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Abstract——The quantity and heterogeneity of intelligent ener‐
gy generation and consumption terminals in the smart grid are
increasing drastically over the years. These edge devices have
created significant pressures on cloud computing (CC) system
and centralised control for data storage and processing in real-
time operation and control. The integration of edge computing
(EC) can effectively alleviate the pressure and conduct real-time
processing while ensuring data security. This paper conducts an
extensive review of the EC-CC computing system and its appli‐
cation to the smart grid, which will integrate a vast number of
dispersed devices. It first comprehensively describes the rela‐
tionship among CC, fog computing (FC), and EC to provide a
theoretical basis for the differentiation. It then introduces the
architecture of the EC-CC computing system in the smart grid,
where the architecture consists of both hardware structure and
software platforms, and key technologies are introduced to sup‐
port functionalities. Thereafter, the application to the smart
grid is discussed across the whole supply chain, including ener‐
gy generation, transportation (transmission and distribution net‐
works), and consumption. Finally, future research opportunities
and challenges of EC-CC while being applied to the smart grid
are outlined. This paper can inform future research and indus‐
trial exploitations of these new technologies to enable a highly
efficient smart grid under decarbonisation, digitalisation, and
decentralisation transitions.

Index Terms——Smart grid, edge computing, fog computing,
cloud computing, Internet of Things, data fusion, container tech‐
nology.

I. INTRODUCTION

WITH the growing demand for low-carbon energy and
smart energy system control, the quantity and diversi‐

ty of Internet of Things (IoT) based intelligent devices in the
smart grid are expanding rapidly [1]-[3] such as high-defini‐
tion (HD) cameras [4], electric vehicles (EVs) [5], and intel‐
ligent domestic appliances [6]. These technologies can effec‐
tively improve energy utilization, clean energy penetration,
and operation security in the smart grid. Cisco systems pre‐

dicts that there will be approximately 50 billion intelligent
devices connected to the Internet by 2020 [7]. National Grid
predicts that the UK stock of EVs could reach as high as 36
million by 2040 [8]. A recent research reports that the world‐
wide number of Wi-Fi devices in smart homes will reach a
remarkable 17 billion units by 2030 [9]. In the energy sys‐
tem domain, these new terminals have already formed a cru‐
cial physical basis to enable a low-carbon smart grid transi‐
tion [10].

However, the existing control paradigm is still centralised,
where the main computation is conducted at the cloud or
control centre [11]. Although many mature intelligent cloud
platforms have been in practical use, this operation frame‐
work creates dramatic pressures on communication channels
because of limited bandwidth [12] - [15]. The 5th generation
(5G) mobile network technologies can be a solution, but
there are geographical constraints for the equipment at re‐
mote locations such as transmission lines and transformers
[16]. In addition, the huge amount of heterogeneous data
from various devices increases the computational and stor‐
age burden for cloud computing (CC) [17]. Thus, the latency
of CC can be too high to perform some essential real-time
tasks in the smart grid such as state monitoring of power
equipment with fault alarms. These issues of bandwidth con‐
gestion, limited speed, and heterogeneous data compromise
the applicability of CC to the future smart energy system,
which will be decentralised with numerous remote ends.

To this end, fog computing (FC) is introduced to reduce
the distance between edge devices and cloud centres [18],
and edge computing (EC) is developed to solve real-time ap‐
plications and provide privacy protection [19]. EC refers to
the platform that integrates network, computing, storage, and
application close to the local physical environment or data
source to provide services [20]. Compared with FC, EC is
closer to the edge devices, thus technically easier to support
fast response [21], real-time data processing, and decision
making [22]. However, the systems only deployed with EC
also have downsides. For example, without the cooperation
between independent prosumers in microgrids, the islanded
units cannot meet the global optimal operation to accelerate
the penetration of renewable energy sources [23]. By inte‐
grating EC with the CC system to form an EC-CC system, it
can efficiently perform real-time tasks with massive data,
combining their advantages but overcoming their shortcom‐
ings while applied to the smart grid.
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As shown in Fig. 1, the relationship among EC, FC, and
CC can be linked to the nervous system of human beings.
CC, which could be considered as the brains, makes deci‐
sions and sends orders to all body parts. FC works as the
neural centre to make quick decisions and control certain
parts of the body. Further, EC, which could be considered as
super nerve cells, senses the outside world, receives the in‐
formation from higher layers, and makes simple emergency
decisions. Generally, for a fully functional computing sys‐
tem, EC is not a substitute for CC. However, as a functional
complement [17], EC provides abundant local applications
while ensuring high efficiency and low latency.

It should be noted that this paper focuses on EC-CC sys‐
tem but not FC, because FC is a node of a tree network,
analogous to the intermediate stage of EC and CC, as shown
in Fig. 1 [24], where PV stands for photovoltaic. Specifical‐
ly, from the perspective of EC nodes, FC nodes can be ob‐
served as tiny CC nodes to collect their results and perform
global optimisation. From the perspective of CC nodes, FC
nodes can be observed as aggregated EC nodes to obtain the
data from edge devices [25], [26]. Therefore, we only focus
on hierarchical EC-CC system, discussing the key structure
and major applications in the smart grid.

The coordinated EC-CC system has already been widely
developing in the smart grid such as hierarchical energy
management systems (EMSs) [27]. However, there lacks a
comprehensive and systematic review of EC-CC system
utilised in broad smart grid. Therefore, this paper presents a
comprehensive review of this emerging computing system
and applications in the smart grid. All platforms, technolo‐
gies, and applications reviewed are based on practical appli‐
cations.

To present a comprehensive review of EC-CC system for
smart grid applications, this paper ① summarizes the exist‐
ing structure of EC-CC system used in the smart grid and
presents a comprehensive structure that combines the exist‐
ing structures; ② discusses the software platforms of EC-CC
system used in the smart grid; ③ describes core technolo‐
gies needed in applying EC-CC system to the smart grid, in‐
cluding data processing technologies and container technolo‐

gies; ④ summarizes the current applications of EC-CC sys‐
tem in the whole energy supply chain, generation, transmis‐
sion, distribution, and consumption of the smart grid; and ⑤
proposes a few future research topics to overcome the limita‐
tions of the existing EC-CC system while being applied to
the smart grid.

The remainder of this paper is organized as follows. Sec‐
tion II illustrates the architecture of EC-CC system in the
smart grid. Section III summarises the key technologies of
the EC-CC system. Section IV and Section V conclude the
applications of EC to the smart grid and consumer, respec‐
tively. Section VI recommends future opportunities and chal‐
lenges, and Section VII concludes this paper.

II. ARCHITECTURE OF EC-CC SYSTEM IN SMART GRID

The architecture of EC in the smart grid focuses more on
equipment safety and user experience, and the hardware and
software are widely used to serve these applications.

A. Physical Structure of EC-CC System in Smart Grid

There are various versions of EC-CC architecture for
smart grid applications [4], [5], [28]. A comprehensive archi‐
tecture of EC-CC system is given in Fig. 2, which considers
the common characteristics of different technology versions.
In Fig. 2, PLC stands for programable logic controller and
PDC stands for phasor data concentrator. The equipment
with their applications can be sorted into four layers: percep‐
tual layer, network layer, EC layer, and application layer. All
the terminal devices are deployed in the perceptual layer to
collect real-time data, which will be processed in the EC lay‐
er to perform local computation.

Then, the selected pre-processed data will be sent to the
application layer to realize advanced functions and connect
with other EC nodes. The application layer is the communi‐
cation channel among these three layers. The specific mean‐
ings of each layer are described below.

The first layer is the perceptual layer, which contains sen‐
sors, monitoring devices, and other intelligent terminals to
collect the data from the physical environment and equip‐
ment. This layer includes common smart devices such as
smart meters and EVs, sensors in supervisory control and da‐
ta acquisition (SCADA) systems, and phase measurement
units (PMUs), which are widely used in the smart grid.

Then, the collected data are sent to the EC layer via the
network layer 1, which is the communication channel be‐
tween the perceptual layer and EC nodes. If the computing
resources in the EC layer are directly installed on an edge
device and only provide services for this device, then net‐
work layer 1 can be removed. Since the distance between
the perceptual layer and EC nodes is small and the power
for many edge devices in the perceptual layer is supplied by
batteries, the communication methods for network layer 1
should be of short distance and low power. Certainly, tradi‐
tional methods such as wireless local area network (WLAN)
and Ethernet LAN can provide a stable connection between
EC and terminals [19]. However, considering the aforemen‐
tioned short-distance and low-power requirement of network
layer 1, many other local wireless communication methods
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are more suitable in certain scenarios, including LoRa, Zig‐
Bee, Wi-Fi, and bluetooth. The above communication tech‐
nologies have different characteristics [28], [29]. They
should be used according to practical needs. For example,

ZigBee is largely used in smart household energy systems
because of its short communication distance, low-power con‐
sumption, and high data rate.

In the EC layer, the collected data will be standardised,
processed, analysed, and stored in EC nodes with decryption
acceptance and encryption outgoing. Quick actions can also
be taken at EC nodes for emergency tasks such as load shed‐
ding. The commands of these quick actions will be directly
sent back to the perceptual layer or related controllers. The
record of these quick actions will be sent to the CC layer for
operators or users at the cloud node to check and review.

Thereafter, only the key pre-processed data will be sent to
the application layer via network layer 2. For network layer
2, the communication distance is much longer, and the data
size is larger, which does not suit the above local wireless
communication methods. As for EC nodes in remote areas
with low requirements for data security, public telecommuni‐
cation networks can be utilised to reduce the investment in
communication. Finally, after receiving the data from EC
nodes, the application layer can perform advanced functions
such as real-time monitoring, early warning, benefits analy‐
sis, record storage, and data visualisation.

It is worth noting that the physical position of EC nodes
is flexible, where the only requirement is close to proximity.
EC devices can be installed on terminals to process the data
in real time and make quick decisions without network layer
1. In addition, sometimes EC nodes are located at transmis‐
sion links as a data fusion station, which collects the data

from different terminals. For example, EC nodes provide an
efficient fault processing system in a distribution network
and domestic intelligent application system as the smart gate‐
ways [6]. Apart from the data fusion nodes, EC can also be
integrated with cyber-physical system (CPS) units. Integrated
with EC, CPS and distribution networks are more conducive
to hierarchical intelligent control. In this comprehensive sys‐
tem, fusion analysis can be based on the four layers of EC,
the three levels of CPS (unit level, system level, and sys‐
tems-of-systems level), and the three layers of distribution
networks (distribution master station layer, distribution elec‐
tronic station layer, and distribution terminal layer) [30].

B. EC Platform in Smart grid

The key software of the EC-CC system in smart grid ap‐
plication is the EC platform, which realises all basic local
functions and integrates various data sources. In a way, the
EC platform devices enhance the efficiency and safety of the
whole system. With the increasing quantity of terminal devic‐
es, many information and technology (IT) companies are de‐
veloping EC platforms to deal with massive edge data. In
2006, Amazon launched Amazon Web Services (AWSs)
Greengrass [31], and in 2018, it was revised based on ma‐
chine learning to adapt to various operation scenarios of
edge devices. In 2017, Microsoft launched Azure IOT Edge
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[32], which supported the containerisation of CC load and
can be installed on intelligent gateways. In 2018, Google
launched Cloud IoT Edge [33], which promoted the deploy‐
ment of artificial intelligence (AI) at the edge side. It is not‐
ed that EC platforms in the smart grid are more engineering-
oriented.

This section introduces three mainstream EC platforms
that can be used in the smart grid. Apart from the common
performance of low delay, low cost, and high intelligence,
the unique characteristics and service scenarios are also dis‐
cussed.
1) EdgeBox EC Platform

EdgeBox was proposed by JiangHang Intelligence, which
mixed virtual machines and containers to realise efficient re‐
source management [34]. The components of EdgeBox are
based on advanced deep learning algorithms, which can effi‐
ciently recognise images and videos. At present, AI compo‐
nents include the object recognition component, face recogni‐
tion component, anomaly aggregation analysis component,
limb behaviour analysis component, and electronic fence
component, etc. The main application scenarios of this plat‐
form are abnormal detection of power lines and predictive
maintenance of charging substations. The power consump‐
tion of EdgeBox has been minised, which enables EdgeBox
to support fieldwork duration for 30 days. At the same time,
the speed of recognising scene pictures reaches 0.8 s per pic‐
ture, which can conduct real-time operation [10].

In general, this EC platform is designed for fault detection
of power lines and substations based on image recognition
with low-power consumption. The EC-CC system is utilised
to improve the security of daily operations in the smart grid.
2) Transformer Terminal Unit (TTU) EC Platform

Based on the industrial advanced reduced-instruction-set-
computer machines (ARMs) chip, a TTU EC platform is pro‐
posed for distribution transformers [35]. With the interface
modularisation, the hardware interface module is connected
to the main CPU to realise hot plug, plug and play, and auto‐
matic identification. The main application scenarios include:
① low-voltage (LV) circuit monitoring; ② automatic identi‐
fication of LV electrical topology; ③ LV circuit impedance
calculation; ④ lean analysis of station area line loss; ⑤ LV
fault research and positioning; ⑥ distributed PV generation
control with the auxiliary operation; and ⑦ optimization of
EV charging points.

This TTU EC platform can not only perform monitoring
and fault detection, but also extend its services to many oth‐
er advanced functions such as PV-based auxiliary operation
and the optimization of EV charging points. This enables
more intelligent operations in the smart grid based on EC-
CC system.
3) FogHorn EC Platform

FogHorn and Google launched a platform for deploying
EC in 2018. FogHorn [36] combines a high-performance
event processor, machine learning algorithms, and software
development kit (SDK) to analyse collected data in real time
and return a large number of calculation results immediately.
FogHorn is mainly used in the charging station to improve
resource utilisation, predict maintenance demand, and ensure

a high level of customer satisfaction with faster response.
Different from the previous two EC platforms, FogHorn EC
platform is more concerned with commercial benefits, which
enhances the economic value of EC platforms and can accel‐
erate the penetration of EC-CC system in the smart grid.

III. KEY TECHNOLOGIES OF EC-CC SYSTEM

There are many technologies of EC-CC system functions
to be applied to the smart grid. Most of these technologies
are widely used and illustrated in distributed computing such
as data collection and transmission technologies. Therefore,
only essential technologies are discussed in this section,
which is also the basis for the following section of applica‐
tion scenarios.

A. Data Processing Technology in EC-CC System

For the EC-CC system in the smart grid, the data process‐
ing not only determines the efficiency of daily operations
but also seriously affects the user privacy. This section re‐
views the existing research on data fusion, storage, and secu‐
rity to reveal the core technologies of data processing.
1) Data Fusion

The distributed computing of EC can effectively reduce
data quantity pressure on CC, but the heterogeneity of data
from different devices still causes a huge problem. Hence,
data fusion technology is necessary for EC-CC system in
smart grid applications. Data fusion at edge devices refers to
the acquisition, processing, and synergistic combination of
information to provide a better understanding of a certain
phenomenon [37].

There are many studies on data standardisation and data
fusion in the smart grid, and some of them can be applied to
the EC-CC system. A decision-oriented format to combine
data fusion technologies for smart grid management is pro‐
posed in [17]. The data cleaning technology is applied to
deal with the massive and heterogeneous data and a Markov
logic network is employed to handle data conflict problems
in data fusion, which improves the efficiency of EC nodes to
process the massive and heterogeneous data from the percep‐
tual layer. Besides, the utilisation of machine learning meth‐
ods highly enhances the capability of EC nodes to process
big data. As an example, [38] designs a data-driven fusion
model with the convolutional neural network (CNN) to re‐
alise the efficient performance of state estimation for the
smart grid. The machine learning methods bring great bene‐
fits for EC nodes while processing massive and heteroge‐
neous data.

The above methods are designed for the system level of
smart grids, but data fusion also plays an important role for
participants in smart grids. For example, for batteries in ener‐
gy storage (ES) and EV, [39] presents a model-based data fu‐
sion method. In this model, the individual current and volt‐
age measurements of cells are combined to reduce the mea‐
surement uncertainty and handle uneven current and voltage
distributions. This data fusion method has more advantages
to identify aging batteries with heterogeneous parameters.
However, with growing categories of intelligent terminals
like smart household appliances, the data fusion method still
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needs to be improved to meet new requirements.
2) Data Analysis

Data analysis mainly relies on computing methods in EC
or CC. With the development of machine learning, various
functions can be realised by historical data [40]. Taking
CNN-based deep learning as an example, a series of algo‐
rithms have been proposed to process image-based intelli‐
gent monitoring and recognition [41]. In online security mon‐
itoring systems, the demand for image analysis is mainly re‐
quired for the intelligent diagnosis and automatic early warn‐
ing of defect scenes. Alexnet network model is used in the
verification test in [4], where the performance of CNN has
been significantly improved through using larger data sets,
stronger models, and more optimised fitting technologies. Be‐
sides, CNN [42] and long short-memory network [43] have
a strong ability of data prediction and have been widely
used in time-series trend predictions. Recently, a long short-
memory network has been widely used in trend prediction of
power load and wind power. These methods are applicable
in the EC-CC system to enable intelligent and flexible analy‐
sis for decision making in the smart grid.
3) Data Storage

The data collected by edge sensors and detectors should
be stored in both EC and CC. For EC, the current operation
and future prediction mainly depend on historical data. For
CC, the self-learning and updating of computing models also
need the analysis from previous information. Hence, data
storage involves local storage and cloud storage in the EC-
CC system. Improving storage efficiency and sending suit‐
able data to the cloud are the key data storage technologies
that need further investigation.

There are several methods for dealing with the issues of
data storage. Firstly, the efficient pre-cache technology can
effectively alleviate the latency of EC. The edge nodes can
predict the traffic demand and pre-cache possible content in
distributed nodes, which dramatically reduces the delay of
downloading information from the remote data centre [44].
Reference [45] proposes a collaborative edge caching meth‐
od, which is integrated with adaptive bit rate (ABR) stream‐
ing to improve storage benefits. This new method enhances
the cache hit ratio and balances the processing load in the
network. In [46], the distributed energy model service
(DEMS) technology is used to realise the massive data man‐
agement in distribution networks. The key idea of DEMS is
“divide and rule” through vertical and horizontal segmenta‐
tions. Specifically, the vertical segmentation enables the clas‐
sification and processing of heterogeneous data, while the
horizontal segmentation realises the distributed storage and
operation of edge data.
4) Data Security

With the increasing complexity of the smart grid and the
continuous upgrading of computer viruses, it is bound to
bring a threat to data transmission [47]. Wi-Fi, ZigBee, blue‐
tooth and other communication technologies applied in the
smart grid are wireless without physical isolation, which is
vulnerable to privacy leakage and cyber-attacks. For exam‐
ple, energy consumption can reveal private information

about the living habits and income of a household. Even
worse, hackers can easily determine whether a property is
vacant, making it vulnerable to burglary [19]. Therefore, the
data security technology is crucial in the EC-CC system.

There are some measures to reduce these risks such as a
strong password policy, encryption, and two-factor authenti‐
cation [48]. Based on these measures, integrated with the
characteristics of the smart grid, some security methods are
proposed. For example, low-power wide area network (LP‐
WAN) terminal equipment with a private LoRa network has
certain computing capability and can deploy lightweight en‐
cryption algorithms [49]. Therefore, smart gateways can en‐
capsulate and encrypt the data uploaded by terminal devices.
Some sensitive data can be processed directly at the edge
without uploading to the network or CC, thus improving da‐
ta security. In addition, [50] proposes a new cooperative de‐
tection strategy based on EC to solve false data injection at‐
tack in energy measurement systems. It not only designs de‐
tection rules but also evaluates the confidence of data sourc‐
es.

B. Container Technology

Container technology is a virtualization technology based
on the lightweight operating system layer. The applications
of EC can be applied in containers to effectively reduce the
complexity of EC-CC infrastructure [51]. Container technolo‐
gy mainly includes three key components: container virtue,
container isolation, and cloud-edge collaboration. A function‐
ally powerful container system of EC requires all these three
to work together. In a way, containers replace the package
management tools to control version upgrades and the depen‐
dencies of applications [52]. Compared with virtual ma‐
chines, containers are lighter with higher installation speed.
The deployment of containers is between milliseconds and
seconds, much faster than virtual machines [35]. Therefore,
container technology can realize the function expansion and
update of EC-CC system, thus enhancing the flexibility, scal‐
ability and user experience of EC-CC system in the smart
grid.
1) Virtual Technology of Containers

Virtual technology of containers, also known as hypervi‐
sor technology [53], can enable multiple lightweight virtual
operating systems to share one hardware foundation. Each
lightweight virtual machine is a container with an indepen‐
dent CPU, memory, disk, and network. The virtual technolo‐
gy of containers is key to smooth the transmission and fast
iteration from the existing system to the future system [22].

Docker technology further promotes the development of vir‐
tual technology of containers. As an open-source engine of ap‐
plication container [54], Docker technology enables virtualisa‐
tion application so that the operation on the virtual host can be
replaced by the operation on programming [55]. Besides, be‐
cause of lightweight, fast deployment, expandable and good
isolated features [56], Docker has the following advantages:
① the speed of creating containers is much faster than directly
creating virtual machines; ② hardware size can be reduced;
and③ version control is easier for operators.
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2) Container Isolation Technology
Isolation is the key technology of containers for better per‐

formance [57]. At present, Docker relies on Namespace as
an encapsulation method to isolate containers. The main ob‐
jects of isolation include network, process, message, file sys‐
tem, hostname, IP, etc.

The container isolation technology can be classified as re‐
source isolation and data isolation [58]. Resource isolation can
prevent mutual interference between containers and control
the operation of each container. Data isolation limits the abili‐
ty of containers to access information. On one hand, container
isolation technology can prevent the system from splitting af‐
ter a single container malfunction. On the other hand, it can
provide data privacy services for specific users [10]. Mean‐
while, containers with isolation are easier for EC operators to
update versions and upgrade each container independently.
3) EC-CC Information Interaction

As the micro virtual computers for EC, containers can be
connected to each other by a pair of virtual network cards
[35]. The collaboration between containers and the cloud re‐
quires EC-CC collaborative technology. This technology re‐
quires different collaboration for different cloud service
modes such as infrastructure as a service (IaaS), platform as
a service (PaaS), and software as a service (SaaS).

As shown in Fig. 3 [35], as for SaaS, the local application
needs to be connected with the services on the cloud. Thus,
the data will be updated timely on the cloud, and the compu‐
tation model in EC can also be updated by the cloud.

As for PaaS, AI collaboration mainly requires EC nodes
to provide AI model training, operation, and model upgrad‐
ing. Data collaboration requires EC nodes to collect terminal
information, realise preliminary data processing and analysis,
and upload the processing results to the cloud. The cloud
provides storage, analysis, and value mining of massive da‐
ta. Container management collaboration refers to the manage‐
ment strategy of the cloud for containers. EC nodes provide
edge application deployment, operation support, and life cycle
management. The cloud realises the full-life cycle manage‐
ment of edge applications, including application publishing, in‐
stallation, uninstalling, updating, monitoring, and recording,
etc. IaaS requires all the collaboration in PaaS and SaaS, but
the cloud only provides the infrastructure without related plat‐
forms or software.

IV. APPLICATION OF EC-CC SYSTEM TO SMART GRID

A. EC-CC System for Power Generation

Intelligent renewable energy generation has received exten‐
sive attention recently, and the concept of the smart power
plant has also been mentioned more frequently [59], [60].
With big data, deep learning, industrial cloud platform, and
other information technologies, a lot of functions and appli‐
cations can be improved in power generation such as renew‐
able energy output monitoring, equipment performance diag‐
nosis, early warning, information security, and operation cost
reduction [6]. To realise these functions, the EC-CC system
is needed to provide efficient computation and flexible con‐
trol strategies.

Among those functions, real-time monitoring of equip‐
ment, electricity subsidy settlement, and power generation
prediction can be mainly completed by EC at the edge side.
In this way, the operating pressure of the cloud is reduced ef‐
fectively with the information protection of individual users.
Reference [2] proposes a collaborative system between re‐
newable energy and EC. In this system, EC is applied for
microgrids and powered by renewable energy. Thus, this re‐
newable-energy-driven EC system can integrate EC with the
microgrid to incorporate a highly volatile renewable energy
supply and maximise its usage to reduce carbon emissions.

Taking PV as an example, the structure of the EC-CC sys‐
tem in the PV generation system is shown in Fig. 4. The
physical basis of an intelligent power plant is the equipment
layer, which collects the information of equipment status and
environmental conditions. Data pre-processing and intelli‐
gent analysis are deployed at the edge side to improve the
sensitivity of operation response. In this system, edge nodes
are installed on PV inverters and smart meters to process
and store the collected data. The PV cloud platform mainly
provides services such as information release, scheme recom‐
mendation, grid connection, electricity fee settlement, and pe‐
riodic maintenance [61]. In this way, a fully functional EC-
CC system for PV is established with fast response and intel‐
ligent operations.

B. EC-CC System for Transmission Network

EC-CC system can play an important role in improving
the safety and security of transmission networks, including
lines, transformers, and breakers, with a more efficient and
intelligent monitoring system.
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1) Transmission Lines
Currently, the inspection of transmission lines is mainly

conducted manually, which wastes human resources and can‐
not guarantee the safety of all lines in real time [4]. The pop‐
ularity of HD monitors improves the accuracy of automatic
monitoring systems for power lines. Besides, the AI recogni‐
tion technology based on deep learning can also help effec‐
tively identify some faults or dangerous conditions. Howev‐
er, if the images are always sent back to the cloud for analy‐
sis, it requires huge communication bandwidth and con‐
sumes massive computing power on the cloud. As a result,
the image or video sampling frequency in a real security
monitoring system is low, which cannot achieve real-time
monitoring.

Therefore, for online monitoring of transmission lines, it
is an urgent problem to transmit the collected data safely
and timely to the data centre [62], [63]. The EC-CC system
can significantly reduce communication congestion and re‐
sponse delay by being closer to the clients with much fewer
communication hops. Apart from monitoring, the fault detec‐
tion and operation reliability are also the main tasks for en‐
suring the security of transmission line, where the EC-CC
system can play a key role.

As shown in Fig. 5, based on the EC-CC system in Fig.
2, the structure of the EC-CC system for transmission lines
also consists of four layers, which are perceptual layer, EC
layer, network layer, and application layer [4]. For power
transmission lines, the perceptual layer includes various de‐
tecting devices and sensors, as presented in Fig. 5. The pow‐
er controller, line vibration sensor, line temperature sensor,
and inclination sensor are mainly used to collect the data of
lines. While the micrometeorological station is here to col‐
lect the data of the external environment of lines. Additional‐
ly, HD camera and monitor, unmanned aerial vehicles, and
inspection robots can inspect both line conditions and the en‐
vironment. These data are sent to EC nodes in real time and
processed locally. When an emergency happens, EC nodes
will send emergency orders to the terminals and alarm to the
related staff. As the cloud node, the application layer aims to
monitor the state of power lines and update the recognised
model in EC nodes. The software deployed at the applica‐
tion layer can be clustered like state monitoring software,
fault diagnosis software, health management software, and
remote operation software. With these functions, the security
of transmission lines can be improved with lower-delay rate
and higher-correct rate [64].

Based on EC technologies and machine learning technolo‐
gies such as the image recognition methods, the real-time
monitoring system of transmission lines is applied in the
demonstration of 500 kV and 220 kV lines in Yubei District
of Shaoxing City, China [4]. The stability and performance
of the whole system are tested, which demonstrates good
performance in reducing the transmission latency and saving
the bandwidth.
2) Transformer and Breaker

At present, the online monitoring equipment of the substa‐
tion has many problems: ① different design specifications
and interfaces; and ② poor interaction between equipment

and systems [65]. EC-CC system is an effective solution to
aggregate heterogeneous data and provide collaborative plat‐
forms for equipment and systems.

The EC-CC system for transformers and breakers is simi‐
lar to that for power lines, as shown in Fig. 5. All data are
collected by sensors and detectors at the perceptual layer
and transmitted to EC nodes and the application layer via
communication networks. For transformers, the perceptual
layer consists of a grounding current detector, fire detector,
moisture sensor, and oil chromatography. For circuit break‐
ers, the partial discharge detector, gas pressure sensor, and
harmful gas detector are the main data collectors at the per‐
ceptual layer. These detectors are critically important for the
safety of staff, equipment, and environment. For example,
SF6 is widely used in circuit breakers of gas insulated sub‐
station (GIS) with excellent performance of arc extinguish‐
ing [66]. However, it is also harmful to humans and the envi‐
ronment [67]. The main alternative solutions of SF6 such as
C4F7N and SF6 + N2 are still poisonous to some extent.
Thus, the real-time leak detection of harmful gas is essential
for the safe operation of circuit breakers. Therefore, data ana‐
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lytics is applied to EC nodes to perform early warning and
quick actions in an emergency without communication laten‐
cy. Then, the records of actions and results are sent to the
application layer. With the pre-processed data, CC can re‐
alise advanced functions with less data transmission and
computation. Thus, the EC-CC system can highly improve
the security of transformers and circuit breakers.

From the applications of EC-CC system in power lines,
transformers, and breakers, it can be concluded that the val‐
ue of EC-CC systems is concentrated on the safe operation
of transmission networks. However, with the development of
EC-CC system, along with emerging computing and commu‐
nication technologies, there would be more application sce‐
narios for EC-CC system in transmission networks such as
real-time electricity markets and carbon markets.

C. EC-CC System for Distribution Network

The distribution network consists of various terminals
with a number of them being intelligent devices, like EVs,
smart meters, ES, PV, and other distributed energy resources
(DERs). Therefore, there are many application areas of the
EC-CC system such as heterogeneous data fusion, informa‐
tion quality optimization, comprehensive collaboration, and
monitoring terminal expansion [30].

Similar to the applications for transmission networks, an
essential function of using EC-CC system in distribution net‐
works is fault processing, which is designed in [46]. The EC
nodes process, monitor, and analyse faults as soon as they re‐
ceive real-time data. Then, the analysis results will be trans‐
mitted to the cloud platform. In this mode, fault analysis and
alarm tasks can be completed in milliseconds. EC nodes
share the same information model as the cloud platform with
a data backup mechanism. The aim of this fault processing
system is to ① sense the faults at LV distributions in time;
② provide decision-making reference for operation and in‐
spection; ③ accelerate the speed of fault clearing; ④ short‐
en the length of a power failure; and ⑤ improve power sup‐
ply reliability and customer satisfaction.

There are other applications of the EC-CC system in the
distribution network. Reference [68] focuses on the fault pre‐
vention of environmental risks. Based on the EC-CC system,
a schematic diagram of damage monitoring for the distribu‐
tion network is proposed. The external risks are mainly dam‐
aging, e. g., underground cables, cranes, heavy trucks, and
sometimes tree falling for overhead lines. With the assis‐
tance of EC, the workload of manual inspections can be sig‐
nificantly reduced to alleviate time consumption and the use
of labour. In addition, based on the TTU EC platform dis‐
cussed above, the application in distribution network scenari‐
os also contains LV circuit monitoring, LV circuit impedance
calculation, etc.

In conclusion, the intelligent distribution network integrat‐
ed with the EC-CC system has the following advantages.

1) Self-healing. With the massive real-time edge data, the
potential overloading of power lines or transformers can be
earlier detected by EC nodes. Then, if fast actions such as
load shedding and line disconnection are deployed at EC
nodes, they can be timely performed with an extremely short

delay. Finally, when possible overloading is cleared, load
and lines will be reconnected to the smart grid. In this way,
the self-healing problem is addressed by the EC-CC system.

2) Security. Strong fault-tolerant characteristics and real-
time abnormal prediction ensure the efficient operation of
the equipments in distribution network. Additionally, it also
predicts many risks that can damage or impact the operation.

3) Interactivity. The edge devices of the intelligent distri‐
bution network are close to the user, which enhances fast
and stable communication between the user and the distribu‐
tion network. The user can access power consumption infor‐
mation and plan future power consumption strategies.

As an evidence of the outstanding performance of EC-CC
system, a novel intelligent monitoring system for the equip‐
ment in distribution network based on CC is designed in
[64]. With the real-time processing in EC nodes, the pres‐
sure of transmission is relieved and the correct rate of fault
diagnosis is improved with less delay. This effectively im‐
proves the efficiency and intelligence of mass data process‐
ing.

Compared with EC-CC system in transmission networks,
those in distribution networks are more complex. It should
firstly provide safe operations, which are the main functions
of transmission networks. In addition, the safety-related func‐
tions are more elaborate in distribution networks, particular‐
ly LV networks, where faults and load peaks are compara‐
tively hard to predict. In addition, distribution networks are
closer to power consumers, which could have many interac‐
tions between smart grids and consumers. Information trans‐
parency and consumer satisfaction are crucial for EC-CC sys‐
tem applied to distribution networks.

V. APPLICATION OF EC-CC SYSTEM TO CONSUMER

A. EC-CC System in Household Energy System

Various terminals in the modern household can generate
massive edge data. Due to the privacy protection and low la‐
tency, EC is appropriate for applications in smart homes
with small-sized data fusion nodes [69]. Based on EC in
each household, the CC of the microgrid can realise more
functions with less computation pressure.

The structure of EC-CC system in the household energy
system is shown in Fig. 6. The terminals in the perceptual
layer can be divided into four groups: ① mobile terminals
such as smart phones, mobile power controllers, and tablet
PCs; ② traditional intelligent household appliances such as
heating systems, lighting systems, TVs, and air conditioners;
③ household appliance controllers such as intelligent socket
and intelligent gateway; and ④ newly developed household
power equipment such as EV, ES, and PV. EC nodes can al‐
so be logically abstracted into four types: intelligent devices,
lightweight computing systems, intelligent gateways, and in‐
telligent distributed system nodes [6]. They all have the com‐
mon characteristics of digitalisation, networking, and intelli‐
gence, and can provide network, computing, and storage of
massive data. The perceptual layer collects the data from
household appliances and other information about smart
homes such as the operational benefits of some profit-orient‐
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ed equipment. Then, the data will be sent to EC nodes via
the first network layer, which can be a household wireless
network such as WLAN, ZigBee, bluetooth, and LoRa. Pro‐
cessed and stored by EC nodes, the records and operating re‐
sults will be sent to the cloud via the network layer 2 such
as public telecommunication networks or other industrial pri‐
vate networks. The main function of EC in smart homes in‐
cludes protocol adaptation, real-time connection, data analy‐
sis, policy implementation, and resource management. Addi‐
tionally, EC-CC collaborative architecture can avoid over‐
loading, optimise the load curve, and maintain the balanced
and stable operation of the energy system in smart home.

As shown in Fig. 6, EC nodes and the application layer
can be combined as the platform layer. Since EC nodes are
mainly responsible for preprocessing and fast actions for ap‐
plication layers on CC, it is easy to consider the EC and CC
at the same time and divide the platform according to func‐
tions. For example, the non-intrusive load monitoring system
depends on smart power metering. It can realise event moni‐
toring, early warning, and clustering analysis in EC nodes,

and update the recognised model by the cloud. The house‐
hold ES system depends on sensors at the battery and power
meter to perform benefit analysis and battery checking.

Many functions of EC-CC system applied to household en‐
ergy systems also exist in EMSs for smart homes such as
the household ES system, the PV generation system, and the
intelligent household application management. Besides, as a
widely deployed EMS, the hierarchical EMS relies on the
EC-CC structure for both computing and communication
needs. Therefore, the EC-CC system provides an efficient so‐
lution for the hierarchical EMSs and the EMS is an impor‐
tant application of the EC-CC system applied to the smart
grid. It should be noted that not only the EMS for smart
homes requires the EC-CC system, the edge-cloud collabora‐
tion is also necessary for many other EMSs such as smart
buildings and microgrids. Considering these scenarios can be
the aggregation of smart homes, where the EMS strategy is
very similar to that for smart homes, we only present the
EC-CC system for the household energy system to illustrate
the structure and possible functions of the EC-CC system.

B. EC-CC System in ES

The ES system is suitable for the areas with a large differ‐
ence between peak and valley of electricity prices, power
shortage, or unstable power supply. The ES management sys‐
tem can sense power consumption information and automati‐
cally switch the power source such as PV to the system
when solar energy is insufficient. The ES system with EC
can also receive electricity prices from the cloud platform to
train the operation strategy model and make quick decisions
on the edge [6].

The data collected by the devices at the perceptual layer
include the state of ES, PV inverter, rigid load (RL), other
flexible energy equipment such as EV, translatable load
(TL), and adjustable load (AL). Then, all energy information
is aggregated at EC nodes to analyse the benefits of the col‐
laboration operation of these devices. In addition, consider‐
ing all storage equipment, the charging and discharging
schemes with the operation of TL and AL can be generated
at EC nodes. Finally, the charging and discharging schemes
and ES profits are sent to the cloud. The cloud platform pro‐
vides additional data storage space and computes power ca‐
pacity for local EC, then validates and optimises the results
of each ES learning model with massive information.

Apart from sensing external information, EC also ensures
the secure operation of ES more efficiently. EC nodes col‐
lect the information of electric characteristics and environ‐
mental parameters of the battery in real time through ES con‐
trollers. Then, the state of the ES battery can be evaluated
by deep learning models based on the electrochemical model
[10]. All timely data is processed locally at EC nodes, and
the fault detection models applied in EC can be updated by
CC periodically. Therefore, the EC-CC system can efficient‐
ly reduce the failure rate of batteries, thus improving ES
safety and prolonging its service life.

C. EC-CC System in EV

Similar to the application to ES battery, the EC facilitated
real-time monitoring and managing system of battery can al‐
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so effectively guarantee the battery safety and lifespan of
EVs. In addition, EC is also helpful to manage EV charging
to achieve peak reduction and valley filling. Reference [6]
focuses on the EC for charging piles and proposes the frame‐
work. However, the number and operation data of the EV
are limited, and the data generated by sharing and automatic
driving modes are not considered. Therefore, [5] designs a
data processing framework for EV operation, as shown in
Fig. 7, by combining the advantages of CC, FC, and EC.

In the EC-CC system, the communication between edge
nodes and data centres are all bidirectional. The data sources
of EC nodes are traffic lights, battery sensors, and data cen‐
tres of the charging point. The emergency data such as auto‐
matic driving failure, abnormal battery state, power control
of the charging station, etc., are transmitted to the EC layer
and processed immediately. Thus, the accuracy and speed of
fault prevention processing are improved. At the same time,
these data and other state information are also transmitted to
the FC or CC layer through wireless communication. Then,
the processed data is transmitted to the cloud server through
data processing technologies such as approximate Bayesian
Bootstrap algorithm, distributed local outlier factor (LOF) al‐
gorithm, and Hash Partition algorithm to release network
broadband occupied by data transmission.

Compared with ES scenarios in Section V-B, EC-CC sys‐
tem for EVs also has the same functions as those for the
safe operations of batteries. However, the integration of geo‐
graphical information enables more functions in EC-CC sys‐
tem for EV users such as traffic optimisation and charging
spot optimisation. Real-time geographical information is mas‐
sive, heterogeneous, and frequently changes, which highly
matches the advantages of the EC-CC system.

D. EC-CC System for Demand Response

EC deployed in smart homes and distributed renewable
generations or loads is the key technology for demand re‐
sponse [70], [71]. Residential demand response can not only
reduce the electricity costs of the consumers, but also im‐
prove the stability of power system operation [72]. By time‐
ly detecting the translational load and then reporting the re‐
sults to the distribution network operator (DNO) or transmis‐
sion network operator (TNO), EC nodes are able to satisfy
the system when the requirement of demand response

comes. In this way, the real-time ability of the demand re‐
sponse can be improved with efficient bandwidth resources.

Further, the EC-CC system can collect and analyse the
power consumption at the edge side. In this way, the power
consumption features of a certain user can be simulated on
the edge. The user mode on EC can learn by itself with col‐
lected data and be justified and updated by CC at the same
time. This user mode with EC can be realised by the self-
learning engine in EdgeOS_H, which is an operating system
for EC in the smart home system [73]. This system can help
to predict the load and demand response resources of a cer‐
tain user accurately and provide the expected load and the
demand resource base in the related microgrid by summaris‐
ing all the individual users.

VI. FUTURE OPPORTUNITIES AND CHALLENGES

Due to the immaturity of the existing technologies and the
scarcity of research, some application scenarios have not
been mentioned or studied. Therefore, based on possible ap‐
plications and the current challenges of the EC-CC system,
there are several future research possibilities.

A. Decarbonising Heating in Smart Homes

The power consumption and carbon footprint in homes or
buildings are massive. With the EC-CC system, household
appliances, EV, PV, and ES can perform cooperation func‐
tions to reduce carbon emissions and energy consumption.
For example, with the real-time data of clean energy in the
community and ES, the heating system can produce hydro‐
gen programmatically via the electrolysis of water. Besides,
different communities or buildings can also exchange clean
energy to meet the optimal deployment of decarbonisation in
a certain area. To realise these functions, the control strategy
and data fusion ability in EC need to be upgraded with the
growth of newly developed appliances in the smart grid and
gas networks.

B. Decarbonising Transport with EVs

With the real-time information of transportation and charg‐
ing piles, the aggregated vehicle-to-grid operations could be
improved by the EC-CC system [74]. Limited by the inher‐
ent operational flexibility of energy systems, the large-scale
integration of EV is forbidden although EV is currently ac‐
cepted as the transportation solution of the future. Therefore,
based on the EC-CC system on EVs, traffic networks, charg‐
ing plies, and smart grid, the control methods of the EV en‐
ergy system can be more flexible. Thus, with the optimal
charging location of EVs, carbon emissions can be de‐
creased. Besides, because the batteries in EVs are similar to
ES resources, EVs can also accelerate the penetration of
clean energy and provide auxiliary services for the smart
grid. And these functions require the stable real-time bidirec‐
tion flow of information between EVs and DNOs based on
EC.

C. Standardization of Communication Methods

Data from various terminals are difficult to standardize,
and rational protocols among power equipment are urgently
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demanded. With increasing intelligent household appliances,
people are conducting the design and installation of do-it-
yourself (DIY) style smart home [73]. This can be difficult
for users without communication standardization, as devices
are possibly produced from different manufactures with vari‐
ous communication methods and protocols. This problem al‐
so exists in other areas in the massive detectors and sensors.
EC-CC system can be deployed with a unified communica‐
tion adapter with all categories of drivers. However, after the
EC node receives all the information, the data fusion meth‐
ods in EC among power equipment need to be improved in
future EC-CC system in the smart grid.

VII. CONCLUSION

EC-CC system is an effective solution to deal with the
massive and heterogeneous data from various terminals in
the smart grid. This paper conducts an extensive review of
the state-of-the-art of EC-CC technologies and applications
to the smart grid. To deploy the EC-CC system in the smart
grid, the architecture of the EC-CC system is presented
based on the common characteristics of different technology
versions. This structure consists of perceptual, network, EC,
and application layers to enable all basic functions of the
computing system. Several software platforms are also intro‐
duced to provide the operating system of the EC-CC system
in the smart grid. Then, data processing technologies and
container technologies are discussed, where the challenges of
EC-CC system applications lie in data fusion, data security,
and container virtualisation. The practical application of EC
in generation system, transmission system, distribution sys‐
tem, and power consumers are extensively introduced. Based
on these scenarios, the EC-CC system is a promising com‐
puting method for future IoT-based smart grids with many
possible applications.

To meet the requirement of decarbonisation, the carbon
emission from smart homes, heating systems, and EVs could
be reduced more efficiently with the EC-CC system. With
the development of the EC-CC system, the intelligent termi‐
nals in smart grids can be fully utilised and integrated with
emerging technologies, which is crucial for decarbonisation
and the future smart grid.
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