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Performance Enhancement of Distribution Systems
via Distribution Network Reconfiguration and
Distributed Generator Allocation Considering

Uncertain Environment
Mina Naguib, Walid A. Omran, and Hossam E. A. Talaat

Abstract——The emergence of dispersed generation, smart
grids, and deregulated electricity markets has increased the fo‐
cus on enhancing the performance of distribution systems. This
paper proposes a method to reduce the energy loss and improve
the reliability of distribution systems by performing distribu‐
tion network reconfiguration (DNR) and distributed generator
(DG) allocation. In this study, the intermittent nature of renew‐
able-based DGs and the load profile are considered using a
probabilistic method. The study investigates different annual
plans based on the seasonal power profiles of DGs and the load
to minimize the combined cost function of annual energy loss
and annual energy not served. The proposed method is imple‐
mented using the firefly algorithm (FA), which is one of the me‐
ta-heuristic optimization algorithms. Several case studies are in‐
vestigated using the IEEE 33-bus distribution system to high‐
light the effectiveness of the method.

Index Terms——Distributed generator allocation, distribution
network reconfiguration, optimal power flow, firefly algorithm,
energy loss, reliability.

I. INTRODUCTION

RECENTLY, the deregulation of the electricity markets
and the emergence of renewable-based distributed gen‐

erators (DGs) have gained significant interest. Consequently,
local utilities must pay more attention to the efficient plan‐
ning and operation of the distribution system. Several techno-
economical aspects should be considered in the planning and
operation of the distribution system while integrating DGs.
The technical aspects include protection coordination [1],
system reliability [2], voltage profile, energy loss [2], and
power quality [3]. Meanwhile, the economic aspects include

several costs such as line upgrade [4], energy loss [5], opera‐
tion and maintenance [5], gas emission [6], and cost related
to system reliability [7], [8].

These aspects are considered as the motivation by some
researchers to develop the methods that can ensure the effi‐
cient planning and operation of the distribution system. One
of these methods is the distribution network reconfiguration
(DNR). The DNR is performed by changing the status of the
system sectionalizing and tie switches. Accordingly, the dis‐
tribution network configuration is adjusted to achieve specif‐
ic objectives. Some of these objectives are energy loss mini‐
mization [9], load balance [9], voltage profile improvement
[10], and system reliability improvement [11]. Another meth‐
od that can be used to enhance the performance of the distri‐
bution system is realized by optimally allocating DGs. Sever‐
al studies addressed the DG allocation to reduce the total en‐
ergy loss of the distribution system [12], improve the system
reliability [13], and decrease the total system cost [14]. In
the mentioned studies, only one method, i.e., DNR or DG al‐
location, is utilized.

Recently, some studies suggested performing simultaneous
DNR and DG allocation to enhance the performance of the
distribution system [15] - [27]. The study in [15] considered
DG allocation in the reconfiguration problem in order to
minimize the energy loss and improve the load balance fac‐
tor and voltage stability. In [16], the DNR and DG alloca‐
tion were utilized to enhance the reliability and minimize the
operation cost and energy loss. In [17], the DNR was per‐
formed in the presence of DGs in order to minimize the en‐
ergy loss, total harmonic distortion, and voltage unbalance
of the distribution system. The study in [18] proposed the
DNR problem in the presence of renewable-based DGs to
minimize the energy loss. The study in [19] performed simul‐
taneous DNR and DG allocation under peak load conditions
to reduce the energy loss and improve the voltage profile. Two
long-term planning problems were formulated for the optimal
DNR and DG allocation in distribution systems, considering
the voltage stability [20] and investment cost of DGs [21].

However, none of those mentioned studies considered the
intermittency in the output power of renewable-based DGs
or the different annual load profiles. In [22], a fuzzy-based
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approach was utilized to model the uncertainty of the output
power and demand of DGs in order to minimize the energy
loss considering the voltage stability. In [23], the DNR and
the DG allocation were performed to maximize the profits of
the DG owner and distribution system operator, considering
the uncertainty of power profiles of the load and wind tur‐
bines (WTs). Moreover, the DNR and DG allocation were
addressed in [24] in order to minimize the energy loss and
system operation cost based on the optimal annual configura‐
tions and DG allocation plans. The study in [25] presented a
state-based DNR strategy using the Markov decision process‐
es considering the uncertainty of the output power of WTs.
In this study, an optimal network configuration was obtained
for the whole study period to minimize the WT curtailment
and load shedding costs. The study in [26] investigated DNR
and dispatched energy storage allocation in the presence of
the renewable-based DGs. The objective of the study was to
enhance the system reliability and to minimize the system

operation cost while considering the hourly variation of the
renewable energy resources and energy storage. In [27], an
hourly-based dynamic DNR was presented considering the
uncertainty of output power in the photovoltaic (PV) sys‐
tems and WTs. The study achieved a reduction in the system
operation cost and enhanced the system reliability.

The studies in [22]-[27] were able to model the intermit‐
tency in the output power of renewable-based DGs. Some of
these studies proposed simultaneous DNR and DG allocation
during the study period [22]-[24], while other studies investi‐
gated DNR only in the presence of the renewable-based
DGs [25]-[27]. Table I summarizes the distribution systems,
objectives, data uncertainties, optimization algorithms, and
numbers of buses studied in the literature. The table shows
that performing both DNR and DG allocation can achieve
several benefits, including reducing the system energy loss
and system operation cost, and enhancing the system reliabil‐
ity, voltage stability, load balance, and power quality.

In addition, few studies proposed simultaneous DNR and
DG allocation while considering the intermittency in the out‐
put power of renewable-based DGs and the different annual
load profiles. Moreover, these studies proposed simultaneous
DNR and DG allocation during the study period. However,
none of the aforementioned studies investigated the possibili‐
ty of simultaneous DNR and DG allocation while investigat‐
ing the impact of further reconfiguration for the distribution
system on a seasonal basis. Hence, the main contributions of
this paper can be summarized as follows.

1) Developing different annual plans by performing simul‐

taneous DNR and DG allocation based on a specific season
and then performing further DNR for the remaining seasons.

2) Modeling the uncertainties of different types of renew‐
able-based DGs and loads using a probabilistic method.

3) Improving the performance of the distribution system
by reducing the energy loss and enhancing the system reli‐
ability.

II. STRATEGY FOR DEVELOPING SEASONAL PLANS

It is well known that the generation from renewable-based
DGs and the system demand is subjected to seasonal varia‐

TABLE I
A COMPREHENSIVE SUMMARY OF STUDIES IN LITERATURE IN TERMS OF PROPOSED METHOD

Reference

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Distribution system

DNR

✕
✕
✕

✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕

DG allocation




✕
✕
✕

✕


✕
✕
✕
✕
✕
✕




Objective

Obj1

✕
✕

✕

✕
✕
✕
✕
✕
✕

✕

✕

Obj2

✕

✕

✕

✕

✕
✕

Obj3

✕
✕

✕

Obj4

✕

✕

✕

Obj5

✕

✕

✕
✕

✕

Obj6

✕
✕

✕

✕

✕
✕
✕
✕
✕

Uncertainty

U1

✕

✕

✕

✕
✕
✕
✕
✕
✕

U2

✕

✕

✕
✕
✕
✕
✕
✕

Optimization algorithm

Mixed-integer non-linear programming

Particle swarm and ant colony

Self-adaptive clonal selection

Mixed-integer linear programming

Simulated annealing

Demand response programming

Ant colony

Enhanced gravitational search

Antlion optimizer

Mixed-integer linear programming

Mixed-integer linear programming

Cuckoo search

Non-dominant sorting genetic

Genetic algorithm

ε-constrain method

Non-dominant sorting genetic

Markov decision based dynamic programming

Shuffled frog leaping

Mixed-integer linear programming

Bus number

33, 84

33

69

41

33

N/A

33

33, 70

33

69, 136

33, 69

33, 69, 113

33

33, 52

33

38

33, 123

119

119

Note: ✕ means covered;  means in the presence of DGs without optimal DG allocation; Obj1 means energy loss; Obj2 means reliability; Obj3 means
power quality; Obj4 means load balance; Obj5 means voltage stability; Obj6 means system operation cost; U1 means load uncertainty; and U2 means out‐
put power uncertainty of DGs.
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tions. In this study, the sizes and locations of DGs are kept
fixed once the optimal DG allocation is achieved; however,
the DNR is investigated each season. Therefore, the pro‐
posed strategy is based on developing different annual plans
considering the four seasons of the year. Hence, the plan pro‐
viding the best performance of the distribution system is to
be chosen. To achieve this task, the proposed strategy is di‐
vided into two phases.

1) Phase 1 aims to perform simultaneous DNR and DG al‐
location for the four seasons of the year independently to
find the optimal network configuration and the optimal size
and location of DGs based on the data of each season. The
output of this phase provides four planning options at the be‐
ginning of the study period.

2) In phase 2, each planning option is used to complete
the annual plans by performing additional seasonal DNRs
for the remaining seasons, e.g., an annual plan x consists of
simultaneous DNR and DG allocation based on the winter
season data and this is followed by further DNRs for the
three remaining seasons. Hence, the annual plans are devel‐
oped, and the system operator can choose the best plan for
the whole year. The flow chart of the proposed strategy is
shown in Fig. 1, where m = 1, 2, 3, 4; n = 1, 2, 3, 4; sea‐
sons 1, 2, 3, 4 represent the winter, spring, summer, and fall,
respectively.

III. MODELING OF DGS AND LOAD

In the proposed strategy, the temporal historical load pow‐
er and weather data related to DGs are used to build a proba‐
bilistic model for the demand and generation of the distribu‐
tion system. The weather data related to DGs are mainly the
solar irradiance for PV systems and wind speed for WTs.

The obtained data are converted into a probabilistic model
representing each season, which is then used in the optimiza‐
tion algorithm. This model is based on multi-state variables

[12] for each type of renewable-based DGs as well as the de‐
mand. The details of the modeling of DGs and the load are
presented in the following subsections.

A. PV System Modeling

The PV system modeling starts by obtaining the historical
solar irradiance over several years at the candidate locations.
The full range of solar irradiance values is divided into Np

PV states, where each PV state represents a specific range of
solar irradiance. Furthermore, the solar irradiance data are
separated into four seasons so that each season can be repre‐
sented by a probabilistic 24-hour day. Each hour in this day
contains the probabilities corresponding to each PV state,
which is obtained from the historical data. The output power
corresponding to each PV state, using the model in [12], is
evaluated at the mid-value of the state range. After calculating
the output power of each PV state, a vector Ap containing these
power is formed, where the dimension of this vector is 1×Np.
In the next step, a 24×Np seasonal probability matrix Mp is
formed, where each element of this matrix Pbp corresponds to
the probability of a certain PV state at a specific hour.

B. WT Modeling

The probabilistic model for the output power of WTs is
built from the historical wind speed data at the candidate lo‐
cations. The full range of wind speed is divided into Nw WT
states, where each WT state represents a range of the wind
speed. Moreover, the wind speed data are separated into four
seasons; each season is represented by a probabilistic 24-
hour day. Each hour in this day contains the probabilities
corresponding to each WT state. The output power corre‐
sponding to each WT state is calculated at the mid-value of
this state using the output power curve of the WT.

After calculating the output power of each WT state, a
1×Nw vector Aw containing these power is formed. Also, a
24×Nw seasonal probability matrix Mw is formed, where each
element of this matrix Pbw corresponds to the probability of
a certain WT state at a specific hour.

C. Load Modeling

The load model (LM) is built using the way similar to the
PV system and WT models. The historical load data are col‐
lected at the same candidate locations. The full range of the
load data is divided into Nl LM states, which are stored in a
1×Nl vector Al containing the output power of each LM
state. Also, a 24-hour seasonal probability matrix Ml is
formed, where each element of this matrix Pbl corresponds
to the probability of a certain LM state at a specific hour.

D. Combined Modeling of DGs and Load

Finally, a combined 24×NT probability matrix M t is
formed for each season, where NT is the total number of the
combined states and is obtained by:

NT = Np Nw Nl (1)

The probability matrix M t contains the seasonal combined
probability Pbt of different combined states corresponding to
the PV systems, WTs, and the load. This matrix is formed
by multiplying each probability element of the matrix Mp

with the corresponding row of the matrix Mw and matrix M l

at a specific hour as follows.

N

N

N

Y

Y

Y

Start

End

m = 1

n = 1

n = n+1

m = m+1

Determine optimal network configuration
and DG allocation of season m

n = m?

n > 4?

m > 4?

Determine optimal network
configuration for season n

Find plan m

Fig. 1. Flow chart of proposed strategy.
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Mt(11) =Mp(11) Mw(11) Ml(11)
Mt( )12 =Mp( )11 Mw( )11 Ml( )12

Mt( )13 =Mp( )11 Mw( )11 Ml( )13



Mt( )1Nl + 1 =Mp( )11 Mw( )12 Ml( )11



Mt( )1Nl Nw =Mp( )11 Mw( )1Nw Ml( )1Nl



Mt( )1NT =Mp( )1Np Mw( )1Nw Ml( )1Nl



Mt( )24NT =Mp( )24Np Mw( )24Nw Ml( )24Nl

(2)

where Mt( kh) is the combined probability at hour k with
combined state h; and Mp( kh), Mw( kh), and Ml( kh) are
the probabilities at hour k with state h of the PV, WT, and
load, respectively. Figure 2 shows the probabilistic modeling
process of DGs and the load.

IV. PROBLEM FORMULATION

In general, the energy loss is affected by the network con‐
figuration and the sizes/locations of DGs in the distribution
system [28]. These also affect the failure rates of the system
components, and hence, can impact the system reliability
[11]. Thus, the optimization problem is formulated to find the
optimal network configuration and sizes/locations of DGs that
can minimize the energy loss and the energy not served related
to the system reliability. The following assumptions are consid‐
ered while the optimization problem is formulated.

1) In fault analysis, once the optimal network configura‐
tion is achieved based on the optimal system reliability, no
further DNR is performed, and the open switches remain un‐
changed.

2) In fault analysis, each DG is kept connected to its local
bus if it has sufficient active/reactive power to supply its lo‐
cal load.

A. Objective Function

The objective of the optimization problem is to perform

optimal DNR and DG allocation in order to minimize the
seasonal combined cost of energy loss and energy not served
CT, which is expressed as:

Obj = min
xDGPDGS

{CT }= min
xDGPDGS

{CL +CR } (3)

CL =∑
h = 1

NT∑
z = 1

nbr

σI 2( )khz Rz Mt( )kh DTNd (4)

CR =∑
h = 1

NT∑
i = 1

nb

ρ ( )khi PD( )khi TDG( )khi Mt( )kh Nd (5)

TD (khi)=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï

ï

ï

ï

∑
zÎ nbr

λz × SWz

PDG( )khi ³PD( )khi QDG( )khi ³QD( )khi∑
zÎ nbru

λz ×REPz + ∑
zÎ nbrd

λz × SWz

PDG( )khi <PD( )khi or QDG( )khi <QD

(6)

where CL is the seasonal cost of the energy loss, which is
calculated by summing the probabilistic cost of the energy
loss of branch z at hour k with combined state h for Nd sea‐
son days; CR is the seasonal cost of the energy not served,
which is calculated by summing the probabilistic cost of the
energy not served of bus i at hour k with combined state h
for Nd season days; x is a binary variable representing the de‐
cision of each branch, which equals to 1 if the branch is con‐
nected and 0 otherwise; DGP is the set of candidate loca‐
tions where the DGs are installed; DGS is the number of
modules of each DG at each candidate location in the net‐
work; nbr is the total number of branches; σ is the unit cost
of the system power loss; I ( )khz is the current of branch z
at hour k with combined state h, which is obtained from the
optimal power flow analysis; Rz is the resistance of branch z;
ΔT is the time step; TD( )khi is the expected failure time of
bus i at hour k with combined state h, which is investigated
to check whether the DGs have sufficient power to supply
the bus demand or not; nb is the total number of buses;
ρ ( khi ) is the unit cost of the energy not served of bus i at
hour k with combined state h; PDG( khi ) and QDG ( khi ) are
the active and reactive output power from DGS modules
stored in Aw and Ap, respectively; PD ( khi ) and QD( )khi
are the active and reactive power of the load stored in Al, re‐
spectively; SWz is the switching time of branch z; λz is the
failure rate of branch z; nbru is the number of the upstream
branches connecting bus i to the substation; nbrd is the num‐
ber of the branches connecting bus i to the remaining down‐
stream buses; and REPz is the repair time of branch z.

B. Problem Constraints

The following constraints are considered in the optimiza‐
tion problem.

1) Power balance

PDG( )khi -PD( )khi =∑
j = 1

nb

xijV ( )khi V ( )khj Yij ×

cos{ }θ ij - φ ( )khij "k = 1224hÎNTi = 12nb

(7)

The data is separated into four seasons

Historical data including solar irradiance, wind speed, 
and load power are obtained

The full range of the data is divided into Np, Nw, Nl states 

The probability of each PV state is calculated each hour for
each season and this process is repeated for the WT and LM 

The output power of each PV, WT, LM state is calculated
according to the proposed method

A combined probability matrix is formed
for each season using (1) and (2)

Fig. 2. Probabilistic modeling process of DGs and load.
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QDG( )khi -QD( )khi =-∑
j = 1

nb

xijV ( )khi V ( )khj Yij ×

sin{ }θ ij - φ ( )khij "k = 1224hÎNTi = 12nb

(8)

where xij is the binary status of the branch connecting bus i
and bus j; V ( )khi and V ( khj ) are the voltage magni‐
tudes of buses i and j at hour k with combined state h, re‐
spectively; Yij is the admittance magnitude of branch ij; θ ij is
the admittance angle of branch ij; and φ ( khij ) is the power
angle between bus i and bus j at hour k with combined
state h.

2) Bus voltage

Vmin £V ( ikh) £Vmax (9)

where Vmin and Vmax are the minimum and maximum accept‐
able bus voltages, respectively.

3) Branch current
I(khz)£ Imaxz (10)

where Imax,z is the current ampacity of branch z.
4) Network radiality

∑
j = 1

nb

xij = nb - 1 (11)

The network radiality constraint for a distribution system
composed of nb buses ensures that only nb - 1 branches must
be connected for each configuration. In addition, there are
four conditions that are utilized to guarantee that (11) gets
feasible (i. e., radial) configurations for the distribution sys‐
tem [24].

V. IMPLEMENTATION OF FIREFLY ALGORITHM

The firefly algorithm (FA), one of the modern metaheuris‐
tic techniques [29], is used to achieve the proposed objec‐
tive. FAs are influenced by fireflies, an insect that exists in
nature. Fireflies produce unique and rhythmic flashes to com‐
municate with each other. These flashes are governed by the
inverse square law of the light intensity. Hence, as the dis‐
tance between two fireflies increases, the flashing brightness
decreases, leading to miscommunication between the fire‐
flies. Thus, this flashing brightness can be formulated as the
objective function to be optimized. The FA shows superiori‐
ty over the particle swarm optimization (PSO) algorithm and
genetic algorithm (GA) to achieve global solutions [30] due
to its robust exploitation capabilities. Another important ad‐
vantage of the FA is that the movement of the fireflies is not
affected by their past positions, thus avoiding obtaining local
optimal solutions [30].

Figure 3 presents the implementation of the FA on the pro‐
posed method. In Step 1, the combined probability matrix
for each season is obtained, as described in Section II. In
Step 2, the FA is initialized by developing an initial popula‐
tion of fireflies. Each firefly contains x, DGp, and DGs. In
Steps 3 and 4, the seasonal cost function of each firefly is
calculated using (3)-(6). In Step 5, the firefly which has the
lowest cost among all fireflies and does not violate the con‐
straints mentioned in (7) - (11), is considered as the best for
this iteration. In Step 6, the fireflies modify their locations

using (12) in order to obtain the best firefly [29]. Then,
Steps 3 to 6 are repeated until reaching the maximum num‐
ber of iterations T and the obtained optimal solution is
stored as in Step 7. Finally, Steps 1 to 7 are repeated S times
to ensure the optimal global solution.

Ft =Ft + βoe
γr 2

tw( Fw -Ft ) + α ( )rand -
1
2

(12)

where Fw is the position of the best firefly; Ft is the position
of the current firefly; rtw is the cartesian distance between
firefly t and firefly w; βo is the attractiveness when rtw = 0;
γ is the light absorption coefficient; α is a random coeffi‐
cient; and rand is a random number generator uniformly dis‐
tributed in [0, 1].

VI. RESULTS AND DISCUSSION

The effectiveness of applying the FA to the proposed
method is investigated and it is compared with other optimi‐
zation algorithms. This is done by performing simultaneous
DNR and DG allocation under peak load and DG generation
conditions. Then, the implementation of annual plans consid‐

 

Y

Y 

N

Y

Y

 

N

N

N

Start

End

Step 1: obtain the historical data and prepare the
states and probability matrices for each season 

Set the number of iterations of FA to be T  

Step 2: initialize FA

k = 1, h = 1 

Step 3: calculate CL and CR using (4)-(6) 

h = h + 1 

k = k + 1 

S = S + 1 

Update PV, WT, LM power corresponding to the new state

h ≤ NT?

k ≤ 24?

 S ≤ 5?

Step 4: calculate CT for each candidate using (3) 

Step 5: obtain the firefly with the lowest cost, i.e., the best firefly

Step 6: move fireflies towards the best firefly using (12) 

Is the total number of
iterations achieved?

Step 7: store the current optimal firefly 

Fig. 3. Implementation of FA in proposed method.
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ering the uncertainties in the output power of DGs and the
load is investigated. The proposed method is tested on the
12.66 kV IEEE 33-bus distribution system with a peak de‐
mand of 3.7 MW and 2.3 Mvar. The operation power factor
of all DGs is set to be 0.85 lag [24]. In addition, the voltage
boundaries are set in the range of 0.95 p.u. to 1.05 p.u.. The
simulation parameters are presented in Table II and the opti‐
mization process is repeated five times to ensure the random
initialization of the FA and to ensure the global optimal solu‐
tion. A different number of iterations (100, 500, 1000, and
5000) are examined to ensure the convergence of the objec‐
tive function. The convergence curve of the FA is monitored,
and based on that, the maximum number of iterations T is
specified to achieve a reasonable convergence of the objec‐
tive function.

A. Case 1

In this case, the FA is benchmarked with different optimi‐
zation algorithms, including harmony search algorithm
(HSA) [31], GA [31], redefined genetic algorithm (RGA)
[31], and PSO [32]. The simultaneous DNR and DG alloca‐
tion method is applied once to the studied distribution sys‐
tem under the peak load and DG generation conditions. The
base energy loss of the distribution system is 202 kW at the
default network configuration with switches 33, 34, 35, 36,
and 37 open and without using DGs.

The minimization of the power loss is considered as the
main objective of this case, similar to the studies in [31],
[32]. Table III shows the results obtained after performing si‐
multaneous DNR and DG allocation using different optimiza‐
tion algorithms.

The results show that the FA achieves the better power
loss reduction for the studied distribution system under peak
load and DG generation conditions compared with the other
algorithms.

B. Case 2

For this case, the solar irradiance and wind speed data are
obtained for two years during the interval of 2012-2014
[33]. It is assumed that the PV systems and WTs can be sep‐
arately installed at three different buses with an overall pene‐
tration level of 30% to avoid reverse power flow.

The solar irradiance data are divided into 10 states
(Np = 10) starting from 0.05 kW/m2 with a step size of 0.1
kW/m2. Meanwhile, the output power for a 250 W monocrys‐
talline PV module [34] is calculated using the model in [12].
Hence, Ap can be calculated. Figure 4 shows an example of
hourly solar irradiance data in winter for a 2-year study peri‐
od. The wind speed data are divided into 11 states (Nw = 11)
starting from 0.5 m/s with a step size of 1 m/s. To calculate
Aw, the output power curve of a 100 kW WT module shown
in Fig. 5 is used [35]. Figure 6 shows an example of hourly
wind speed data in winter for the 2-year study period. The
load is modeled using the per unit load data presented in
Fig. 7 [12].

The probability of each hourly load is considered to be
unity. The reliability parameters and energy loss cost of this

TABLE III
OPTIMAL SOLUTIONS AND SYSTEM ENERGY LOSS OF DIFFERENT

ALGORITHMS

Algorithm

FA

HSA

GA

RGA

PSO

Open switch

7, 9, 13, 25, 31

7, 14, 10, 32, 28

7, 10, 28, 32, 34

7, 9, 12, 32, 29

7, 14, 11, 32, 27

DG generation (MW)

0.4 (17), 0.8 (25),
0.4 (14)

0.52 (32), 0.55 (31),
0.58 (33)

1.9633 (N/A)

1.774 (N/A)

0.64 (31), 0.49 (32),
0.51 (33)

Power loss (kW)

71.00

73.05

75.13

74.32

96.86

Note: the numbers in the () represent the bus number.
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Fig. 4. Hourly solar irradiance data in winter during 2-year study period.
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Fig. 6. Hourly wind speed data in winter during 2-year study period.

TABLE II
SIMULATION PARAMETERS

Parameter

FA parameter

Reliability parameter [36]

Energy loss cost [11]

Variable

T

S

α

γ

βo

SWz

REPz

σ

Value

1000

5

0.8

1

0.25

0.5 hour

6 hours

0.02 $/kWh
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case are presented in Table II. The branch failure rate,
switching time, and repair time are obtained from [36] while
the energy loss cost and the energy not served cost are ob‐
tained from [11]. The energy not served cost corresponding
to different expected failure time (60TD) for a typical distri‐
bution system is shown in Fig. 8.

In this case, five different annual plans are presented de‐

scribed as follows.
1) Plan 1: performing simultaneous DNR and DG alloca‐

tion based on the data of winter followed by performing
DNR for each of the remaining seasons.

2) Plan 2: performing simultaneous DNR and DG alloca‐
tion for the data of spring followed by performing DNR for
each of the remaining seasons.

3) Plan 3: performing simultaneous DNR and DG alloca‐
tion for the data of summer followed by performing DNR
for each of the remaining seasons.

4) Plan 4: performing simultaneous DNR and DG alloca‐
tion for the data of fall followed by performing DNR for
each of the remaining seasons.

5) Plan 5: performing simultaneous DNR and DG alloca‐
tion once for the whole year without performing DNR.

These plans are compared with the base case of the de‐
fault network configuration and without using any DGs.

To compare the results of different plans, the annual cost
reduction ACR is calculated as:

ACR =
Cbase -CN

Cbase

´ 100% (13)

where Cbase is the annual cost without DNR or DG alloca‐
tion, i.e., base case; and CN is the annual cost of each plan.
Table IV presents the optimal network configurations and
DG sizes/locations for each of the five plans. Besides, the
annual costs corresponding to each plan are shown in Fig. 9,
and a comparison among the ACR of each plan is shown in
Fig. 10.

The results demonstrate the positive impact of performing
the simultaneous DNR and DG allocation on the cost related
to energy loss and reliability. Furthermore, the results show
that the results of the annual cost reduction corresponding to
plans 1-4, where seasonal DNRs are performed, are signifi‐
cantly higher than that of plan 5. Hence, presenting annual
plans based on the seasonal DNRs leads to a significant re‐
duction in the system operation cost. However, performing
additional DNR, i. e., monthly or weekly, will add more

switching costs and thus affect the overall system operation
cost. Moreover, for the studied distribution system, plan 3
provides the highest ACR corresponding to different annual
costs compared with those of the other plans. This indicates
that for the studied distribution system, performing the simul‐
taneous DNR and DG allocation based on the season with
the higher demand, i. e., summer, followed by performing
DNR for the remaining seasons, leads to a higher reduction
of the combined cost.
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TABLE IV
OPTIMAL NETWORK CONFIGURATIONS AND DG SIZES/LOCATIONS FOR EACH PLAN

Season

Winter

Spring

Summer

Fall

Plan 1

Open
branch

10, 14,
16, 25,

33

8, 14,
20, 26,

30

4, 16,
24, 34,

33

6, 15,
11, 27,

34

PV
genera‐

tion
(MW)

0.23 (15),
0.17 (16),
0.08 (6)

Same DG sizes/
locations of winter

Same DG sizes/
locations of winter

Same DG sizes/
locations of winter

WT
generation

(MW)

0.1 (26),
0.2 (22),
0.3 (20)

Plan 2

Open
branch

8, 13,
20,

27, 30

9, 13,
15, 28,

33

8, 13,
20, 26,

31

8, 14,
20,

26, 31

PV
generation

(MW)

Same DG sizes/
locations of spring

0.19 (14),
0.11 (8),
0.19 (17)

Same DG sizes/
locations of spring

Same DG sizes/
locations of spring

WT
generation

(MW)

0.2 (26),
0.3 (31),
0.3 (28)

Plan 3

Open
branch

8, 12,
20, 28,

30

6, 11,
13, 33,

37

9, 14,
16, 26,

33

8, 14
15, 28,

33

PV
generation

(MW)

Same DG sizes/
locations of summer

Same DG sizes/
locations of summer

0.07 (9),
0.32 (8),
0.16 (11)

Same DG sizes/
locations of summer

WT
generation

(MW)

0.1 (28),
0.3 (27),
0.1 (29)

Plan 4

Open
branch

8, 12,
20, 25,

30

8, 14,
16, 33,

28

8, 14
17, 25,

33

10, 14,
16, 33,

26

PV
generation

(MW)

Same DG sizes/
locations of fall

Same DG sizes/
locations of fall

Same DG sizes/
locations of fall

0.10 (8),
0.35 (16)

WT
generation

(MW)

0.4 (22),
0.2 (28),
0.2 (20)

Plan 5

Open
branch

14, 16,
20, 21,

27

PV
generation

(MW)

0.29 (15),
0.22 (17),
0.22 (11)

WT
generation

(MW)

0.20 (27),
0.20 (28)

Note: the numbers in the () represent the bus number.
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The daily voltage profile based on the season is investigat‐
ed as well, where the voltage of each node is multiplied by
its corresponding probability resulting in a probabilistic daily
voltage. Figures 11 to 14 show the probabilistic daily volt‐
age profile for each season corresponding to plan 3 com‐
pared with the base case.

It can be clearly observed that the proposed method is
able to maintain the daily voltage profile within acceptable
limits for the studied distribution system for all buses under
different loading conditions.

VII. CONCLUSION

In this study, DNR and DG allocation are used to enhance
the performance of distribution systems. The purpose of the
study is to develop annual plans that minimize the combined
costs of the energy loss and the energy not served related to
the system reliability. The proposed method considers the un‐
certainties in the output power of the DGs and the system
demand using a combined probabilistic model. The method
is applied to the IEEE 33-bus distribution system using the
FA.

The study shows that simultaneous DNR and DG alloca‐
tion can significantly reduce the combined costs. Moreover,
the voltage profile is improved. The study shows that consid‐
ering the seasonal changes in the network configuration
while developing annual plans can lead to better network
performance than implementing only the DNR or DG alloca‐
tion for the whole year. The study also shows that perform‐
ing simultaneous DNR and DG allocation for the season
with the highest demand followed by performing the DNR
for the remaining seasons produces the optimal results. Ac‐
cordingly, it is recommended that the system operators devel‐
op different seasonal plans to compare their results before
deciding on the optimal sizes/locations of DGs and the net‐
work configuration.
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