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Abstract——Battery energy storage systems (BESSs) are expect‐
ed to play a crucial role in the operation and control of active
distribution networks (ADNs). In this paper, a holistic state esti‐
mation framework is developed for ADNs with BESSs integrat‐
ed. A dynamic equivalent model of BESS is developed, and the
state transition and measurement equations are derived. Based
on the equivalence between the correction stage of the iterated
extended Kalman filter (IEKF) and the weighted least squares
(WLS) regression, a holistic state estimation framework is pro‐
posed to capture the static state variables of ADNs and the dy‐
namic state variables of BESSs, especially the state of charge
(SOC). A bad data processing method is also presented. The
simulation results show that the proposed holistic state estima‐
tion framework improves the accuracy of state estimation as
well as the capability of bad data detection for both ADNs and
BESSs, providing comprehensive situational awareness for the
whole system.

Index Terms——Active distribution network (ADN), anomaly
detection, battery energy storage system (BESS), Kalman filter‐
ing, situational awareness, state estimation, state of charge (SOC).

I. INTRODUCTION

DUE to the integration of distributed generators (DGs),
energy storage systems, electric vehicles, and controlla‐

ble loads, distribution networks are gradually becoming ac‐
tive distribution networks (ADNs), where the traditional op‐
eration and control paradigm is no longer applicable [1].

State estimation is a fundamental tool for the situational
awareness of ADNs. By processing a redundant set of real-
time measurements, along with information from other sourc‐

es such as virtual measurements and pseudo-measurements,
the operating state of the system can be reliably estimated. It
is important to improve the accuracy and scope of state esti‐
mation for enabling advanced operation and control func‐
tions in ADNs.

Existing research on state estimation for distribution net‐
works can be broadly divided into four categories: ① the
consideration of different network models such as linear
models, three-phase unbalanced models, and decomposed
feeder models [2]-[4]; ② the development of more efficient
and accurate state estimation algorithms [5]-[7]; ③ the incor‐
poration of new types of measurements such as the ad‐
vanced metering infrastructure (AMI) and phasor measure‐
ment units (PMUs) [8]-[11]; ④ the modeling of pseudo-mea‐
surements based on historical data or forecasting techniques
aimed to improve the observability and measurement redun‐
dancy [12], [13].

In ADNs, a major challenge is the intermittent and sto‐
chastic generation nature of DGs, which leads to frequent
fluctuation of power flow profiles, power quality issues, and
reduced system stability. Battery energy storage systems
(BESSs) are one of the most promising solutions to this chal‐
lenge, which are being rapidly populated in power systems
around the world [14]. The state of charge (SOC) is the es‐
sential variable to characterize the operating state of batter‐
ies, which is defined as the ratio of the remaining capacity
of batteries to the total capacity [15]. The SOC is a crucial
variable at both the battery level and the power grid level:① at the BESS level, the SOC is the most important infor‐
mation for evaluating the status of batteries and allowing
their output to be controlled smoothly and in balance [16];② at the ADN level, the generation dispatch and security as‐
sessment applications need to take SOC into consideration.
With accurate SOC estimates, the BESS can be operated to
provide frequency regulation and load shifting capabilities,
among many other functions [17]. However, the SOC cannot
be measured directly, and must be estimated based on mea‐
surable quantities such as voltage and current. At present,
SOC estimation methods can be classified into five branch‐
es: ① traditional methods such as Coulomb counting [18];② adaptive filtering methods such as extended Kalman fil‐
ters [19], unscented Kalman filters [20], and H∞ filters [21];③ nonlinear observers [22]; ④ machine learning methods
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such as neural networks [23], [24] and support vector ma‐
chines [25]; ⑤ composite estimation methods combining
two or more different estimation methods [26]. Based on
SOC estimation, a number of applications in battery manage‐
ment have also been explored, e.g., the charging pattern opti‐
mization for charging speed [27], balancing of battery cells
[28], and electricity bill savings [29]. Due to a number of
challenges that have not been fully resolved such as model‐
ing error, measurement error, computational efficiency, and
online operation requirements, the SOC estimation is still a
very active research area to date.

In the existing literature, the SOC estimation problem has
been restricted to the BESS itself, as seen behind the point
of common coupling (PCC), disregarding possible synergies
and integration with the ADN state estimation. In fact, it is
beneficial to bridge this gap for both ADNs and BESSs. For
the ADN, grid-scale BESSs are important components to be
modeled, and accurate SOC estimation of grid-scale BESSs
is an important part of situational awareness required for sys‐
tem dispatch and control [30], [31]. For the BESSs, the joint
estimation with the power grid leads to improvement of mea‐
surement redundancy, which enhances the capabilities of
SOC estimation in the presence of measurement noise, unin‐
tentional bad data, and malicious cyber attacks. Unfortunate‐
ly, studies on the state estimation of ADNs and the SOC esti‐
mation of BESSs have so far been conducted by two sepa‐
rate technical communities. No existing work has exploited
the linkage between the two estimation problems and devel‐
oped a holistic estimation framework that benefits both
ADNs and BESSs.

This paper is dedicated to bridging the gap between the
state estimation of ADNs and the SOC estimation of grid-
scale BESSs. It starts by developing models of BESS compo‐
nents that are suitable for state estimation. A holistic estima‐
tion framework for ADNs and BESSs is then proposed, with
state variables clearly defined and state transition and measure‐
ment equations explicitly derived. The largest normalized re‐
sidual (LNR) test is also applied for the identification and cor‐
rection of bad data [32]. Compared with existing literature, the
main contributions of this paper are summarized as follows.

1) The operating states of ADNs and grid-scale BESSs are
estimated under a holistic framework. The partial equiva‐
lence between the weighted least squares (WLS) estimator
and iterated extended Kalman filter (IEKF) is exploited to
fuse the dynamic estimation problem of BESSs characterized
by differential equations with the static estimation problem
of ADNs characterized by algebraic equations.

2) For ADNs, the situational awareness of power grids is
enhanced by extending the monitoring scope of state estima‐
tion from power grids to BESSs; in addition, the BESS mod‐
el and measurements help improve the state estimation accu‐
racy of the grid.

3) For BESSs, the information from the measurements of
both BESSs and ADNs is fully exploited, and the increased
measurement redundancy enhances the accuracy of SOC esti‐
mation and the robustness against bad data.

It will be demonstrated by simulation cases that breaking
down the barrier between the two domains brings about sig‐

nificant benefits for both sides.
The rest of the paper is organized as follows. Section II re‐

views the equivalent circuit models of batteries. Section III
presents Kalman filter in a WLS form. The proposed state
estimation framework, including the detailed state transition
equations, measurement equations, and the WLS-form IEKF,
is presented in Section IV. Section V demonstrates the effec‐
tiveness of the proposed framework with simulation results.
Concluding remarks are given in Section VI.

II. BATTERY EQUIVALENT CIRCUIT MODELS

Lithium-ion batteries with lithium-iron phosphate as cath‐
ode material are commonly used in BESSs. An actual bat‐
tery bank can be represented by an equivalent battery. In
turn, an accurate battery model can be used to characterize
the external behavior of the battery such as current and volt‐
age, as well as internal characteristics such as electromotive
force, internal resistance, and SOC [33]-[35]. The equivalent
circuit models that are commonly used include the Rint mod‐
el, the PNGV model, and the Thevenin equivalent circuit
model [36], [37]. With good representation of the electro‐
chemical polarization characteristics and concentration polar‐
ization characteristics of a BESS, the second-order Thevenin
equivalent circuit model is widely used, as shown in Fig. 1.
The two RC networks are used to model the two dynamic
processes of internal reactions mentioned above.

In Fig. 1, the subscript α identifies the state variables and
measurements associated with a BESS labeled as α; Vpa,α and
Vpc,α are the electrochemical polarization voltage and the con‐
centration polarization voltage of the equivalent model, re‐
spectively; Sα is the SOC of the battery; Eba,α is the internal
electromotive force of the battery, which is a function of Sα;
R1,α and C1,α are the electrochemical polarization resistance
and capacitance, respectively; R2,α and C2,α are the concentra‐
tion polarization resistance and capacitance, respectively; R0,α

is the ohmic internal resistance of the battery; Iba,α is the output
current of the battery; and Vba,α is the output voltage of the bat‐
tery. The associated differential equations can be derived as:

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ïï
ï
ï

ï

ï

ï

dVpaα

dt
=

1
C1α

Vpaα

R1α

-
1

C1α

Ibaα

dVpcα

dt
=

1
C2α

Vpcα

R2α

-
1

C2α

Ibaα

Sα = S0α -
ηα

Cnα
∫0

t

Ibaαdt

Vbaα =Ebaα -Vpaα -Vpcα -R0α Ibaα

(1)

R0,α

 

Eba,α(Sα) Vba,α

Vpa,α

Iba,α

R1,α

C1,α

R2,α

C2,α

+

+

�

�

Vpc,α

Fig. 1. Second-order Thevenin equivalent model.
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where S0,α is the initial value of SOC; Cn,α is the rated capaci‐
ty of the battery; and ηα is the charging and discharging effi‐
ciency of the battery. The unknown parameters in the equiva‐
lent model of the battery, i. e., R0,α, R1,α, R2,α, C1,α, and C2,α,
can be identified online by the recursive least square (RLS)
method [36]. The variations of the parameters are in a differ‐
ent time scale compared with Vpa,α, Vpc,α, and Sα. Thus, they
can be considered approximately constant in relatively short
operation windows.

III. WLS-FORM IEKF

Most applications in ADN operation are based on the
steady-state analysis of the power grid. Therefore, the vast
majority of ADN state estimation methods are static methods
such as the WLS method, which do not account for state
transitions between time instants [2]-[6], [8]-[13]. However,
for a BESS, since the SOC and the capacitor voltages are by
nature the integral of current over time, a dynamic estima‐
tion method such as the IEKF method should be applied. In
the holistic estimation problem for an ADN with integrated
BESSs, the original forms of either the WLS method or the
IEKF method will not be directly applicable. This section
will briefly introduce the IEKF method used for dynamic
state estimation, and the WLS method used for static state
estimation. Then, it will be shown that the correction stage
of the IEKF method is equivalent to a WLS estimation prob‐
lem. This will pave the way for constructing a WLS-form
IEKF method for estimating both the static and dynamic
state variables in an ADN with BESSs.

A. IEKF Algorithm

For nonlinear dynamic systems described by differential
equations, the IEKF is a commonly used algorithm for esti‐
mating state evolution. For each time step, it consists of a
prediction stage and a correction stage. In the prediction
stage, the state estimate in the previous time step is ad‐
vanced through a predefined process model to find the“a
priori state”estimate of the current time step. In the correc‐
tion stage, the“a priori”state estimate is corrected by the
actually collected measurements from the current time step.
The time-discretized state transition and measurement equa‐
tions of a nonlinear dynamic system are given by:

x t = f (x t - 1u t - 1 )+w t - 1 (2)

z t = h(x t )+ v t (3)

where the subscripts t and t - 1 represent the variables at the
current time step and the previous time step, respectively; x
is the state vector; u is the input vector; w is the process
noise vector; z is the measurement vector; v is the measure‐
ment noise vector; and f and h are the state transition func‐
tion and the measurement function, respectively.

The prediction stage in the IEKF is used to obtain the“a
priori”estimate, denoted by the subscript“(–)”, from the“a
posteriori”estimate, denoted by the subscript“(+)”, from the
last time step:

x̂ t(-)= f (x̂ t - 1(+)u t - 1 ) (4)

P t(-)=F t P t - 1 F t
T +Q t (5)

where the superscript ̂ represents the estimate of a variable;
F = ¶f/¶x; P is the covariance matrix of the state estimate;
and Q is the covariance matrix of the process noise.

When real-time measurements are actually captured, the
correction stage of IEKF determines the“a posteriori”state
estimate:

K t =P t(-) H
T
t (H t P t(-) H

T
t +R t )

-1 (6)

x̂ t(+)= x̂ t(-)+K t (z t -H t x̂ t(-) ) (7)

P t (+)= (I -K t H t )P t (-) (8)

where I is the identity matrix; H = ¶h/¶x; R is the covari‐
ance matrix of the measurement noise; and K is the well-
known Kalman gain. It should be noted that in IEKF, the
correction stage equations should be performed iteratively.
After executing (6) and (7) once, one should set x̂t(-) as x̂t(+),
update Ht, and execute (6) and (7) over again until x̂ t(+) con‐
verges to a stable value.

B. WLS Algorithm

In the widely studied state estimation problem of the pow‐
er grid, network equations are algebraic in the phasor do‐
main. The WLS model, which minimizes the weighted sum
of the measurement residuals at the current time step, is ad‐
opted. At time step t, the WLS formulation can be presented
as:

x̂ t = arg min
xt

(z t - h(x t ))
T R-1

t (z t - h(x t )) (9)

The covariance matrix of the state estimate is given by:

P t(+)= (H T
t R-1

t H t )
-1 G -1

t (10)

In this estimation model, the estimates of state variables xt

are determined by the measurements at the current time step
zt only.

C. WLS-form IEKF Algorithm

Although the formulations of IFKF and WLS seem to be
very different, there is an inherent connection between the
two. In fact, it can be shown that the correction stage of
IEKF, written as (6) - (8), can be converted to solving an
equivalent WLS problem [37]:

x̂ t(+)= arg min
xt

{(z t - h t (x t ))
T R-1

t (z t - h t (x t ))+

}(x̂ t(-)- x t )
T P -1

t(-) (x̂ t(-)- x t ) =

arg min
xt

{ }(z͂ t - h͂ t (x t ))
T R͂-1

t (z͂ t - h͂ t (x t )) (11)

where z͂ t = (z T
t x̂ T

t(-) )
T; R͂ t = diag(Rt P t(-) ); H͂ T

t = ¶h͂ t ¶x t; and

h͂ t (x t )= (h͂t (x t )
Tx T

t )T. The covariance matrix of the state esti‐
mate is given by:

P t(+)= (H͂ T
t R͂-1

t H͂ t )
-1  G͂ -1

t (12)

It is already proven that (7) and (8) are equivalent to (11)
and (12), respectively. In other words, the correction stage of
IEKF is equivalent to performing a WLS-based“static state
estimation”, with the measurement vector including the actu‐
al measurements from the current time step z t, and the“a pri‐
ori”state estimate x̂ t(-) obtained from the prediction stage as
pseudo-measurements. This equivalence property will be ex‐
ploited in the development of a framework for estimating
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the state variables of an ADN with integrated BESSs.

IV. STATE ESTIMATION OF ADN WITH BESSS

This section develops a state estimation framework for an
ADN with BESSs. The state variables that can characterize
the operating state of the system will be selected, and state
transition equations and measurement equations associated
with available sensors in the BESS will be derived. A WLS-
form IEKF method and the LNR method will be presented
for state estimation and bad data processing, respectively. Be‐
fore moving forward, there are two points to be made clear.

1) In literature, a large volume of research has been dedi‐
cated to addressing specific issues pertaining to ADN state
estimation. For example, solutions to the unbalanced three
phases can be found in [2], [3]; solutions to the integration
of diverse types of sensor measurements (supervisory control
and data acquisition (SCADA), PMU, AMI, etc.) can be
found in [8]-[11]; and solutions to the lack of observability
or measurement redundancy can be found in [12], [13]. Ob‐
viously, these issues do not automatically disappear when it
comes to the state estimation of an ADN with BESSs. How‐
ever, as they have already been extensively investigated in
numerous publications, it is neither possible nor necessary to
reiterate all of them in this single paper. Thus, this paper is
dedicated to presenting the fusion of ADN state estimation
and BESS SOC estimation into one holistic paradigm, which
constitutes the core innovation of the paper. Due to its gener‐
ality, the proposed work can be readily combined with solu‐
tions presented in [2], [3], [8]-[13] to address the aforemen‐
tioned issues in ADN state estimation as needed.

2) While the discussion focuses on distribution systems
where BESSs are proliferating rapidly, the proposed estima‐
tion framework is general enough to be used for the monitor‐
ing of BESSs in transmission systems, since both the trans‐
mission system state estimation and the distribution system
state estimation share the same core engine (WLS estimator
based on steady-state algebraic network equations). As is evi‐
dent, massive-scale BESSs have been and will continue to
be deployed in transmission systems as well [38].

A. State Transition Equations and Measurement Equations

The structure of a grid-connected BESS is illustrated in
Fig. 2. The main components include the battery array, the
DC/DC converter, the DC/AC inverter, and the transformer.

Suppose the PCC of the BESS (labeled as α) is bus i of
the power grid; Vi and θ i are the voltage magnitude and
phase angle of the PCC, respectively; Pi and Qi are the ac‐
tive and reactive power injected into the PCC, respectively;
dα is the transformer ratio; Mα and δα are the modulation ra‐
tio and the modulation phase angle of the DC/AC converter,

respectively; Eα and ξα are the output voltage magnitude and
the voltage phase angle of the DC/AC converter, respective‐
ly; Vdc,α and Idc,α are the output voltage and current of the DC/
DC converter, respectively; and Dα is the duty ratio of the
DC/DC converter. In the state transition equations and mea‐
surement equations derived below, superscripts w, v, and z
denote the process noise, measurement noise, and measured
values, respectively. In the measurement equations, the time
step notation (t) is dropped.

In the equivalent model of the battery, Sα, Vpa,α, and Vpc,α

are selected as state variables. Equation (1) is discretized
with time interval T into the state transition equations:

Vpaα (t)= e-T/(R1αC1α )Vpaα (t - 1)+

R1α (1 - e-T/(R1αC1α ) )Ibaα (t - 1)+V w
paα (t - 1) (13)

Vpcα (t)= e-T/(R2αC2α )Vpcα (t - 1)+

R2α (1 - e-T/(R2αC2α ) )Ibaα (t - 1)+V w
pcα (t - 1) (14)

Sα (t)= Sα (t - 1)+
ηαT
Cnα

Ibaα (t - 1)+ S w
α (t - 1) (15)

At the same time, Vba,α and Iba,α are the measurable vari‐
ables, and their measurement equations can be expressed as:

I z
baα = Ibaα + I v

baα (16)

V z
baα =Ebaα (Sα )-Vpaα -Vpcα -R0α Ibaα +V v

baα (17)

Next, the state transition equations and measurement equa‐
tions for the power converters will be considered. The dy‐
namics of power converters are in the time scale of micro‐
seconds, which are several orders smaller in magnitude than
the time scale of the battery dynamics. Hence, the power
converters can be treated as being in steady state, described
by algebraic equations. Therefore, state transition equations
do not apply, and only measurement equations need to be de‐
rived.

Denote the efficiency of the DC/DC converter as ηdc/dcα,
and select Vdc,α and Iba,α as state variables. The measurement
equations can be derived as:

Dz
α = 1 -

Vdcα

Ebaα (Sα )-Vpaα -Vpcα -R0α Ibaα

+Dv
α (18)

V z
dcα =Vdcα +V v

dcα (19)

I z
dcα = ηdc/dcα

Ibaα

Vdcα

(Ebaα (Sα )-Vpaα -Vpcα -R0α Ibaα )+ I v
dcα (20)

Denote the efficiency of the DC/AC converter as ηdc/acα,
and select the output voltage magnitude Eα and phase angle
δα as state variables. The measurement equations are ex‐
pressed as:

M z
α =

Eα

Vdcα

+M v
α (21)

E z
α =Eα +E v

α (22)

δz
α = θ i - ξα + δv

α (23)

As mentioned at the beginning of this subsection, it is as‐
sumed that the PCC of the BESS is bus i of the ADN.
Hence, Vi and θi can be selected as state variables, and the
measurement equations can be expressed as:

Dα Mα, δα

Eα, ξα

Vi, θi
Pi, Qi

Pα, Qα
Eba,α(Sα)

dαR0,α

C1,α C2,α

R1,α R2,α

Vba,α

Iba,α

Vdc,α

Idc,α

DC
DC

DC
AC+

�

Fig. 2. Structure of grid-connected BESS.
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V z
i =Vi +V v

i (24)

P z
α =Eα (gsα + gαi )-EαVi (gαi cos(ξα - θ i )+

bαi sin(ξα - θ i ))+P v
α (25)

Qz
α =-Eα (bsα + bαi )-EαVi (gαi cos(ξα - θ i )-

bαi sin(ξα - θ i ))+Qv
α

(26)

P z
i = hpi (ViVjθ iθ j)-Eα (gsα + gαi )+

EαVi (gαi cos(ξα - θ i )+ bαi sin(ξα - θ i ))+P v
i (27)

Qz
i = hqi (ViVjθ iθ j)+Eα (bsα + bαi )+

EαVi (gαi cos(ξα - θ i )- bαi sin(ξα - θ i ))+Qv
i (28)

0 = ηdc/dcαηdc/acα Ibaα (Ebaα (Sα )-Vpaα -Vpcα -R0α Ibaα )-
E 2
α (gsα + gai )+EαVi (gai cos(ξα - θ i )+ bai sin(ξα - θ i ))+DP z

α

(29)

where hpi (×) and hqi (×) describe the relationships between the
voltage magnitudes and phase angles of the buses in the
ADN and the injected active and reactive power at bus i, re‐
spectively; and gsα + jbsα and gαi + jbαi are the shunt and series
admittances derived from the transformer model, respective‐
ly. Equation (29) is a virtual measurement describing the
power conservation law.

In summary, in order to monitor the state of BESS α, the
dynamic state variables, i. e., state variables associated with
differential equations, in BESS α are defined as:

xdα =[SαVpaαVpcα ]T (30)

The static state variables, i. e., state variables associated
with algebraic equations only, are defined as:

xsα =[IbaαVdcαEαδα ]T (31)

The overall state vector is defined as:

xα =[SαVpaαVpcαIbaαVdcαEαδα ]T (32)

Note that Vi and θi are left out of the list since they are
state variables of the ADN.

The collective measurement vector is defined as:

zα =[V z
baαI z

baαDz
αV z

dcαI z
dcαM z

α E z
αδz

αP z
αQz

α0]T (33)

Note that Vi
z, Pi

z, and Qi
z are left out of the list since they

are measurements of the ADN.
For ADNs, the state variables are the voltage magnitude Vi

and phase angle θi. The measurements mainly include the
voltage magnitude Vi, the active and reactive power injec‐
tions of each bus Pi and Qi, and the active and reactive pow‐
er flows of each branch Pij and Qij. Detailed measurement
equations in the power grid can be found in [39].

The state variables in the power grid are:

xN =[V1V2Viθ1θ2θ i]T (34)

The measurements in the power grid are:
zN =[V1V2ViP1P2PiQ1Q2

QiPijQij]T (35)

B. Joint State Estimation for BESSs and ADNs

For an ADN with multiple BESSs (α, β, , ζ ), one has:

z =[zαzβzζzN ]T (36)

x =[xαxβxζxN ]T (37)

where z and x are the collective measurement vector and the
state vector of the whole system, respectively.

From the last subsection, recall that for the BESS, some
of the state variables are dynamic, while others are static. In
the ADN, all the state variables are static. In this paper, a
WLS-form IEKF estimator will be developed to jointly esti‐
mate the dynamic and static state variables of the whole sys‐
tem. The state vector can be reorganized by separating the
dynamic and static state variables:

x =[x T
dαx T

sαx T
dβx T

sβ...x T
dζx T

sζx T
N ]T =

[x T
dαx T

dβ...x T
dζx T

sαx T
sζ...x T

sβx T
N ]T =[x T

d x T
s ]T (38)

The procedure for estimating the state of an ADN with
BESSs are summarized as follows.

Step 1: set time step t = 0. Initialize the“a posteriori”esti‐
mate of state variables x̂ t(+)=[x̂ T

dt(+)x̂ T
st(+) ]

T, and the covariance
matrix of the“a posteriori”estimate of dynamic state vari‐
ables Pdt(+). Set the state estimate tolerance τ > 0, bad data de‐
tection threshold c > 0, and time window T for executing
state estimation.

Step 2: set t ← t + 1.
Step 3: prediction stage. Based on the state transition equa‐

tions, predict the“a priori”estimate of the dynamic state
variables x̂dt(-) at time t as (39).

x̂dt(-)= f (x̂dt - 1(+)udt - 1(+) ) (39)

where f is derived from (14)-(16). Note that these state tran‐
sition equations are actually linear. Therefore, the“a priori”
estimate of the dynamic state variables x̂dt(-) is an unbiased
estimate if the process noise has zero mean.

Step 4: evaluate the covariance matrix:
Pdt(-)=F T

t - 1 Pdt - 1( )+ F t - 1 +Qdt - 1 (40)

Step 5: correction stage. Solve the following WLS prob‐
lem:

{ x̂dt(+)x̂st(+)} = arg min
{ }xdtxst

{(z t - h t (xdtxst ))
T R-1

t ×

}(z t - h t (xdtxst ))+ (x̂dt ( )- - xdt )
T P -1

dt(-) (x̂dt ( )- - xdt ) =

arg min
xt

{ }(z͂ t - h͂ t (x t ))
T R͂-1

t (z͂ t - h͂ t (x t )) (41)

where z͂ t =[z T
t x̂ T

dt(-) ]
T; h͂ t (x t )=[(h͂t (x t ))

Tx T
dt ]

T; and R͂ t =
diag(Rt Pdt(-) ). The Gauss-Newton method can be used for
solving this problem, detailed as follows.

1) Set iteration number k = 0. Initialize state variables xkt =
[x T

dktx T
skt ]

T.
2) Evaluate the Jacobian matrix and the gain matrix as:

H͂kt (xkt )=
¶h͂kt (xkt )
¶xkt

(42)

G͂kt (xkt )= H͂ T
kt (xkt )R͂

-1
kt H͂kt (xkt ) (43)

3) Evaluate the state update vector as:

Dxkt = (G͂kt (xkt ))
-1 H͂ T

kt (xkt )R
-1
kt (z͂kt - h͂kt (xkt )) (44)

4) Update the state estimate vector by:

xk + 1t = xkt +Dxkt (45)

5) If ||Dxkt||¥ > τ, set k ← k+1, and return to 2); otherwise,
set x̂ t(+)= xkt and H͂ t = H͂kt, and proceed to Step 6. The“a pos‐
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teriori”estimate of all state variables x̂ t(+) is an unbiased esti‐
mate if the measurement error has zero mean.

Step 6: evaluate the covariance matrix of the state esti‐
mate as:

P t(+)= (H͂ T
t R͂-1

t H͂ t )
-1  G͂ -1

t (46)

The covariance matrix of the“a posteriori”estimate of dy‐
namic state variables, which is needed to perform prediction
in the next time step, can be obtained by extracting the diag‐
onal block of P t(+) corresponding to the dynamic state vari‐
ables Pdt(+).

Step 7: identify and correct bad data by performing the
LNR test.

1) The value of the normalized residual is obtained by:

r͂ N
t = (diag(Ω͂ t ))

-
1
2 r͂ t

(47)

where Ω͂ t = R͂ t - H͂ t (x̂ t(+) )(H͂
T
t (x̂ t(+) )R͂

-1
t H͂ t (x̂ t(+) ))

-1 H͂ T
t (x̂ t(+) ) is

the residual covariance matrix; and r͂ t = z͂ t - h͂ t (x̂ t(+) ) is the re‐
sidual vector.

2) Find the measurement corresponding to the LNR as:

u = arg min
j

{r͂ N
tj } (48)

where r͂ N
tj is the jth entry of vector r͂ N

t .
3) If |r͂ N

tu| > c, correct the corresponding measurement by
(49) and return to Step 5. Otherwise, process to Step 8.

z͂tu¬ z͂tu -
R͂tuu

Ω͂ tuu

r͂tu (49)

where z͂tu, R͂tuu, Ω͂ tuu, and r͂tu are the elements of z͂ t, R͂ t, Ω͂ t,
and r͂ t, respectively.

Step 8: return to Step 2 if t < T; otherwise, terminate the
procedure.

In reality, the covariance matrices for process noise and
measurement noise Qt and Rt can be assigned based on the
confidence on battery models and the accuracy classes of
sensors. If they are difficult to determine, adaptive estima‐
tion methods can be applied to obtain optimal values of Qt

and Rt that yield high estimation accuracy [40], [41]. It
should also be noted that the uncertainty resulting from long-
term phenomenon such as capacity decreases due to aging,
existing capacity prediction works can be applied in parallel
to the proposed work to form a complete monitoring solu‐
tion over the battery life [42]-[44].

Remark 1: in this procedure, only the dynamic state vari‐
ables are involved in the prediction stage, i. e., Step 3, and
both the dynamic and static state variables are involved in
the correction stage, i.e., Step 5.

Remark 2: in the correction stage, the“a priori”estimates
of the dynamic states acts as if they are additional pseudo-
measurements, providing extra information in addition to the
actually collected real-time measurements.

Remark 3: in the WLS-form correction stage, the inverse
of the gain matrix G͂ -1

t is the covariance matrix of the state
estimate. Therefore, it can be used to extract the covariance
of the“a posteriori”estimate of the dynamic state variables.

Remark 4: thanks to the correction stage, the LNR test
can be performed to detect and identify the bad data.

V. CASE STUDY

In order to verify the effectiveness of the proposed frame‐
work, the IEEE 33-bus test system is used for simulation.
The system topology and measurement configuration are
shown in Fig. 3, where“N”denotes the real and reactive
power injections and“PF”denotes the real and reactive
branch flows. In addition, the voltages at buses 1, 2, 4, 15,
21 are also measured. Two BESSs, denoted as α and β, are
connected to buses 14 and 26, respectively. While a distribu‐
tion system is chosen for case study, it should be noted that
the general WLS-form IEKF estimation framework is appli‐
cable to transmission systems as well. The maximum power
output and energy storage capacity are 0.18 MW and 800
Ah, respectively. A nine-order polynomial is used to repre‐
sent the relation between the SOC and the internal electro‐
motive force, Eba(S). Both the BESSs operate in the discharg‐
ing mode with an initial SOC of 0.7. The efficiencies of the
DC/DC converter and DC/AC converter are 95% and 96%,
respectively. The discharging current is 400 A, and the dis‐
charging voltage is 450 V. The output voltage magnitude of
the DC/DC converter is 600 V, and the input voltage magni‐
tude of the DC/AC converter is 99.44 V.

A. State Estimation in Presence of Random Noise

In order to compare the accuracy of the proposed holistic
estimation framework with the conventional siloed frame‐
works of BESS SOC estimation and ADN state estimation,
the process noise and measurement noise obeying Gaussian
distributions are introduced. The process noise may come
from inaccurate modeling or small disturbances that the mod‐
el cannot account for in reality, and its magnitude is typical‐
ly much lower than that of measurement noise. Results are
averaged over 20 executions and 1500 s in each simulation
case.
1) Improvement for BESS SOC Estimation

For the BESS, the comparison between the root mean
square errors (RMSEs) of the SOC estimation results using
the proposed holistic estimation framework and the conven‐
tional BESS SOC estimation framework [19] under various
noise conditions is shown in Table I. In the table, SD stands
for standard deviation, and RMSE stands for root mean
square error. Note that the simulated noise conditions range
from the typical SCADA measurement accuracy level to the
typical pseudo-measurement accuracy level in the ADN. Un‐
der various conditions, the proposed holistic estimation
framework achieves higher accuracy for the SOC estimate
than the conventional BESS SOC estimation framework
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Fig. 3. IEEE 33-bus test system with BESSs.
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where the battery model is isolated from the grid model.
This improvement meets the expectation since the joint mod‐
eling and estimation of the BESS and the power grid im‐

prove the measurement redundancy, which leads to better fil‐
tering effect of IEKF.

2) Improvement for ADN State Estimation
For the ADN, simulation results in two different noise sce‐

narios are presented, as specified in Table II.
1) In scenario 1, the measurement noise of the BESS is

significantly lower than the measurement noise of the ADN

voltages (0.1% versus 0.5%).
2) In scenario 2, the measurement noise of the BESS is

significantly higher than that of the ADN voltages (0.9% ver‐
sus 0.5%).

The MAEs of voltage estimates in these two scenarios are
shown in Figs. 4 and 5, respectively. For the two scenarios,
the following observations are obtained.

1) For scenario 1, the proposed holistic estimation yields
significantly more accurate results compared with the con‐
ventional BESS SOC estimation and ADN state estimation.

This is easily understood from the fact that the BESS mea‐
surements have higher accuracy than the ADN measure‐
ments, and the incorporation of BESS measurements helps
improve the accuracy of ADN state estimation.

2) For scenario 2, it is discovered that the proposed holis‐
tic estimation also outperforms the conventional BESS SOC
estimation and ADN state estimation for a vast majority of
buses. This is particularly interesting, since the BESS mea‐
surements have lower accuracy than the ADN measurements,
and it is not intuitive to understand how the BESS measure‐
ments can still enhance the ADN state estimation. The rea‐
son is that the BESS SOC estimation contains state transi‐
tion equations, which fuse information from measurements
at different time instants. Since the measurement noise is
centered around zero, its effects tend to be smoothed out,
yielding a smooth state estimate trajectory with small errors.
In contrast, when the BESS SOC estimation is not incorpo‐
rated, no state transition equations are involved in the ADN
state estimation, and the estimation processes for each time
instant are completely separate. In that case, no smoothing
effect can be achieved.

Based on the results presented above, it can be concluded
that the proposed holistic estimation brings mutual benefits
for both the accuracy of ADN state estimation and the accu‐
racy of BESS SOC estimation.

B. State Estimation in Presence of Bad Data

In order to verify the bad data processing capability of the
proposed holistic estimation, several artificial bad data are in‐
troduced, and the LNR-based bad data processing approach

TABLE I
SOC ESTIMATION RESULTS USING PROPOSED HOLISTIC ESTIMATION FRAMEWORK AND CONVENTIONAL ISOLATED BATTERY MODEL

SD of process noise
(BESS) (%/s)

0.005

0.015

0.025

0.035

0.045

SD of measurement noise
(P, Q in ADN) (%)

1

3

5

7

9

SD of measurement noise
(BESS; V in ADN) (%)

0.1

0.3

0.5

0.7

0.9

RMSE of SOC estimate
(isolated)

1.15×10-5

2.28×10-5

4.85×10-5

6.15×10-5

9.34×10-5

RMSE of SOC estimate
(holistic)

9.09×10-6

1.78×10-5

3.91×10-5

5.90×10-5

8.25×10-5

TABLE II
STANDARD DEVIATIONS OF NOISE IN TWO SCENARIOS

Scenario

1

2

SD of process noise (BESS)
(%/s)

0.005

0.045

SD of measurement noise
(BESS) (%)

0.1

0.9

SD of measurement noise (V
in ADN) (%)

0.5

0.5

SD of measurement noise
(P, Q in ADN) (%)

5

5

0.003

0.004

0.002

0.001

M
A

E

0 5 10 15 20 25 30 35
Bus No.

After BESS detailed modeling
Before BESS detailed modeling

Fig. 4. MAEs of voltage estimates of IEEE 33-bus system in scenario 1.
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Fig. 5. MAEs of voltage estimates of IEEE 33-bus system in scenario 2.
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is performed. Specifically, bad data are introduced into the
battery output current of BESS α (Iba,α), the voltage at bus 21
of the ADN (V21), and the active power injectes into bus 25
of the ADN (P25), respectively. The introduced error magni‐
tudes and time intervals are shown in Table III. In addition
to the bad data, the noise of 0.005%/s in state evolution, 1%
in power measurements, 0.1% in voltage measurements and
BESS SOC measurements, are introduced simultaneously.

For the BESS, the trajectories of the estimated output cur‐
rents and SOCs of the BESS α with and without the bad da‐
ta processing are shown in Figs. 6 and 7, respectively. Be‐
tween 400 s and 600 s, the measured output current of the
battery is erroneous. Without the bad data processing, the
output current cannot be effectively estimated, and since the
change of the SOC is the integral of the output current, the
estimated SOC will deviate from the true value. In contrast,
when the bad data processing is preformed, the output cur‐
rent can be corrected and the trajectory of the SOC estimate
will remain close to the true trajectory. From the presented
results, two observations are particularly noticeable.

1) The battery output/input current is a crucial variable for
BESS SOC estimation. Bad data in the output current mea‐
surement will result in the deviation of the SOC estimate
from the true trajectory, and this impact will persist even af‐
ter the bad data are cleared for a long time.

2) The bad data identification and correction capability for
the output current of a battery is achieved by the proposed
holistic state estimation. It provides the measurement redun‐
dancy necessary for carrying out the bad data processing. If
the BESS SOC estimation is isolated from the ADN state es‐
timation as is conventionally done, it would not be possible
to identify and correct errors in the output current, thus the
SOC estimate would be left vulnerable.

For the ADN, the estimated voltage at bus 25 is shown in
Fig. 8. Without bad data processing, large deviations from
the true values can be observed in the results. When the bad
data processing is performed, the impacts of the errors in the
measurements of both the BESS SOC estimation and ADN
state estimation are eliminated, and the estimated values
keep track of the true state trajectory effectively.

C. Computational Efficiency

The proposed holistic state estimation is implemented in
MATLAB 2018a environment, and tested on a personal com‐
puter with a 4-core 2.5 GHz CPU and 16 GB RAM. Over
1500 time steps of the simulation, the average computational
time taken by each time step is 0.083 s. For the purposes of
ADN and BESS monitoring and control, the required fre‐
quency of algorithm execution will be in the time scale of
seconds or lower, so the proposed framework can readily sat‐
isfy real-time application requirements.

VI. CONCLUSION

In this paper, a holistic framework for the state estimation
of ADN with BESSs is proposed. Based on the developed
BESS model, the state transition and measurement equations
of the grid-connected BESS are derived, and a holistic state
estimation and bad data processing formulation is presented
for capturing the operating states of both the ADN and
BESS.

The simulation results show that the proposed framework
achieves significantly higher estimation accuracy compared
with performing state estimation for the power grid and
SOC estimation for the battery separately. In addition, the
proposed framework enables bad data identification and cor‐

TABLE III
INTRODUCED ERRONEOUS VALUES AND TIME INTERVALS

Measurement

Ibaα

V21

P25

True value
(p.u.)

0.7596

0.9935

-0.0420

Erroneous value
(p.u.)

1.5240

1.3388

-0.0830

Time interval (s)

400-600

800-1000

1200-1400

0.9

0.7

0.5

1.5

1.3

1.1

Cu
rre

nt
 (A

)

0 500 1000 1500
Time (s)

Estimated value with bad data processing
Estimated value without bad data processing
True value

Fig. 6. Estimated battery output currents of BESS α in the presence of bad
data.
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Fig. 7. Estimated SOCs of BESS α in the presence of bad data.
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Fig. 8. Estimated voltage at bus 25 in the presence of bad data.

634



SONG et al.: A HOLISTIC STATE ESTIMATION FRAMEWORK FOR ACTIVE DISTRIBUTION NETWORK WITH BATTERY ENERGY...

rection for the BESS SOC estimation. It is found that the
gross error in the output current measurement of a BESS has
crucial and persistent impact on SOC estimate. By perform‐
ing bad data identification and correction, the effect of bad
data can be effectively eliminated.

The proposed framework is expected to enhance the situa‐
tional awareness and facilitate the development of reliable
and economic ADN operation paradigm with full exploita‐
tion of BESS capabilities. In future work, the proposed
framework will be further extended to provide a holistic situ‐
ational awareness solution to integrated and renewable ener‐
gy systems [45], [46].
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