression of the combination of Bel,
and Bel,, i.e., Bel,®Bel,. We can use the same algorithm to
continue the synthesis with the next belief function until all
the belief functions are fused.

IV. COMPREHENSIVE EVALUATION METHOD OF ELECTRIC
POWER PREDICTION MODELS

To comprehensively evaluate the electric power prediction
models, this paper first considers the average value of the
prediction errors, the level of discretization, and the correla-
tion between the predicted values and the actual values, etc.
Then, seven indicators that can reflect the prediction situa-
tion of the models are selected. They are RE, MAE, MAPE,
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RMSE, SDE, and two other indicators that can reflect the
correlation between the predicted values and the actual val-
ues, i.e., FEM and RC. All or a few of them can be selected
as required, and the proposed method is still applicable. The
comprehensive evaluation process of the electric power pre-
diction models is shown in Fig. 1.

| Get the actual data sequence of electric power |

| Select the prediction models to be evaluated |
v
‘ Obtain the predicted data sequence of each prediction model ‘
)
‘ Use multiple indicators to evaluate each model independently ‘

Do evaluation
results conflict?

|Complete model evaluation |

Establish the frame of discernment

Is the
quantity of evaluation values
of each indicator

single?

Pretreatment of
RE

Select indicators based on
individual samples such as RE
: v :
:| Construct probability assignment |:
{|  and belief function based on  |!
'|different pieces of evidence (time)|:

Get the evaluation results of
indicators such as MAE, MAPE,
RMSE, SDE, RC, and FEM

{[ Use Dempster’s rule |

Establish a new
indicator and output
its evaluation result

e e I

Pre-process data: dimensionless treatment based on
the efficiency coefficient method and the extreme value method

!
Construct probability assignment and belief function
based on different pieces of evidence (indicators)

!

| Analyze the degree of conflict between pieces of evidence |

| Use Dempster’s rule |

| Get evaluation values or weight distributions of each model |

| Verify the proposed method |

| Obtain optimization and combination of models |
I

End

Fig. 1. Comprehensive evaluation process of electric power prediction
models based on multiple accuracy indicators.

Based on the actual data of electric power, the above indi-
cators are used to independently evaluate the electric power
prediction models. If there are no conflicts between the eval-
uation results, the model evaluation is completed. If they are
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conflicted, D-S evidence theory is used to fuse multiple indi-
cators for the comprehensive evaluation of the models, and
the steps are as follows.

A. Establishment of Frame of Discernment

N,q and N, represent the sample numbers of indicators
and electric power prediction models, respectively. The sets
of evaluation results of N, , models by N,, precision indica-

mod
tors are Y,, Y,, ..., Y, , where Y,={y,;, v, ..., yy_,} and

j=1,2, ..., N, Then for set {Y¥,, V,, ..

of its power sets is 2™ where the nonempty subsets are
Y51, .. Yy ) The frame of discernment can be ex-

pressed by Q={{¥,},{Y,}, ... {¥y }}. The evaluation of

each indicator of the model is taken as evidence information,
and the quantity of the evaluation values of each model may
vary due to different indicators. In the same sample number
of time intervals, MAE, MAPE, RMSE, SDE, FEM, and RC
all have a single evaluation value for each model. Note that
RE is an exception. If the set of selected indicators contains
RE, RE should be pre-processed.

- Yy}, the number

B. Pre-processing of RE

To address the problem that RE and other indicators can-
not be compared and adopted at the same time due to the in-
consistent quantity of evaluation values for the same model
with the same sample number of time intervals, RE needs to
be pre-processed, but its values cannot be simply averaged.
The reasons are analyzed through Fig. 2 which shows the
values of RE for different models.

25¢

—+—Model M,
20 —=—Model M,
s —+—Model M,

1 2 3 4 5 6 7 8 9 10 11
Time interval

Fig. 2. Values of RE for different models.

As shown in Fig. 2, the average values of RE for the
three prediction models of M,, M, and M, are very close,
which are 7.9%, 7.1% and 7.6%, respectively. However, the
model with a small average value may have the largest val-
ue of RE. For example, the maximum value of RE for M, is
22.8%, the maximum value of RE for M, is 21.3%, and the
average value of the RE for M, is the maximum. To dig out
more useful information about RE and enable it to compre-
hensively evaluate the models by combining other indica-
tors, the values of RE at each time interval are fused by the
evidence theory, i.e., a new indicator is constructed. The pro-
cess is as follows.

1) Establish the frame of discernment of RE.

The frame of discernment of RE can be expressed by Q'=
HR ARy}, . {Ry_}}, where R, is the power set of Q' R=

{R R2,jv R RNUN,j }5 Rt.j (t: 19 27 A Ntim: j: 17 27 s Nmod)
is the value of RE of model j at time interval ¢, and N,, is

Lj?
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the sample number of time intervals.

2) Construct the basic probability assignment and the be-
lief function in Q'.

m{(R;) represents the basic probability number about R,
and it is obtained by the normalization of R,,, where m, rep-
resents the basic probability assignment at time interval ¢ in
Q' m/(R,)€l0, 1], and > m/(R;) =1. According to the defi-

R]CQ’
nition of the belief function, Bel! corresponds to m, one to
one at time interval #, where Bel, represents the belief func-
tion at time interval ¢ in Q', Bel'(D) =0, and Bel'( Q') =1.

3) Generate a new accuracy indicator.

The belief functions are fused two by two based on Demp-
ster’s rule. Taking Bel| and Bel, as examples, the equation
can be expressed by Bel| ,,=Bel/@®Bel,, where Bel] and
Bel, are two belief functions of independent pieces of evi-
dence in Q' m; and m, are the basic probability assignments
corresponding to Bel{ and Bel,, respectively. For VR, c Q'
there is m/(R;)>0, so R, is the set of focal elements of m'in
Q' The number of focal elements is N, . m|_,,(R) is the basic
probability assignment corresponding to Bel|_,,, where R is
the focal element. According to Dempster’s rule, the two func-
tions of Bel| ,, and the next belief function continue to be
combined until the fusion of N, belief functions is completed.
The resultant belief function is Bel|,, , where Bel|,, =
Bel |®Bel,®...@Bel; , and the corresponding basic probabili-
ty assignment m;_, (R)is the value of the new indicator.

C. Dimensionless Treatment of Accuracy Indicators

In the comprehensive evaluation, there may be differences
in positive and negative type inconsistencies and dimension-
ality inconsistencies among various indicators. Therefore, to
eliminate the influence of these differences, dimensionless
processing is required for the indicators. The common treat-
ment methods include summation standardization treatment,
standard deviation treatment, extreme value method, and effi-
cacy coefficient method [18]. For RE, MAE, MAPE, RMSE
or SDE, the smaller the value is, the better the model evalua-
tion will be, i.e., these are negative indicators. For FEM or
RC, the larger the value is, the better the model evaluation
will be, i.e., these are positive indicators. Because the sum-
mation standardization method and the standard deviation
method cannot unify the indicators into the same type of pos-
itive indicators or negative indicators, they are not applicable
to D-S evidence theory. Although some indicators that have
become dimensionless through the extreme value method
can be unified as the same type of positive and negative indi-
cators, some of the focal element values are zero because
the minimum value is zero, leading to a greater conflict be-
tween pieces of evidence. Therefore, Dempster’s rule is no
longer applicable. Although the efficiency coefficient method
can avoid the situation in which the minimum value is zero
by adjusting the coefficient value, it cannot unify the posi-
tive and negative indicators. Therefore, this paper proposes a
method combining the efficiency coefficient method and the
extreme value method to conduct dimensionless treatment of
indicators. This method can unify positive and negative indi-
cators into the same type, and avoid the situation in which
the minimum value being zero, so that it is applicable to the
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evidence theory. The calculation process can be expressed
by the following steps.

1) Construct the data matrix of indicator values used to
evaluate the prediction models. The data matrix can be ex-
pressed as:

Y=(y, )dexrv

2
where y,; (i=1,2, ..., Ny, j=1,2, ..., N, is the value of
indicator i of electric power prediction model ;.

2) For the indicators of RE, MAE, MAPE, RMSE, SDE,
and other negative indicators, the calculation equation can be

expressed as:

_ Mmax,i_yi,j
x= T g (1 - ) (3)
where M. and M_._ . are the maximum and minimum val-

max, i min,

ues of the models evaluated by indicator i, respectively; and
o is the efficiency coefficient.

For the positive indicators such as FEM and RC, the cal-
culation equation can be expressed as:

Vi~
Xy= 37

max, i

min, i

M,

min, i

o+(1—-a) 4)
where x,; is the value of y,; after dimensionless treatment by
combining the efficiency coefficient method with the ex-
treme value method; and O<a<1.

3) As a grows, the influence of (M, .~y V(M \..=M in;)
in (3) grows, while the influence of translation amplitude 1 —a
diminishes. When a =1, the corresponding method is the ex-
treme value method.

D. Comprehensive Evaluation of Electric Power Prediction
Models

x,; (=12, ..., Npe, j=1, 2, ..., N,,,) represents the basic
probability number in Q. The basic probability numbers cor-
responding to m; are X, ;, X;,, ..., X; . According to the defi-

nition of the belief function, Bel, corresponds to m; one to
one. Using Dempster’s rule, the belief functions are fused to
obtain the evaluation values of each model. According to the
value of z, (j=1, 2, ..., N, ), where z; is the comprehensive
evaluation value of model j by the proposed method, the
models are sorted, or they are used as the model weight co-
efficients for the optimal combination of models to improve
the prediction accuracy. Taking the combination of N, , mod-

mod

els as an example, the weight of model j can be expressed as:

Zj

W =
" Zy+z,+ ... tzZy ®)

mod

E. Validation Method

1) Analysis on Degree of Conflict Between Pieces of Evidence

The degree of conflict between pieces of evidence affects
whether the fusion results obtained by Dempster’s rule devi-
ate from or even contradict the actual situation. The classical
conflict coefficient in the evidence theory reflects the degree
of non-mutual inclusion between focal elements, which is de-
noted by K,. According to (1), K, is expressed as:

K.= z ml(El.p)mz(Ez,q)

E\anzq:Q

(6)

It is not enough to measure the conflict between pieces of
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evidence considering only non-inclusiveness, which cannot
reflect the actual degree of conflict, but we must also consid-
er the differences between pieces of evidence. To reflect the
differences between pieces of evidence, we take the distance
proposed in [19] for measuring the similarity between sets
of basic belief assignments [19], [20].

If m, and m, are two pieces of independent evidence in Q
and the pieces of evidence are represented as vectors in
space, the distance proposed in [19] between m, and m, can
be expressed as:

D(m,, m,)= /||m1 ||2+ | m ||22—2<m1, m,)

where ||m1 ||2: (m,, m,), |m2 ||2: (my, myy; and (m,, m,)
is the inner product of two vectors, which can be defined as:

X E,,NE
<m17 m2> = zzml(El.p)mZ(EZ.q)M
p=1g=1 ‘ElﬁpUEZ,q‘
where £, ,, E, € Q.

For K, and D, only if both of them are large, can we de-
termine that there is a great conflict between pieces of evi-
dence. If one of them is relatively small, the conflict be-
tween the two pieces of evidence can be considered mi-
nor [21].

2) Verification Based on Entropy Method and Linear Combi-
nation Formula

This paper proposes a method to evaluate prediction mod-
els based on multiple indicators, which cannot be verified by
a single indicator. The entropy method [22]-[24] is also a
measure of uncertainty, which is an objective weighting
method to determine the weight according to the difference
of the ordering degree of the information contained in each
indicator. For a certain indicator, the greater the variation of
its value is, the smaller the information entropy is, then the
larger the weight coefficient is, and vice versa. Therefore,
we can use the information entropy of each indicator to cal-
culate the weights of indicators, and use the weight values
to rank the validity of all indicators to verify the validity of
the indicator constructed in this paper. Then, the dimension-
less indicator values are used to calculate the comprehensive
evaluation value of each model by using the linear combina-
tion formula [25] to sort the models, and verify the proposed
comprehensive evaluation method. However, when the
amount of test sample data of indicators increases, the model
evaluation based on the entropy method and the linear com-
bination formula needs to be overturned, and the results
need to be recalculated, which is a tedious process, and is
the disadvantage of the entropy method.

The calculation process of the weight and model evalua-
tion values by using the entropy method is as follows.

1) The matrix for evaluation values of the indicators of
the models after dimensionless treatment based on the effi-
ciency coefficient method and the extreme value method can
be expressed as:

(7

N,

ele Vele

®)

X= (x[:,- )de XNpod (9)

2) The information entropy value of the indicators and the
avail value, which can reflect the difference degree of the in-
dicators, are calculated. According to the definition of entro-
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py, they can be expressed as:
N,
1 mod xij X,
e,=-— T —In —~
ln N mod ;=1 Mg N (10)
Xij zxr;j
j=1 j=1
d,=1-e¢, (11)

where e, and d; are the information entropy value and the
avail value of indicator i, respectively.

The greater the difference of x;; is, the smaller the value
of e, is; and indicator i plays a more important role in the
evaluation of the model; i.e., the larger the value of d, is, the
more important the evaluation of the indicator is.

3) The weight of indicator i can be expressed as:

i (12)
i=1 .

4) For the sake of simplicity and without loss of generali-
ty, the comprehensive evaluation value of model j is calculat-
ed by using the linear combination method, which is ex-
pressed as:

13)
where v, is the comprehensive evaluation value of model ;.

5) The models are sorted or optimally combined accord-
ing to the value of v, to verify the proposed method. The

weights of the optimal combination of the models are calcu-
lated by (5).

Vi=XiWi

V. INSTANCE ANALYSIS

The following three prediction models are adopted: WNN
(Mod,), GLRM (Mod,), and LSSVM (Mod,). Taking the his-
torical load data of a certain region in 6 months as the train-
ing sample data and the load data at 9 a.m. of the following
11 days as the test sample data, the predicted and actual val-
ues are compared, and the above three models are evaluated
with seven indicators. The set of R, (t=1,2, ..., 11;j=
1, 2, 3) represents the values of RE for the three models, and
the set of the values of RE for each model can be expressed
by R,={R,;, R,,, ..., R, ;}. The specific values are shown in
Table 1.

TABLE I
VALUES OF RE FOR PREDICTION MODELS

. R, (%)
Time interval ¢ Mod, (j=1) Mod, (j=2) Mod, (j=3)
1 8.696667 7.4548928 7.6395670

2 12.652160 21.3784764 22.8073358

3 8.470515 2.4901021 1.3106897

4 7.601239 1.5578847 5.0190567

5 10.110100 2.7698618 4.7236615

6 7.446321 8.4928080 10.0979779

7 5.441113 8.2333768 5.2564103

8 5.010369 5.2903360 8.9485691

9 7.099335 4.7285990 2.9736108

10 7.391576 7.5834028 7.4457882

11 7.217011 8.6366479 8.0195956
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The set of y/, (i=1, 2, ..., 6;j=1, 2, 3) represents the val-
ues of the indicators of MAE, MAPE, RMSE, SDE, FEM,
and RC for the three models, and the set of the values of the
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six indicators for each model can be expressed by {¥,}=
{Vij» Y3j» == Yi, - The specific values are shown in Table II.

TABLE I
EVALUATION VALUES OF OTHER PRECISION INDICATORS EXCEPT FOR RE

7
Prediction model Set i
MAE (kW) (i=1)  MAPE (%) (i=2) RMSE (kW) (i=3)  SDE (kW) (i=4)  FEM (%) (i=5) RC (%) (i=6)
Mod, (j=1) Y/ 8.6966670 12.6521600 8.4705150 7.6012390 10.1101000 7.4463210
Mod, (j=2) Y, 7.4548928 21.3784764 2.4901021 1.5578847 2.7698618 8.4928080
Mod, (j=3) Yy 7.6395670 22.8073358 1.3106897 5.0190567 47236615 10.0979779

It can be concluded from Table I and Table II that RE is
different from other indicators in the number of evaluation
values of the samples, and different indicators are inconsis-
tent in the evaluation of the models, as shown in Fig. 3.

< 0.5 = Mod,; mMod,; Mod,

g s 0.4

« z 03

c S

o35 02

==

<= 0.1

s 0

MAE MAPE RMSE SDE FEM RC
Indicator

Fig. 3. Inconsistency of different indicators for prediction models (all indi-
cators are dimensionless).

Figure 3 shows that the values of both MAE and MAPE
for Mod, are greater than those of the other two models, in-
dicating that the prediction accuracy of Mod, is worse than
those of Mod, and Mod,. The evaluation values of SDE,
FEM, and RC indicate that the prediction accuracy of Mod,
is better than those of the other two models. It is concluded
that the independent evaluation values of the indicators for
the models are in conflict, so the comprehensive evaluation
with multiple indicators for each model is needed.

D-S evidence theory is used to pre-process RE. First, the val-
ues of RE are dimensionless. Then, the frame of discernment is
established, which can be expressed by Q'={{R]}, {R}}, {R}}}.
Finally, the basic probability assignment is constructed, ex-
pressed by m! (t=1, 2, ..., 11), as shown in Table III.

TABLE III
BASIC PROBABILITY ASSIGNMENT FOR RE

Normalized value of RE

" Mod, Mod, Mod,

m| 0.365542470 0.313347608 0.32110992
mj 0.222600433 0.376130198 0.40126937
m; 0.690269997 0.202920700 0.10680930
mj 0.536122312 0.109879032 0.35399866
ms 0.574319352 0.157346086 0.26833456
mg 0.285988791 0.326180945 0.38783026
ms 0.287419652 0.434917354 0.27766299
my 0.260288728 0.274833012 0.46487826
mg 0.479634730 0.319466589 0.20089868
mi, 0.329675439 0.338231190 0.33209337
mi, 0.302305273 0.361770870 0.33592386

Bel! (t=1, 2, ..., 11) is gradually fused by using Demp-
ster’s rule, which corresponds to m, in Table III, and the fu-
sion is completed after 10 steps. The results obtained after
the fusion of each step are shown in Table IV.

TABLE IV
FUSION RESULTS OF BASIC PROBABILITY ASSIGNMENT BASED ON RE

Fusion result

o Mod, Mod, Mod,

my_, 0.248018 0.359239039 0.392743
m\_ 0.598505 0.254844750 0.146651
m . 0.800602 0.069867610 0.129530
mi_s 0.909503 0.021745321 0.068751
m\ ¢ 0.885128 0.024136665 0.090735
mi_,, 0.876967 0.036186329 0.086847
mi_g 0.819377 0.035699228 0.144924
my_, 0.906534 0.026307143 0.067159
ml 0.905469 0.026958183 0.067572
ml 0.894011 0.031852780 0.074137

After the pre-processing of RE with D-S evidence theory,
a new indicator is obtained, represented as F;, and its evalu-
ation values for the three models are 0.894011, 0.03185278,
0.074137, respectively. Fp; is consistent with other indica-
tors in the number of values for the models. The values of
the indicators of Fy;, MAE, MAPE RMSE, SDE, FEM and
RC for the three models can be expressed by y,; (i=
1,2, ...,7;j=1,2,3), and the set of the values of the seven
indicators for each model can be expressed by {Y,}=
{yL/? Voo oo Vo ).

According to (3) and (4), the dimensionless treatment for
the indicators of RE, MAE, MAPE, RMSE, SDE, FEM, and
RC is conducted.

First, the value of a should be determined, which affects
whether the evidence theory is available or not. The trends
of K, and D with a are shown in Fig. 4. The blue and green
paths show the changes of K, and D with a, respectively.

As shown in Fig. 4, when the value of a gradually increas-
es from 0 to 1, both K, and D increase, and the changing
ranges of K, and D are [0.6667, 0.7070] and [0.0198,
0.5658], respectively, i.e., the rate of change of K, is less
than that of D. When a=0.5, the values of K, and D are
0.6736 and 0.2552, respectively. The smaller K, and D are,
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the less conflict there is between pieces of evidence. There-
fore, to improve the accuracy of the fusion result obtained
by Dempster’s rule, the value range of a is set as 0 <a<0.5.
If the value of o is adjusted within this range, the rate of
change of D is slightly larger, while the rate of change of K,
is not more than 2%.

» /\
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hensive evaluation values, the models are ranked as Mod, >
Mod,>Mod,. The comprehensive evaluation values of the
first two models are relatively close, and the difference be-
tween the former two and the last one is relatively large.

TABLE VI
FUSION RESULTS BASED ON ALL INDICATORS

Fusion result

m_,;
Mod, Mod, Mod,
0.54 “ m 0.175619807 0.48783280 0.336547394
0.48 my_ 5 0.125312076 0.58014850 0.294539423
0.42 my_, 0.168153599 0.59470470 0.237141697
0361 (a=0.5,K=0.6736, m s 0.243810836 0.54988594 0.206303221
D=0.2552) i
Q030 ZErn® my_ 0.317494726 0.52131428 0.161190994
0.24 m_, 0.422387488 0.41612653 0.161485986
0.18
0.12 ‘
~ 3)
0.06 (())zf) ‘-:(6%255&03429,03“ :
.- . : 92
0 g 1. 4“303';‘21’ 3527, 03.7_%
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Fig. 4. Trends of K, and D with a. 2 § 0.22 9 5"0'0 204
o 3 )
ST 020
o
For simplicity, we take a=0.4 as an example to show the £ 0.8
. . . . @) A
process of dimensionless treatment and fusion of accuracy in- 0.16 X
. . . . i X
dicators in detail. The results are shown in Table V. 0.14L- ¢
03436 620 s
TABLE V Cony, 038 038 o™
EVALUATION VALUES OF INDICATORS FOR MODELS AFTER DIMENSIONLESS Pfebensjv 040 0.42 0.36 ‘\gﬂe‘&[\o&
TREATMENT Yalyo Ofeeva]lla[* 0.4470.34 Q@\\@ &
Modl 1op 006\ q‘&\
X. .
Indicator - — - Fig. 5. Comprehensive evaluation values of three models corresponding to
Mod, (j=1) Mod, (j=2) Mod; (j=3) different values of a.
Frg (i=1) 0.6 1.00000000 0.980382250
MAE (i=2 . . .
MAPE(I' ) 06 1:00000000 0.703687436 The entropy method is used for verification, and the calcu-
=3 0.6 100000000 0.735917313 lation results are shown in Table VII.
RMSE (i=4) 1.0 0.76392189 0.600000000
SDE (i=5) 1.0 0.63771174 0.600000000 TABLE VII
FEM (i:6) 1.0 0.72802030 0.600000000 WEIGHTS OF EACH INDICATOR CALCULATED BY ENTROPY METHOD
RC (i=7) 1.0 0.60000000 0.753042587 nf "
Indicator niormation Avail value Weight
entropy value
The fusions of x,; (i=1,2,..., 7;j=1, 2, 3) are conducted Fre 0.977819000 0.022181000 0.148028000
by using Dempster’s rule. First, each indicator in Table V is MAE 0.978418000 0.021582000 0.144031000
normalized to construct m,. Then, Bel, corresponding to m, is MAPE 0.979617000 0.020383000 0.136032000
gradually fused, and the fusion is completed after six steps. RMSE 0.980328000 0.019672000 0.131282000
The results obtained after each step of fusion are shown in SDE 0.974527000 0.025473000 0.169999000
Table VI. FEM 0.979361885 0.020638115 0.137732414
The comprehensive evaluation values of the three models RC 0.980087000 0.019913000 0.132896000
based on multiple indicators are {z,}= {0.422387, 0.416127, Note: a=0.4.

0.161486}. Therefore, the ordering of evaluation values of
the models is Mod, >Mod,>Mod,.

When the selected values of a are different, the corre-
sponding comprehensive evaluation values of the three mod-
els are shown in Fig. 5.

It can be seen from Fig. 5 that, according to the compre-

The weights of the indicators of Fy,, MAE, MAPE,
RMSE, SDE, FEM, and RC calculated by the entropy meth-
od are  0.148028000,  0.144031000,  0.136032000,
0.131282000, 0.169999000, 0.137732414, 0.132896000, re-
spectively. The weight of F, is second only to SDE, which
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verifies the rationality and effectiveness of the proposed new
indicator. According to (13), the weights of the three models
are calculated as {v,}={0.828764, 0.816800, 0.710069, so
the ordering of weights of the models is Mod, >Mod, > Mod,.

When the selected values of a are different, the corre-
sponding weights of the three models calculated by the entro-
py method are shown in Fig. 6.

(0.8082, ¢; 7931 00g7028) -
(0.8285 Gitis
] 0.8168; 07101)
8495 0.
0.840370.74 3)5"
(0.8705 5 863 07830
8 L
08917 5 0\025 >
093, % 2
0 909 (,‘{to 2 \
6. 0, 8567)0

Weight of Mods
(=]
*®

0.96

0.81
0.990.78

Fig. 6. Weights of three models corresponding to different values of a.

It can be seen from Fig. 6 that, according to the weight
values, the models are ranked as Mod,>Mod,>Mod,, and
the weight values of the first two models are relatively close.

Furthermore, to make the verification clearer, the two
models at the top of the ranking are combined. According to
(5), the weights of Mod, and Mod, with different methods
are calculated, which are shown in Table VIII.

TABLE VIII
COMPARISON OF WEIGHTS OF TWO MODELS WITH DIFFERENT METHODS

Weight (the proposed method) Weight (the entropy method)

Mod, Mod, Mod, Mod,
0.05 0.502075 0.497925097 0.50010919 0.499891
0.10 0.503867 0.496132977 0.50029262 0.499707
0.15 0.505313 0.494686955 0.50056034 0.499440
0.20 0.506334 0.493665750 0.50092390 0.499076
0.25 0.506832 0.493168223 0.50139658 0.498603
0.30 0.506680 0.493319947 0.50199370 0.498006
0.35 0.505718 0.494282465 0.50273302 0.497267
0.40 0.503733 0.496266633 0.50363519 0.496365
0.45 0.500448 0.499552216 0.50472435 0.495276

As shown in Table VIII, the weights of Mod, and Mod,
calculated by the proposed method differ very little from
those calculated by the entropy method. The percentage dif-
ferences between the weights of the two models calculated
by the proposed method and those calculated by the entropy
method are both less than 1.1%.

The results calculated by the two methods are consistent
whether one model or the combination of two models is pre-

ferred, i.e., the correctness and the effectiveness of the pro-
posed method are verified. It should be noted that the order-
ing of these models is based on the specific instance. Differ-
ent test sample data in various instances may lead to differ-
ent orderings of the models, i.e., the ordering for prediction
accuracy of power prediction models is related to the test
sample data. The proposed method can be used to select the
optimal models based on the test sample data which is the
predicted value of different models and the actual value in
the same instance. When the comprehensive evaluation val-
ues of the models differ greatly, the first model is selected
for the prediction. When the top j models differ little, the
weight coefficients are calculated according to (5), and the
combined model is used for prediction.

VI. CONCLUSION

Firstly, this paper uses the idea of the evidence theory for
reference and establishes a new accuracy indicator based on
RE. Secondly, the weights of indicators are calculated by us-
ing the information entropy, and the effectiveness of the new
indicator is verified. Then, a new dimensionless processing
method that combines the efficiency coefficient method and
the extreme value method is proposed. The proposed method
not only unifies each indicator into a dimensionless positive
indicator, but also avoids the conflict between pieces of evi-
dence caused by the minimum value of zero. On this basis,
the values of indicators are fused by using Dempster’s rule
to obtain the comprehensive evaluation value of each model,
and the proposed method is verified by using the entropy
method and the linear combination formula. Finally, an ex-
ample is given to verify the effectiveness of the proposed
method. When the quantity of evidence information for indi-
cators increases, the proposed method can directly fuse the
new evidence based on the original fusion results, while the
result of the model screening method based on the entropy
method needs to be recalculated. This flexibility shows that
the proposed method has more practical significance.
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