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Data-driven Power Flow Method Based on
Exact Linear Regression Equations
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Abstract——Power flow (PF) is one of the most important calcu‐
lations in power systems. The widely-used PF methods are the
Newton-Raphson PF (NRPF) method and the fast-decoupled PF
(FDPF) method. In smart grids, power generations and loads
become intermittent and much more uncertain, and the topolo‐
gy also changes more frequently, which may result in signifi‐
cant state shifts and further make NRPF or FDPF difficult to
converge. To address this problem, we propose a data-driven
PF (DDPF) method based on historical/simulated data that in‐
cludes an offline learning stage and an online computing stage.
In the offline learning stage, a learning model is constructed
based on the proposed exact linear regression equations, and
then the proposed learning model is solved by the ridge regres‐
sion (RR) method to suppress the effect of data collinearity. In
online computing stage, the nonlinear iterative calculation is not
needed. Simulation results demonstrate that the proposed
DDPF method has no convergence problem and has much high‐
er calculation efficiency than NRPF or FDPF while ensuring
similar calculation accuracy.

Index Terms——Data driven, exact linear regression equation,
Fast-decoupled power flow, Newton-Raphson method.

I. INTRODUCTION

POWER flow (PF) calculation, one of the most important
calculations in power system, is widely-used in power

system planning, operation, and control. The earliest pro‐
posed PF methods include Gauss-Seidel method and Newton-
Raphson PF (NRPF) method [1]. NRPF has better conver‐
gence and higher computational efficiency than Gauss-Seidel
method. Sparse techniques are also proposed to substantially
improve the computational efficiency of PF calculation [2].
To further improve the computational efficiency of NRPF,
the fast-decoupled PF (FDPF) method is proposed [3]. The
above PF methods need to first construct the nonlinear PF

equations based on the bus admittance matrix, and then ap‐
ply iterative methods to solve them. These methods are
called model-driven PF (MDPF) methods.

In the emerging smart grids, MDPF methods may have
significant shortcomings. First, power generations and loads
become intermittent and much more uncertain, and the topol‐
ogy also changes frequently, resulting in significant state
shifts. This will make the widely-used NRPF or FDPF diffi‐
cult to converge [4], as they usually use the PF result of the
previous snapshot as initial guess. Second, the grid parame‐
ters have a certain degree of uncertainty. The grid parame‐
ters stored in the database of power dispatching control cen‐
ters may differ from their actual values, which will negative‐
ly affect the performance of the MDPF methods.

In the smart grids, a large amount of historical/simulation
data are available. Based on these data, data-driven methods
are effective means to improve the calculation accuracy and
efficiency of traditional model driven power system analysis
methods [4]. Several data-driven power system analysis
methods have been proposed, but few of them are data-driv‐
en PF (DDPF) methods. In [5], a novel model-free control
(MFC) based emergency control scheme is presented. In [6],
the support vector regression (SVR) model is used to train the
mapping relationship between injection power and state vari‐
ables by using historical data, which cannot handle PV buses.
In [7], a DDPF method including a forward regression model
and an inverse regression model is proposed. But the method
in [7] cannot handle different topologies.

DDPF methods generally need to use historical or simula‐
tion data as sample data and construct a learning model to
obtain the mapping relationship between the boundary condi‐
tions of PF calculation and state variables. Through in-depth
analysis, we find that the difficulty of DDPF modeling is
mostly attributed to the nonlinearity of the PF equations.
The nonlinear PF equations may lead to the over-learning
problems of the existing DDPF learning models and affect
their calculation accuracy and computing efficiency. If the
original nonlinear PF equations can be accurately trans‐
formed into linear equations, the calculation accuracy and
the computing efficiency of the existing DDPF learning mod‐
els may be improved. This motivates us to propose a novel
DDPF method based on exact linear regression equations
(ELREs).

II. EXACT LINEAR PF EQUATIONS

The original nonlinear PF equations are as follows:

Manuscript received: October 12, 2020; revised: December 13, 2020; accept‐
ed: March 2, 2021. Date of CrossCheck: March 2, 2021. Date of online publica‐
tion: June 4, 2021.

This work was supported in part by National Natural Science Foundation of
China (No. 52077076) and in part by the State Key Laboratory of Alternate
Electrical Power System with Renewable Energy Sources (No. LAPS202118).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Y. Chen (corresponding anthor) and C. Wu are with the State Key Laboratory
of Alternate Electrical Power System with Renewable Energy Sources, School
of Electrical & Electronic Engineering, North China Electric Power University,
Beijing 102206, China (e-mail: chenyanbo@ncepu. edu. cn; 1125027552@qq.
com).

J. Qi is with the Department of Electrical and Computer Engineering, Stevens
Institute of Technology, Hoboken, NJ 07030, USA (e-mail: jqi8@stevens.edu).

DOI: 10.35833/MPCE.2020.000738

800



CHEN et al.: DATA-DRIVEN POWER FLOW METHOD BASED ON EXACT LINEAR REGRESSION EQUATIONS

Pi =Vi∑
jÎ k(i)

Vj (Gij cos θ ij +Bij sin θ ij ) (1)

Qi =Vi∑
jÎ k(i)

Vj (Gij sin θ ij -Bij cos θ ij ) (2)

where Pi and Qi are the active and reactive power injections
at bus i, respectively; k(i) denotes all buses directly connect‐
ed to bus i (including i); and Gij + jBij is the element in the
bus admittance matrix of node j and Gii + jBii is the element
in the bus admittance matrix of node i. Without the loss of
generality, we assume bus 1 is the slack bus and the state
variables (voltage magnitudes and phase angles) are ViÐθ i (i =
23N).

Base on nonlinear PF equations (1) and (2), MDPF meth‐
ods can be implemented. As in [8], the nonlinear PF equa‐
tions (1) and (2) can be transformed into the exact linear PF
equations:

Pi =GiiUi + ∑
jÎ k(i)j ¹ i

(Gij Rij +Bij Iij ) (3)

Qi =-BiiUi + ∑
jÎ k(i)j ¹ i

(Gij Iij -Bij Rij ) (4)

where Rij, Iij, and Ui are the auxiliary state variables, Rij =
ViVj cos θ ij, Iij =ViVj sin θ ij, and Ui =V 2

i .
The following equation should be built for each PV bus:

UiPV =Ui (5)

where UiPV =V 2
iPV, and ViPV is the given voltage magnitude

of the ith PV bus.
After the introduction of auxiliary state variables, the orig‐

inal nonlinear PF equations are accurately transformed into
linear counterparts. For each PQ bus, linear PF equations (3)
and (4) should be established. And for each PV bus, linear
PF equations (3) and (5) should be established. The total
number of linear PF equations is 2(N - 1), while the total
number of auxiliary state variables is N - 1 + 2b, where b is
the number of branches.

III. PROPOSED DDPF METHOD

A. Formulation of Exact Linear Regression Equations

Equations (3)-(5) can be further uniformly expressed as:

z͂ = Jy (6)

where z͂ =[UiPVPiQi ]
TÎ2(N - 1) is the auxiliary boundary

vector; y =[UiRijIij ]
TÎN - 1 + 2b is the auxiliary state vector;

and JÎ2(N - 1)´(N - 1 + 2b) is a constant matrix, whose elements
are determined by the network topology and parameters.

According to (6), the following ELRE can be obtained by:

y =Hz͂ + v (7)

where HÎ(N - 1 + 2b)´ 2(N - 1) is the unknown constant mapping
matrix depending on the network topology and network pa‐
rameters, which is obtained in the offline learning stage;
vÎN - 1 + 2b is the possible error matrix in historical/simula‐
tion data with the expected values E(v)= 0.

Multiple historical or simulation PF snapshots are used to
learn H. Suppose s historical or simulation PF snapshots
with the same topology are available, and each snapshot in‐
cludes the given boundary conditions and the results of the

PF calculation. The auxiliary boundary vectors and the auxil‐
iary state vectors of all s historical or simulation PF snap‐
shots are aggregated into:

Z =[ z͂1 z͂2  z͂s ]Î2(N - 1)´ s (8)

Y =[y1 y2  ys ]Î(N - 1 + 2b) ´s (9)

where z͂ iÎ2(N - 1) and y iÎN - 1 + 2b (i = 12s) are the auxilia‐
ry boundary vector and the auxiliary state vector in the ith

historical or simulation PF snapshot, respectively.
According to (7), the ELRE between Y and Z is obtained as:

Y =HZ +V (10)

where VÎ(N - 1 + 2b)´ s is the error matrix and E(V )= 0.

B. Offline Learning Stage of DDPF

The task of the offline learning stage is to aggregate the
historical or simulation PF snapshots with the same topology
which will be addressed in Section III-D, and then obtain
the mapping matrix H addressed below.

If the row of matrix Z is full rank, the weighted least
square (WLS) method can be used to estimate the H matrix
directly. However, the matrix Z obtained from historical or
simulation PF data may not meet the condition of full row
rank, i.e., the collinearity problem may exist in the historical
or simulation PF data. To suppress the effect of collinearity
of historical or simulation data, the ridge regression (RR)
method is used to estimate H corresponding to each topology:

Ĥ = argmin∑
i = 1

s

(y i -Hz͂ i )
T (y i -Hz͂ i )+ λ H

2

F
=YZ T (ZZ T + λI)-1

(11)

where Ĥ is the estimated value of H;  ×
F

is the Frobenius

norm; λ is a tuning parameter and λ > 0; and I is an identity
matrix with dimension 2(N - 1).

Model (11) can be run offline to obtain the estimated map‐
ping matrix Ĥ. The ratio of the number of historical/simula‐
tion PF snapshots s to the number of auxiliary state vari‐
ables 2(N - 1) affects the calculation accuracy of Ĥ. Obvious‐
ly, it is preferable to ensure that s ³ 2(N - 1) historical/simula‐
tion PF snapshots are available.

C. Online Computing Stage of DDPF

The task of the online computing stage is to quickly find
the historical or simulation power flow snapshots with the
same topology as the current snapshot so as to obtain the
corresponding Ĥ matrix. Then, the auxiliary state vector of
the current snapshot can be obtained by:

ŷnew = Ĥz͂new (12)

where z͂new and ŷnew are the auxiliary boundary vector and the
estimated auxiliary state vector of the current PF snapshot,
respectively.

Note that PF calculation is for the auxiliary state vari‐
ables, and the estimated values of the original state variables
of PF can be obtained. In a word, the main computational
burden of the online computing stage is the matrix multipli‐
cation, which is less than that of the iterative solution of
nonlinear algebraic equations in traditional NRPF or FDPF
methods.
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D. Topology Processing

Obviously, it is necessary to judge whether different snap‐
shots have the same topology in both the offline learning
stage and online computing stage.

According to [4], if z͂ i and z͂ j are strongly correlated, it can
be considered that z͂ i and z͂ j have the same topology. The
Pearson correlation coefficient (PCC) is used to measure the
correlation. The PCC of z͂ i and z͂ j is calculated as:

P(z͂ iz͂ j )=
∑
k = 1

m

(z͂ ik - z͂̄ i )(z͂ jk - z͂̄ j )

∑
k = 1

m

(z͂ ik - z͂̄ i )
2 ∑

k = 1

m

(z͂ jk - z͂̄ j )
2

(13)

where z͂ iÎm; z͂ jÎm; m = 2(N - 1); z͂ik and z͂jk are the kth ele‐

ments of z͂ i and z͂ j, respectively; z͂̄ i =∑
k = 1

m

z͂ik m; z͂̄ j =∑
k = 1

m

z͂jk m;

and P(z͂ iz͂ j ) is the PCC between z͂ i and z͂ j, and if P(z͂ iz͂ j )³ η,
then z͂ i and z͂ j can be considered to have the same topology,
the recommended threshold η is 0.90.

In offline learning stage, the historical/simulation snap‐
shots with the same topology are clustered based on (13). In
the online computing stage, the historical/simulation snap‐
shots with the same topology as the current snapshot are al‐
so found based on (13), and then the corresponding Ĥ can
be obtained.

Remark: because there is no need for nonlinear iterative
computation in the offline learning stage and online comput‐
ing stage, the proposed DDPF method has no convergence
problem.

IV. CASE STUDIES

The performance of the proposed DDPF method is tested
and compared with NRPF, FDPF, and two existing DDPF
methods in [6], [7] on IEEE transmission and distribution
systems on an Intel(R) Core(TM) i5 PC, 2.30 GHz processor
with 8 GB RAM. The algorithms are implemented in MAT‐
LAB, and NRPF and FDPF are calculated by Matpower
(convergence accuracy is 10-8). In all tests, λ in (11) is set to
be 10-6.

To verify the correctness of the topology identification
method based on PCC, 6 sets of auxiliary boundary vectors
are taken from the IEEE 300-bus system, which correspond
to three different topologies for the test, i. e., z͂1 and z͂4, z͂2

and z͂5, and z͂3 and z͂6, respectively, having the same topology.
The PCC correlation matrix is calculated and shown in Fig.
1, in which it can be observed that the PCC method can ac‐
curately identify the same topology. Further, the topological
identification results of all other IEEE systems are all correct.

To test the effect of the number of snapshots used in the
offline learning stage on the estimation accuracy of the pro‐
posed DDPF method, let Ratio = s/[2(N - 1)]. For different ra‐
tios (from 0.1 to 1.2), the mean absolute error of voltage
magnitude (denoted by |dV|m) and the mean absolute error of
phase angle (denoted by |dθ|m) between the true values and
the proposed results of DDPF are given in Figs. 2 and 3. It
can be observed that as Ratio increases, both |dV|m and |dθ|m

gradually decrease.

When Ratio = 1, both |dV|m and |dθ|m obtained by the pro‐
posed DDPF method are smaller than those given in [6] and
[7] as shown in Table I, thereby proving that the proposed
DDPF method has higher calculation accuracy. Note that
even when Ratio = 0.2, both |dV|m and |dθ|m are smaller than
10-4, which indicates that the proposed DDPF method can
still work well with relatively small number of historical/sim‐
ulation PF snapshots.

Suppose the uncertainty of power generations and loads
makes the voltage magnitudes vary randomly between 0.95
and 1.05 and the phase angles vary randomly between -15°
and 15°. One hundred tests are performed and the state vec‐
tor of the previous snapshot is used as the initial guess for
NRPF and FDPF.
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Fig. 1. PCC correlation matrix of 6 sets of auxiliary boundary vectors.

|d
V|
m

R
atio

No. of buses3001.2
1.0

0.6

0.2
0

10-7

10-6

10-5

10-4

0.4

0.8

123 118 57 33 30 14

Fig. 2. |dV|m with Ratio for different IEEE systems.

R
atio

|d
θ|

m

No. of buses3001.2
1.0

0.6

0.2
0

10-7

10-6

10-5

10-4

0.4

0.8

123 118 57 33 30 14

Fig. 3. |dθ|m with Ratio for different IEEE systems.

802



CHEN et al.: DATA-DRIVEN POWER FLOW METHOD BASED ON EXACT LINEAR REGRESSION EQUATIONS

The number of times that NRPF and FDPF do not con‐
verge in 100 tests (denoted by η) is given in Table II. As can

be seen from Table II, NRPF and FDPF have the difficulty
in the convergence for a large percentage of the tests when
there is an uncertainty in power generations and loads,
whereas the proposed DDPF method obtains accurate
enough results in all cases just as those in Table I. Also in
Table II, the average number of iterations, the average com‐
putation time of the DDPF method in [6], and the proposed
DDPF method are compared with those of NRPF and FDPF
when they converge. Since the online computing stage of
DDPF methods do not require iterative calculation, the num‐
ber of iterations is 0. As can be seen from Table II, among
the listed PF methods, the online computing of the proposed
DDPF method has much higher computing efficiency than
the other methods and is thus more suitable for large-scale
networks.

Furthermore, in 100 continuous PF sampling snapshots,
the topology is assumed to change continuously. For each
sampling snapshot, NRPF, FDPF, the DDPF method in [7],
and the proposed DDPF method are tested. In all the tests,
the state vector of the previous snapshot is used as the initial
guess of the current snapshot for NRPF and FDPF. The num‐
ber of times that NRPF and FDPF do not converge in 100
tests is given in Table III. As can be seen from Table III,
NRPF and FDPF might have difficulty in convergence when
the topology changes frequently. Note that the DDPF meth‐
od in [7] cannot be used when the topology changes. There‐

fore, the average number of iterations and computation time
are expressed as ¥ in Table III. Whereas in all tests, the pro‐
posed DDPF method correctly finds the historical/simulation
snapshots with the same topology as the current snapshot,
and then obtains the PF solutions with the same accuracy as
that of Table I, the average number of iterations and the
computation time of the proposed DDPF method are also
given in Table III, thereby proving that the proposed DDPF
method can quickly obtain high-precision PF solutions even
when the topology changes frequently.

V. CONCLUSION

In the emerging smart grids, traditional MDPF methods
may have convergence problems because of the intermittent

and uncertain power generations and loads as well as the fre‐
quent changes of the topology. At the same time, the accura‐
cy of traditional MDPF methods may also be affected by in‐

TABLE I
|dV|m AND |dθ|m OBTAINED BY DIFFERENT DDPF METHODS WHEN Ratio = 1

System

IEEE 14

IEEE 30

IEEE 33

IEEE 57

IEEE 118

IEEE 123

IEEE 300

DDPF in [6]

|dV|m

7×10-5

1×10-4

2×10-4

6×10-4

1×10-3

2×10-3

2×10-3

|dθ|m

4×10-5

8×10-4

1×10-4

2×10-4

8×10-4

9×10-4

4×10-4

DDPF in [7]

|dV|m

1×10-5

1×10-5

7×10-6

2×10-4

1×10-4

3×10-6

2×10-4

|dθ|m

1×10-3

2×10-3

4×10-4

3×10-2

7×10-2

3×10-4

2×10-4

Proposed DDPF

|dV|m

8×10-6

3×10-6

3×10-6

6×10-5

5×10-5

3×10-6

2×10-7

|dθ|m

2×10-5

1×10-5

2×10-5

9×10-5

5×10-5

2×10-4

5×10-7

TABLE II
CALCULATION RESULTS OF SEVERAL PF ALGORITHMS UNDER UNCERTAINTY OF GENERATION AND LOAD IN 100 TESTS

System

IEEE 14

IEEE 30

IEEE 33

IEEE 57

IEEE 118

IEEE 123

IEEE 300

η

23

66

78

91

88

84

92

Average number of iterations

NRPF

2

3

4

3

3

4

5

FDPF

6

11

10

7

8

10

9

DDPF in [6]

0

0

0

0

0

0

0

Proposed DDPF

0

0

0

0

0

0

0

Computation time (ms)

NRPF

11.61

14.87

16.24

20.07

34.63

40.12

76.47

FDPF

10.52

13.25

14.57

17.91

28.43

33.78

59.39

DDPF in [6]

1×103

3×103

3×103

4×103

6×103

6×103

25×103

Proposed DDPF

0.08

0.09

0.09

0.18

0.41

0.43

1.44

TABLE III
CALCULATION RESULTS OF SEVERAL PF METHODS WHEN TOPOLOGY CHANGES FREQUENTLY IN 100 TESTS

Systems

IEEE 14

IEEE 30

IEEE 33

IEEE 57

IEEE 118

IEEE 123

IEEE 300

η

45

39

37

31

23

22

20

Average number of iterations

NRPF

2

3

4

4

4

4

5

FDPF

6

10

10

8

8

10

9

DDPF in [7]

¥

¥

¥

¥

¥

¥

¥

Proposed DDPF

0

0

0

0

0

0

0

Computation time (ms)

NRPF

11.28

14.19

16.93

26.67

39.89

40.57

77.61

FDPF

10.79

12.09

14.88

19.13

28.17

33.61

58.98

DDPF in [7]

¥

¥

¥

¥

¥

¥

¥

Proposed DDPF

0.09

0.11

0.12

0.25

0.53

0.61

1.88

803



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 3, May 2022

accurate parameters. In order to solve the above problems,
this letter proposes a novel DDPF method including offline
learning stage and online computing state which can make
full use of historical/simulation PF big data. The proposed
DDPF method has the following advantages: ① it has no
convergence problem and has very high computational effi‐
ciency; ② it can deal with different topological structures
and can adapt to the frequent changes of topological struc‐
tures in smart grids.

Note that there may be gross errors in real-time power
flow snapshot caused by accidental fault or malicious attack.
In these circumstances, it may be impossible to get accurate
state vector by using the proposed DDPF method directly.
To this end, we can combine the proposed method with state
estimators so as to obtain the estimation value of state vec‐
tor quickly and accurately. Also, the proposed DDPF method
can be extended to the integrated energy system (IES) so as
to solve the problem of fast and accurate multi-energy calcu‐
lation of IES in uncertainty circumstances. These are our fu‐
ture research areas.
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