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Abstract——One battery energy storage system (BESS) can be
used to provide different services, such as energy arbitrage
(EA) and frequency regulation (FR) support, etc.，which have
different revenues and lead to different battery degradation pro‐
files. This paper proposes a whole-lifetime coordinated service
strategy to maximize the total operation profit of BESS. A
multi-stage battery aging model is developed to characterize the
battery aging rates during the whole lifetime. Considering the
uncertainty of electricity price in EA service and frequency de‐
viation in FR service, the whole problem is formulated as a two-
stage stochastic programming problem. At the first stage, the
optimal service switching scheme between the EA and FR ser‐
vices are formulated to maximize the expected value of the
whole-lifetime operation profit. At the second stage, the output
power of BESS in EA service is optimized according to the elec‐
tricity price in the hourly timescale, whereas the output power
of BESS in FR service is directly determined according to the
frequency deviation in the second timescale. The above optimi‐
zation problem is then converted as a deterministic mixed-inte‐
ger nonlinear programming (MINLP) model with bilinear
items. McCormick envelopes and a bound tightening algorithm
are used to solve it. Numerical simulation is carried out to vali‐
date the effectiveness and advantages of the proposed strategy.

Index Terms——Battery energy storage system (BESS), whole-
lifetime coordinated service, multi-stage battery aging model,
two-stage stochastic programming, mixed-integer nonlinear pro‐
gramming (MINLP).

NOMENCLATURE

A. Indices

i, l Indices of typical service period and life stage
imax, lmax The maximum indices of typical service peri‐

od and life stage

tEA, tFR Indices of time intervals in energy arbitrage
(EA) and frequency regulation (FR) services

t max
EA , t max

FR The maximum indices of time intervals in EA
and FR services

B. Parameters

ηc, ηd Charging and discharging efficiencies of bat‐
tery energy storage system (BESS)

κD Linearized cyclic aging rate corresponding to
unit cycle depth

κcal Linearized calendar aging rate corresponding
to unit operation time

κD
1 Cyclic aging rate corresponding to unit cycle

depth at life stage 1

κ cal
1 Calendar aging rate corresponding to unit op‐

eration time at life stage 1

χ l Calendar accelerating factor at life stage l

ρk Possibility of the second-stage scenario

πmin
u , πmax

u The minimum and maximum values of vari‐
able πu

ωmin
u , ωmax

u The minimum and maximum values of vari‐
able ωu

Df0, Df1 Bound of dead band and the maximum toler‐
ant frequency deviation in FR service

Df ̂ltFR
Frequency deviation

DtEA, DtFR Time spans of intervals in EA and FR services

Dt Length of a time interval

amρl
, bmρl

Parameters in piecewise linear calculation

function for cyclic accelerating factor due to
charging-discharging rate at segment mρ and
life stage l

Copu Maintenance cost of BESS in unit operation
time

Emax The maximum rated energy capacity

E EAmin, The minimum and maximum values for stored
E EAmax energy of BESS in EA service

Lstage
li , Lsmax

i Life loss limitation for BESS at life stage l
and whole lifetime

P FRmax
ltFR

, The maximum and minimum power in FR ser-
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P FRmin
ltFR

vice

P EAchmax
ltEA

, The maximum charging and discharging pow-

P EAdhmax
ltEA

er of BESS in EA service

Prated Rated charging-discharging power

r FR
reserve, P FR

reserve Reserve price and reserve power in FR service
r EA

tEA
Hourly electricity price in EA service

rd Discount rate

t̂ Y
i Time length of whole service period

C. Variables

αi Binary variable that decides time span of
whole service period

βEA
li , β FR

li Binary variables that limit time spans of EA
and FR services at life stage l

β com
li Binary variable that limits life loss for BESS

at life stage l

πu, ωu Variables in McCormick envelopes

E EA
ltEAi

Stored energy of BESS at life stage l in EA
service

GEA
l , GFR Revenues of BESS in EA and FR services

g(y) The second-stage optimization problem

Lcyc Linearized cyclic aging rate

Lcyc
D , Lcyc

Sm , Lcyc
T Linearized cyclic aging coefficients due to cy‐

cle depth, mean state-of-charge (SOC), and
temperature

Lcal Linearized calendar aging rate

Lcal
Dt , Lcal

Si , Lcal
T Linearized calendar aging coefficients due to

operation time, initial SOC, and temperature

Lcom Comprehensive linearized aging rate

Lcycm
l Multi-stage cyclic aging rate at life stage l

Lrate
ρel

Cyclic accelerating factor due to charging-dis‐
charging rate at life stage l

Lcalm
l Multi-stage calendar aging rate at life stage l

Lcomm
l Comprehensive multi-stage aging rate at life

stage l
LEAch

ltEAi
, LEAdh

ltEAi
, Aging rates during charging and discharging

L̂FRch
ltFR

, L̂FRdh
ltFR

stages in EA and FR services at life stage l

P EA
tEA

Output power of BESS in EA service

P ec, P ed Charging and discharging power for battery
(P ec ³ 0, P ed ³ 0)

P EAch
ltEAi

, P EAdh
ltEAi

, Charging and discharging power of BESS in

P̂ FRch
ltFR

, P̂ FRdh
ltFR

EA and FR services at life stage l

Q ( xξ ) Optimal value of the second-stage problem

tsi Time of service switching point

t dmax
i Time span of whole operation period

t dEA
li , t dFR

li Time spans of EA and FR services at life stage
l

D. Vectors and Sets

ξ, ξk Random vectors in the second-stage optimiza‐
tion and scenario k

Ω ( xξ ) The second-stage constraint set

F, f ( x ) Constraint set and optimization problem

x Vector for variables in the first-stage decision
y, yk Vectors for variables in the second-stage deci‐

sion and scenario k

I. INTRODUCTION

ENERGY storages are promising facilities to improve the
robustness, resiliency, and efficiency of modern power

systems and cope with the challenges brought by growing
penetration of uncertain and intermittent renewable resources
[1]. An energy storage can store excess energy during peri‐
ods of high power generation and inject the stored energy
during peak load periods. As a result, renewable generation
curtailment can be reduced, and expensive fast generating
units can be avoided [2]. Studies suggest that the required
power capacity of energy storages in the United States will
be as high as 152 GW by 2050 [3]. Much of this capacity is
expected to be achieved by battery energy storage systems
(BESSs), which have rapid ramp rate [4] and fast response
speed [5]. As the capital costs of the BESSs are quite high,
maximizing the economic benefits for BESSs is the main ob‐
jective of the operation strategies in most services, such as
energy arbitrage (EA), frequency regulation (FR), and peak
shaving.

EA and FR are two main services for the BESSs. In EA
service, BESSs operate according to the electricity price in
hourly timescale [6]. A dynamic programming approach con‐
sidering cycle aging and price uncertainty is proposed in [7]
to maximize the income of the BESS. A stochastic optimiza‐
tion model is formulated in [8] to maximize the profit of
BESS under the uncertainty of the day-ahead and real-time
electricity prices. In FR service, BESSs aim to decrease the
frequency deviation in a short time interval. An optimal con‐
trol and bidding policy based on realistic market settings and
an accurate battery aging model are adopted in [9] to maxi‐
mize the market profits while satisfying the performance re‐
quirement of FR market. A real-time greedy-index dispatch‐
ing policy is developed in [10] to use electric vehicle battery
for power system frequency support. Due to the different
charging/discharging depth and frequency, the battery life‐
time degradation in different services is different. According
to existing studies, BESSs in EA service have lower life deg‐
radations, whereas those in FR service have higher revenues
[11]. Considering different degradation properties and reve‐
nues of a BESS in different services, co-optimization of a
BESS for both EA and FR services has the potential to in‐
crease the total profit, which can be calculated as the
stacked value of the profits from different services.

Co-optimization strategies can be classified into two main
categories: short-term joint-service optimization and long-
term service-switching optimization. The short-term joint-ser‐
vice optimization is usually used in the daily operation of a
BESS, whereas the long-term service-switching optimization
is mostly considered in the whole-lifetime service. A robust
optimization model is formulated in [12] to maximize the
profit of a BESS in joint energy and ancillary services. A
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joint stochastic optimization model considering super-linear
gains is proposed in [13] to coordinate the operation of a
BESS in peak shaving and FR services. A multi-scale dy‐
namic programming method is proposed in [14] to co-opti‐
mize the performance of a BESS in joint EA and FR servic‐
es. An optimal dispatch strategy is proposed in [15] to co-op‐
timize the performance of a battery energy storage station in
voltage distribution improvement and peak load shifting.
The above works aim to maximize the short-term profit by
co-optimizing the participation strategy for the BESS to pro‐
vide both services at the same time. However, when both ser‐
vices are provided simultaneously, the BESS cannot provide
reliable FR service to the grid, which brings high risk to the
operation of the whole system. Especially when the electrici‐
ty price in EA service reaches the maximum or the mini‐
mum value, the BESSs will be charged/discharged at the
maximum power and cannot provide reserve power for FR
[16]. In the practical application, most power systems need
to contract with some providers to have reliable FR services
on standby and have strict rules to guarantee high-quality
performance of these BESSs [17]. Those strict rules forbid
the BESSs to provide both services simultaneously [16]. On
the other hand, a long-term service-switching strategy is pro‐
posed in [18] to maximize the whole-lifetime profit by
switching the service from FR to EA at a certain state of
health (SOH) of the battery. However, the method in [18] is
on the basis of one-off switching, which cannot fully use the
battery for the maximum revenue at different SOHs.

Aging characteristics significantly impact the economic
benefit of a BESS [19], [20]. In [12] and [14], battery aging
characteristics are not considered in the co-optimization. A
linearized cycle-depth stressed aging function is used in [13]
to evaluate the lifetime degradation of a battery. An exponen‐
tial aging model considering cycle number and cycle depth
is used in [18] to maximize the whole-lifetime profit. The
above-mentioned co-optimization strategies only consider the
external impacts on the battery aging process. The battery ag‐
ing characteristics due to the internal chemical reaction pro‐
cess are ignored. Due to the solid-electrolyte-interphase
(SEI) formation, the aging rate of the lithium-ion battery is
not a linear process [21]. A two-exponential function is used
in [22] to model the nonlinear degradation progress of the
battery. One exponential portion is used to calculate the ag‐
ing rate due to internal SEI formation process. Another expo‐
nential portion is used to calculate the aging rate due to ex‐
ternal impacts from cycle depth, operation time, state-of-
charge (SOC), and temperature. However, the two-exponen‐
tial function is highly nonlinear and too complicated to be
applied in a long-term optimization.

This paper focuses on the whole-lifetime coordinated ser‐
vice over the long-term horizon. The contributions of this pa‐
per are as follows.

1) A whole-lifetime coordinated service strategy is pro‐
posed to maximize the whole-lifetime operation profit for a
BESS by switching the service between EA and FR at prop‐
er SOHs.

2) A comprehensive multi-stage aging model is estab‐
lished to calculate the aging rate of a BESS considering both

external impacts and internal chemical reaction process.
3) A two-stage stochastic programming model is formulat‐

ed to model the optimization problem. At the first stage, the
optimal service switching scheme between the EA and FR
services are formulated to maximize the expected value of
the whole-lifetime operation profit. At the second stage, the
output power of BESS in EA service is optimized according
to the electricity price in the hourly timescale, whereas the
output power of BESS in FR service is directly determined
according to the frequency deviation in the second timescale.
McCormick envelopes and a bound tightening algorithm are
used to solve the model.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the framework of whole-lifetime coordinat‐
ed service strategy. Section III illustrates the multi-stage bat‐
tery aging model. In Section IV, the mathematical formula‐
tion is presented. The solution method is developed in Sec‐
tion V. The effectiveness of the proposed strategy is validat‐
ed in Section VI. Finally, Section VII provides the conclu‐
sion.

II. WHOLE-LIFETIME COORDINATED SERVICE STRATEGY

A. Overview of Whole-lifetime Coordinated Service Strategy

The proposed whole-lifetime coordinated service strategy
aims to maximize the total operation profit of a BESS
through switching the service at proper SOHs. The operation
revenues and costs are settled at the end of whole service pe‐
riod. An overview of the proposed strategy is shown in
Fig. 1.

Figure 1 outlines the main idea of the proposed strategy.
At the first stage, a new BESS can provide either EA or FR
service. When the SOH shrinks to a certain threshold, the
BESS switches the service to maximize the whole-lifetime
operation profit. More than one service switches can be
made during the whole operation period. At the second
stage, based on the service switching decision, the battery
output power is formulated according to the operation rule
in each service.

B. Operation Rule in EA Service

A BESS can provide EA service either as a seller or a
buyer according to the hourly electricity price [18]. When
the electricity price is low, the BESS is charged to decrease
the cost of storing energy. When the electricity price is high,
the BESS is discharged to gain more revenues using the

EA

FR

ts1 ts2 tsi tsmax

Switch 1

Switch 2

Switch 3

Switch i

...

...

Time

SOH
Life stage 1

...
Life stage lmax

BESS

Life stage 2

Fig. 1. Overview of whole-lifetime coordinated service strategy.
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stored energy [23]. The daily revenue for the BESS in EA
service can be calculated as:

GEA
l =∑

tEA = 1

t max
EA

r EA
tEA ( )P EAdh

ltEA
-P EAch

ltEA
DtEA (1)

C. Operation Rule in FR Service

A BESS can be used to provide FR services in the short
timescale. The operation rule in FR service [24] is given as:

P̂ FR
ltFR

=

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

min
ì
í
î

ïï

ïï

ü
ý
þ

ïïïï

ïï
P FRmax

ltFR
P FR

reserveP
FR
reserve

Df ̂ltFR
-Df0

Df1 -Df0

Df ̂ltFR
Î[Df0 +¥)

0 Df ̂ltFR
Î(-Df0Df0 )

max
ì
í
î

ïï

ïï

ü
ý
þ

ïïïï

ïï
P FRmin

ltFR
P FR

reserveP
FR
reserve

Df ̂ltFR
+Df0

Df1 -Df0

Df ̂ltFR
Î(-¥ -Df0 ]

(2)

According to (2), a dead-band of (-Df0Df0 ) is set for the
BESS to avoid unnecessary frequent usage. When the fre‐
quency deviation is in (-¥ -Df0 ][Df0 +¥), the output of
BESS is increased linearly and limited by the reserve power
and the maximum and minimum power values. When the
power is positive, the BESS is charged. When the power is
negative, the BESS is discharged. During each period in FR
service, the BESS operates according to the operation rules
and real-time power demand for 900 s, after which a break
of 900 s is permitted to recover the SOC to the initial value.

The FR service considered in this paper is a reliable FR
service with fixed standby capacity. According to the Europe‐
an FR market, the BESS in reliable FR service is paid by
the system operator (SO) with a fixed price for reserve pow‐
er [18]. Considering that the BESS provides FR service at
the first half of each interval, the daily revenue in the FR
service is calculated as:

GFR =
1
2∑tFR = 1

t max
FR

r FR
reserve P FR

reserveDtFR (3)

III. MULTI-STAGE BATTERY AGING MODEL

A. Degradation Mechanism

This paper considers the lithium-ion battery which is most
widely adopted in practice. The formulation and growth of
SEI cause the capacity loss of the lithium-ion batteries [25].
When a new battery starts to operate, a lot of active lithium
ions are consumed to form the SEI film [26]. After a stable
film is formed, the requirement of the active lithium ions to
form the SEI film decreases. As a result, the aging rate at
the early life stages is significantly higher than that at the lat‐
er life stages. Then, when the battery reaches the end of life,
there are few active lithium-ions left, and the aging rate in‐
creases rapidly [22]. Based on the testing data in [22] and
[27], the degradation of a lithium-ion battery can be divided
into different linearized life stages. Within each life stage,

the aging rate can be formulated as a linearized function of
cycle depth [13]. At different life stages, an accelerating fac‐
tor can be multiplied to the linearized aging function to mod‐
el the nonlinear aging characteristics.

In this work, lifetime loss is used to evaluate the aging
rate L. When L = 0, the lithium-ion battery has no lifetime
loss. When L = 1, the lithium-ion battery degrades from the
beginning to the end of life. The end of life is typically de‐
fined as the point at which the battery only provides 80% of
its rated maximum capacity.

B. Linearized Aging Model

A linearized aging model depending on the external stress
factors is widely used to describe the aging characteristics of
the battery. The linearized aging model considers the cyclic
and calendar aging functions, which are described as follows.
1) Linearized Cyclic Aging Function

A linearized cyclic aging function [22], [27] is formulated
to calculate the degradation of a BESS, as shown in (4).

Lcyc = Lcyc
D Lcyc

S m Lcyc
T (4)

In (4), the linearized cyclic aging rate Lcyc is the product
of aging coefficients corresponding to the cycle depth, mean
SOC, and temperature, i. e., Lcyc

D , Lcyc
S m , and Lcyc

T , respectively.

In the application of above linearized aging function, the ag‐
ing coefficients due to mean SOC and temperature are usual‐
ly regarded as constant parameters. The cyclic aging rate is
commonly fitted as a linear function of cycle depth. As the
cycle depth is a linear function of charging-discharging pow‐
er, the linearized cyclic aging rate can be calculated as a lin‐
ear function of charging-discharging power [13], as shown
in (5).

Lcyc =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

κDηc P ecDt

Emax

charging

κD P edDt

ηd Emax

discharging

(5)

2) Linearized Calendar Aging Function
A linearized calendar aging function [22], [28] is formulat‐

ed to calculate the degradation of the BESS, as shown in (6).

Lcal = Lcal
Dt Lcal

Si Lcal
T (6)

In (6), the calendar aging rate Lcal is the product of aging
coefficients corresponding to operation time, initial SOC,
and temperature, i. e., Lcal

Dt , Lcal
Si , and Lcal

T , respectively. As the

temperature of the BESS can be well controlled by the cool‐
ing system and the initial and final SOCs in this paper are
all 50%, the aging coefficients due to the impacts of initial
SOCs and temperature are regarded as constant parameters.
Then, the calendar aging rate can be calculated as a linear
function of stored time [28] in (7).

Lcal = κcalDt (7)

3) Comprehensive Linearized Aging Function
According to the functions in (5) and (7), the comprehen‐

sive linearized aging function is expressed as:
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Lcom =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

κDηc P ecDt

Emax

+ κcalDt charging

κD P edDt

ηd Emax

+ κcalDt discharging

(8)

C. Multi-stage Aging Model

The aging rate of a BESS depends on not only the exter‐
nal stress factors but also on its internal chemical reaction
process. A multi-stage aging model is formulated to show
the comprehensive aging characteristics.
1) Multi-stage Cyclic Aging Function

Multi-stage cyclic aging rates are calculated according to
the accelerating factors corresponding to the charging-dis‐
charging rates at different life stages, which is expressed as:

Lcycm
l = Lcycm

1 Lrate
ρel (9)

where Lcycm
1 is calculated in (5) by replacing κD with κD

1 ; and
Lrate
ρel

is calculated by:

Lrate
ρel

= amρl
ρe + bmρl

ρeÎ[ρmρl
ρmρ + 1l ] (10)

The charging-discharging rate ρe is defined as the ratio of
the charging-discharging power to rated power. Then, the
multi-stage cyclic aging rate can be calculated as:

Lcycm
l =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

κD
1 ηc P ecDt

Emax ( )amρl
P ec

Prated

+ bmρl
charging

κD
1 P edDt
ηd Emax ( )amρl

P ed

Prated

+ bmρl
discharging

(11)

2) Multi-stage Calendar Aging Function
Multi-stage calendar aging rates are calculated according

to the accelerating factors corresponding to different life
stages in (12).

Lcalm
l = χ l L

calm
1 (12)

where Lcalm
1 is calculated in (7) by replacing κcal with κ cal

1 .
Then, the multi-stage calendar aging function is shown as:

Lcalm
l = χ lκ

cal
1 Dt (13)

3) Comprehensive Multi-stage Aging Function
Based on the multi-stage cyclic and calendar aging func‐

tions, the comprehensive multi-stage aging function is formu‐
lated as:

Lcomm
l =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

κD
1 ηc P ecDt

Emax ( )amρl
P ec

Prated

+bmρl
+ χ lκ

cal
1 Dt charging

κD
1 P edDt
ηd Emax ( )amρl

P ed

Prated

+bmρl
+ χ lκ

cal
1 Dt discharging

(14)

IV. MATHEMATICAL FORMULATION

A. Optimization Model for Whole-lifetime Coordinated Ser‐
vice

The optimal whole-lifetime coordinated service strategy
aims to maximize the whole-lifetime operation profit by

switching the service at proper SOHs. The whole-lifetime op‐
eration profit is evaluated by the net present value (NPV)
considering the revenues and costs during the whole service
period. Decision variables are the selection for total service
time, time spans of services at different life stages, and
charging/discharging power for the BESS in EA and FR ser‐
vices. The mathematical model is formulated as:

min∑
i = 1

imax 1

(1 + rd )t̂ Y
i

×

é

ë

ê
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ê
êê
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ê ù
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ltEAi

£ αi P
EAchmax
ltEA

"l"tEA"i (25)

0 £P EAdh
ltEAi

£ αi P
EAdhmax
ltEA

"l"tEA"i (26)

∑
l = 1

lmax é

ë

ê
êê
ê ù

û

ú
úú
út dEA

li ∑
tEA = 1

t max
EA ( )LEAch

ltEAi
+ LEAdh

ltEAi
+ t dFR

li ∑
tFR = 1

t max
FR ( )L̂FRch

ltFR
+ L̂FRdh

ltFR
£

Lsmax
i "i (27)

t dEA
li ∑

tEA = 1

t max
EA ( )LEAch

ltEAi
+ LEAdh

ltEAi
+ t dFR

li ∑
tFR = 1

t max
FR ( )L̂FRch

ltFR
+ L̂FRdh

ltFR
£

β com
li Lstage

li "l"i (28)

t dEA
li ∑

tEA = 1

t max
EA ( )LEAch

ltEAi
+ LEAdh

ltEAi
+ t dFR

li ∑
tFR = 1

t max
FR ( )L̂FRch

ltFR
+ L̂FRdh

ltFR
³

β com
l + 1i L

stage
li "lÎ[1lmax - 1]"i (29)

β com
li ³ β com

l + 1i "lÎ[1lmax - 1]"i (30)

β com
li ³ βEA

li "l"i (31)

β com
li ³ β FR

li "l"i (32)

β com
li £ βEA

li + β
FR
li "l"i (33)

The objective function in (15) consists of two parts: main‐
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tenance cost and operation revenue. Equation (16) shows
that the time span of whole operation period should be limit‐
ed by the time span of the whole service period. Equation
(17) uses binary variables to decide the time span of the
whole service period. Equation (18) indicates that the total
time span of EA and FR services should be equal to that of
the whole operation period. Equations (19) and (20) show
the limits for the time spans of EA and FR services, respec‐
tively. Binary variables βEA

li and β FR
li are used to limit the

time spans of EA and FR services at life stage l, respective‐
ly. Equation (21) calculates the stored energy of BESS.
Equation (22) donates the minimum and maximum limits for
the stored energy of BESS. Equations (23) and (24) show
the initial and final values of the energy states for BESS in
EA services, respectively. Equations (25) and (26) show that
the power of BESS should be lower than the maximum
charging and discharging power, respectively. Equations (27)
and (28) are the limits for aging rates in the whole operation
period and at each life stage, respectively. In (27) and (28),
LEAch

ltEAi
and LEAdh

ltEAi
can be calculated in (14) by replacing P ec

and P ed with P EAch
ltEAi

and P EAdh
ltEAi

, respectively; L̂FRch
ltFR

and L̂FRdh
ltFR

can be calculated in (14) by replacing P ec and P ed with P̂ FR
ltFR

and -P̂ FR
ltFR

, respectively; and P̂ FR
ltFR

can be calculated by the

operation rule in (2). Equation (29) means that, if the useful
lifetime at life stage l + 1 is used in the operation period, the
useful lifetime at life stage l should be fully used. Equation
(30) means that, if β com

l + 1i is equal to 1, β com
li should be equal

to 1. Equations (31)-(33) mean that, if βEA
li or β FR

li is equal to
1, β com

li should be equal to 1. Constraints based on β com
li , βEA

li ,
and β FR

li guarantee that the time spans of services at different
life stages are formulated in a reasonable sequence.

B. Stochastic Programming Model

Considering the uncertainty of the electricity price in (1)
and the frequency deviation in (2), a two-stage stochastic
programming model is compactly formulated as:

min
xÎF

{ f (x)+E(Q(xξ))} (34)

where f (x) is the first-stage problem, i.e., maintenance cost,
and the first-stage decision vector x consists of the selection
for total service time and time spans of services at all life
stages; Q(xξ) is the optimal value of the second-stage prob‐
lem, i.e., the operation revenue min

yÎΩ ( )xξ
g(xy), y is the second-

stage decision vector, consisting of the charging/discharging
power for the BESS in EA and FR services, and ξ is the ran‐
dom vector, which consists of the uncertain electricity price
in EA service and uncertain frequency deviation in FR ser‐
vice; E(Q(xξ)) is the expected value of the second-stage
problem.

C. Deterministic Equivalence

Assuming ξ has a finite number of possible scenarios, de‐
noted as ξ1ξ2ξk with respective possibilities of
ρ1ρ2ρk, then the expectation form in (34) can be written
as:

E(Q(xξ))=∑
k = 1

kmax

ρkQ(xξk ) (35)

Then, the original two-stage stochastic model can be for‐
mulated as the following deterministic equivalence:

min
xy1y2yk

ì
í
î

ïï
f (x)+∑

k = 1

kmax

ρk g(xyk )
ü
ý
þ

ïï
(36)

s.t.
xÎF (37)

ykÎΩ(xξk ) "k (38)

It can be seen from the formulation of optimization model
that, at the first stage, a “here-and-now” decision x is made
before the realization of the uncertain data ξ is known.
Then, at the second stage, after a realization of uncertain sce‐
nario ξ, a “wait-and-see” decision y is made to compensate
for a possible inconsistency between the prediction and the
reality at the first stage. In practice, the uncertain scenarios
should be sampled from the probability distribution function
of the uncertain variables, and the number needs to be re‐
duced to a tractable number for solution.

Variables in the first-stage decision vector x are αi, t dEA
li ,

and t dFR
li , which correspond to the selection for total service

time and time spans of EA and FR services at the life stage
l, respectively. The objective function in the first-stage prob‐
lem is given as:

f (x)=∑
i = 1

imax 1

(1 + rd )t̂ Y
i

Copu∑
l = 1

lmax

( )t dEA
li + t dFR

li (39)

Constraint set F corresponds to the constraints in (16) -
(20) and (30)-(33).

In the second-stage decision, battery charging and dis‐
charging power in FR service is formulated according to the
frequency deviations in each scenario. Variables in the sec‐
ond-stage decision vector are P EAch

ltEAik
and P EAdh

ltEAik
, which are

the charging and discharging power of the BESS in EA ser‐
vice of each scenario, respectively. The objective function in
the second-stage problem is given as:

g(xyk )=-∑
i = 1

imax 1

(1 + rd )t̂ Y
i ( )∑

l = 1

lmax

t dEA
li GEA

lik +∑
l = 1

lmax

t dFR
li GFR

(40)

where GEA
lik and GFR are calculated in (1) and (3), respective‐

ly.
Constraint set Ω(xξk ) corresponds to the constraints

shown in (21)-(33). Based on the above analysis, the deter‐
ministic equivalence (36) - (38) is a mixed-integer nonlinear
programming (MINLP) problem, which cannot be solved di‐
rectly. The solution method used in this paper is shown in
the next section.

V. SOLUTION METHOD

A. Model Linearization

As LEAch
ltEAi

and LEAdh
ltEAi

are calculated by the piecewise qua‐

dratic function in (14), t dEA
li LEAch

ltEAi
and t dEA

li LEAdh
ltEAi

in (27)-(29)

are highly nonlinear and make the optimization model diffi‐
cult to be solved. A piecewise linear function is used to sim‐
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plify the function in (14). In the piecewise linear function,
battery power is divided into several intervals with a series
of breaking points. Then, a slope for each linear equation be‐
tween the adjacent breaking points is calculated. Finally, the
aging rate in (14) can be calculated by summing all the sepa‐
rated linear equations. Based on this linearization method,
the highly nonlinear deterministic equivalent model is con‐
verted to a bilinear programming problem.

B. McCormick Envelopes and Bound Tightening Algorithm

McCormick envelopes and a bound tightening algorithm
are used to solve the bilinear programming problem. Vari‐
able π and ω are used to present the bilinear items, i. e.,
t dEA

li GEA
li in (15), and t dEA

li LEAch
ltEAi

and t dEA
li LEAdh

ltEAi
in (27) - (29).

The auxiliary variable Γ is used to design the McCormick
envelopes for the bilinear items:

Γu = πuωu "u (41)

McCormick envelopes are presented as:

Γu ³ π
min
u ωu + πuω

min
u - πmin

u ωmin
u "u (42)

Γu ³ π
max
u ωu + πuω

max
u - πmax

u ωmax
u "u (43)

Γu £ π
min
u ωu + πuω

max
u - πmin

u ωmax
u "u (44)

Γu £ π
max
u ωu + πuω

min
u - πmax

u ωmin
u "u (45)

A bound tightening algorithm is developed in Algorithm 1
to improve the performance of the solution method.

VI. CASE STUDY

A. Parameter Settings

The proposed whole-lifetime coordinated service strategy
is tested by a multifunctional BESS in EA and FR services.
The NPV is used to evaluate the profit of BESS. The dis‐
count rate is 5% per year. The parameters of the BESS [22]
and services [16], [29] are shown in Tables I and II, respec‐
tively. Life stages of the BESS [27] are defined in Table III.
Cyclic aging characteristics [27] are shown in Fig. 2.

Calendar aging rate corresponding to the operation time at
the life stage 1 κ cal

1 is 6.21 ´ 10-4 per day [22]. Calendar ac‐
celerating factors at different life stages χ l are shown in Ta‐
ble IV [22].

TABLE IV
CALENDAR ACCELERATING FACTORS

Life stage l

1

2

3

χl

1.000

0.483

0.298
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Fig. 2. Cyclic aging characteristics. (a) SOH variation when cycle depth is
100% and charging-discharging rate is 1. (b) Cyclic accelerating factor with
different charging-discharging rates and life stages.

TABLE I
PARAMETERS OF BESS

Parameter

Rated energy capacity (MWh)

Rated power (MW)

Limits of stored energy (MWh)

Initial value of stored energy (MWh)

Charging/discharging efficiency ηc/ηd (%)

Maintenance cost ($/day)

Value

1

1

[0.2,0.8]

0.5

92

20

TABLE II
PARAMETERS OF SERVICES

Parameters

Time interval (s)

Reserve price ($/MWh)

Reserve power (MW)

Df0 (HZ)

Df1 (HZ)

Power limit of BESS (MW)

Value in EA service

3600

[-1,1]

Value in FR service

1

50

1

0.01

0.1

[-1,1]

TABLE III
DEFINITION OF DIFFERENT LIFE STAGES

Life stage l

1

2

3

SOH (%)

[100, 96]

[96, 87]

[87, 80]

Algorithm 1: bound tightening algorithm

1: Input: tolerance ξ(ξ > 0), the maximum iteration number τmax, parame-
ters δ0 and γ

2: Initialize: τ¬ 0; values for (πmin
u ) 0

, (πmax
u ) 0

, (ωmin
u ) 0

, and (ωmax
u ) 0

,
which are initial limits of πu and ωu

3: Repeat
4: Solve convex optimization model by replacing the bilinear items with

McCormick envelopes and obtain the results (π *
u ) τ, (ω*

u ) τ and ( Γ *
u ) τ

5: (πmin
u ) τ + 1

=max{(1 - δτ ) (π *
u ) τ(πmin

u ) 0}
6: (πmax

u ) τ + 1
=min{(1 + δτ ) (π *

u ) τ(πmax
u ) 0}

7: (ωmin
u ) τ + 1

=max{(1 - δτ ) (ω*
u ) τ(ωmin

u ) 0}
8: (ωmax

u ) τ + 1
=min{(1 + δτ ) (ω*

u ) τ(ωmax
u ) 0}

9: δτ + 1 = γδτ,τ¬ τ + 1

10: Until
|
|
|||| ( Γ *

u ) τ - (π *
u ) τ(ω*

u ) τ |||||| £ ξ |||||| (π *
u ) τ(ω*

u ) τ |||||| "u or τ ³ τmax + 1
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According to the calendar aging parameters, the maximum
stored time of the BESS is 10.17 years. Hence, the maximum
time span of whole service period is set as 10 years, i.e., {t̂ Y

i }=
{1210}. The mean value and standard deviation of the
historical electricity price [30] and frequency deviation [31]
are shown in Fig. 3.

The stochastic variations of predicted electricity price and
frequency deviation are assumed to follow the normal distri‐
bution [32], [33]. Two hundred random scenarios are generat‐
ed by Monte Carlo sampling to represent the stochastic varia‐
tions of electricity price and frequency deviation. Then, the
scenario reduction method in [34] is used to obtain 50 repre‐
sentative scenarios for stochastic programming.

The simulation is conducted on a 64-bit PC with 2.50
GHz CPU and 8 GB RAM, using Anaconda platform with
Python 3.7.6 and GUROBI solver. The bilinear programming
problem is solved by McCormick envelopes and the bound
tightening algorithm in Algorithm 1.

B. Numerical Results

1) First-stage Decision Results
The first-stage decision results are shown in Fig. 4.

From Fig. 4, the optimal time span of the whole serve pe‐
riod is 3 years (1095 days). Life stage 1 of the BESS is
from day 1 to day 226. Life stage 2 lasts from day 227 to
day 566. Life stage 3 lasts from day 566 to day 1095. The
proposed strategy switches the service from EA to FR on
day 226 and then from FR to EA on day 427. The SOHs cor‐
responding to the service switching points from EA to FR

and from FR to EA are 96.00% and 88.50%, respectively.
The BESS provides EA service at life stages 1, 2, and 3,
and FR service at life stage 2. Using the proposed strategy,
the whole-lifetime operation profit is $1.839×105.

Based on the above service strategy, the expected value of
the operation profit and aging rate in each day at each life
stage is shown in Table V. Based on the results in Table V,
the per-degradation-rate operation profit at different life stag‐
es is shown in Fig. 5.

Based on the per-degradation-rate operation profit in Fig.
5 and the first-stage decision results in Fig. 4, the operation
strategy selects the services with higher operation profits dur‐
ing the whole lifetime. Hence, the BESS provides EA servic‐
es at life stages 1, 2, and 3, and FR service at life stage 2.
2) Second-stage Decision Results

For illustration purpose, typical scenarios shown in Fig. 6
are used as the input information to show the results in sec‐
ond-stage decision.

The second-stage decision results in EA service are shown
in Fig. 7. As can be observed from Fig. 7, the BESS is
charged when the electricity price is low and discharged
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Fig. 5. Per-degradation-rate operation profit.
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Fig. 4. First-stage decision results.

TABLE V
PROFIT AND AGING RATE AT DIFFERENT LIFE STAGES

Life
stage

1

2

3

Expected value of operation
profit ($)

EA

1.546 × 102

1.585 × 102

1.533 × 102

FR

5.800 × 102

5.800 × 102

5.800 × 102

Aging rate

EA

2.657 × 10-4

2.412 × 10-4

4.764 × 10-4

FR

2.885 × 10-3

1.559 × 10-3

3.077 × 10-3
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Fig. 6. Scenario information in second-stage decision. (a) Electricity price
in EA service. (b) Frequency deviation in FR service at life stage 2.
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Fig. 3. Mean value and standard deviation of historical electricity price
and frequency deviation. (a) Mean value of historical electricity price. (b)
Standard deviation of historical electricity price. (c) Mean value of frequen‐
cy deviation. (d) Standard deviation of frequency deviation.
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when the electricity price is high. The SOC in EA service
varies in a large range, whereas the power in EA service var‐
ies in a small range.

The second-stage decision results in FR service at life
stage 2 are shown in Fig. 8. From Fig. 8, in FR service, the
BESS operates according to the frequency deviation during
the regulation stages and operates in a constant power dur‐
ing the recovery stages. The SOC in FR service varies in a
small range, whereas the power in FR service varies in a
large range.

C. Comparison with Single Service Strategies

The comparison with single service strategies is shown in
Table VI.

From Table VI, compared with the single EA and FR ser‐
vice strategies, the proposed strategy increases the operation
profit by 5.57% and 8.50%, respectively.

D. Comparison with Existing Whole-lifetime Coordinated
Service Strategy

The existing whole-lifetime coordinated service strategy
divides the lifetime of a BESS into two stages [18]. The
BESS provides FR service at the first stage and EA service
at the second stage. These services are only switched once
during the whole operation period. Multi-stage and calendar
aging characteristics are ignored in the calculation of the ag‐
ing rates [18]. Results using existing whole-lifetime coordi‐
nated service strategy are shown in Fig. 9.

From Fig. 9, the optimal time span of whole service peri‐
od is 3 years. The service is switched from FR service to
EA service on day 66. The SOH corresponding to the ser‐
vice switching point is 95.61%. The actual operation profit
using existing whole-lifetime coordinated service strategy is
$1.658×105. Compared with the existing whole-lifetime coor‐
dinated service strategy, the proposed strategy increases the
operation profit by 10.92%.

E. Analysis on Computation Time

The computation time of the proposed strategy is shown
in Table VII.

As can be observed from Table VII, the computation time
to formulate the service switching decision for the whole
lifetime is 453.91 s. As the service switching scheme is for‐
mulated before the operation of the BESS, the above compu‐
tation time is acceptable in the practical application. The
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Fig. 7. Second-stage decision results in EA service. (a) Active power. (b)
SOC.

TABLE VI
COMPARISON WITH SINGLE SERVICE STRATEGIES

Strategy

Proposed strategy

Single EA service strategy

Single FR service strategy

Optimal time span
of whole service period

(year)

3

4

2

Optimal operation
profit (105 $)

1.839

1.742

1.695
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Fig. 9. Results using existing whole-lifetime coordinated service strategy.
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TABLE VII
COMPUTATION TIME OF PROPOSED STRATEGY

Stage

First stage for service switching

Second stage for EA service

Second stage for FR service

Computation time (s)

453.910000

1.420000

0.000454
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computation time of the operation optimization in EA ser‐
vice is 1.42 s. As the battery power in EA service is formu‐
lated at the day-ahead stage, the above computation time is
acceptable in the day-ahead optimization. The computation
time for the formulation of battery power in FR service is
4.54 × 10-4 s. As the battery power in FR service is formulat‐
ed every one second according to the frequency deviation,
the above computation time is also acceptable in real-time
application.

VII. CONCLUSION

Unlike previous works using the BESS to provide a single
service or switch the service of the BESS only one time,
this paper proposes a much more flexible whole-lifetime co‐
ordinated service strategy for BESSs. The proposed strategy
switches the service of the BESS in EA and FR according to
the battery aging characteristics at different life stages. Both
external aging stress and internal reaction process are consid‐
ered in the analysis on battery aging characteristics. A two-
stage stochastic programming problem is formulated to opti‐
mize the proposed strategy. It is converted into an equivalent
deterministic MINLP problem and solved using McCormick
envelopes and a bound tightening algorithm. Testing results
show that the proposed strategy can make full use of the bat‐
tery aging characteristics. Compared with the existing single
service strategies and whole-lifetime coordinated service
strategies, the proposed strategy achieves the highest whole-
lifetime operation profit.

With the development of battery modeling methods, the
aging model in this paper can also be further improved to en‐
hance the effectiveness of the proposed strategy. It should be
noted that the proposed coordinated service strategy is not
limited by the service modes or the number of life stages
presented in this paper. For other service modes and other
number of life stages, the proposed strategy can also formu‐
late an optimal coordinated service scheme by including new
service rules and new degradation properties. The research
on other service modes and other numbers of life stages will
be carried out in our future work.
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