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Contingency Probability
Weilun Wang, Mingqiang Wang, Xueshan Han, Ming Yang, Qiuwei Wu, and Ran Li

Abstract——The outage of power system equipment is one of
the most important factors that affect the reliability and econo‐
my of power system. It is crucial to consider the influence of
contingencies elaborately in planning problem. In this paper, a
distributionally robust transmission expansion planning model
is proposed in which the uncertainty of contingency probability
is considered. The uncertainty of contingency probability is de‐
scribed by uncertainty interval based on the outage rate of sin‐
gle equipment. An epigraph reformulation and Benders decom‐
position are applied to solve the proposed model. Finally, the
feasibility and effectiveness of the proposed model are illustrat‐
ed on the IEEE RTS system and the IEEE 118-bus system.

Index Terms——Benders decomposition, distributionally robust,
equipment outage rate, transmission expansion planning.

I. INTRODUCTION

POWER transmission system is mainly used to deliver
the electricity from generators to distribution systems

and further to consumers [1]. With the restructure of power
industry and the integration of large-scale renewable energy
source (RES), transmission expansion planning (TEP) has be‐
come one of the most important strategic decisions in power
systems [1]. TEP aims to determine when and where to con‐
struct new transmission lines [2], [3]. During the last de‐
cade, a great share of research related to TEP has focused on
addressing various uncertainties. The research on TEP con‐
sidering uncertainties can be categorized as follows.

1) In terms of time scale of uncertainties, the uncertainties
can be generally categorized into long- and short-term uncer‐
tainties [4]. The long-term uncertainties correspond to those
which will be realized in the long run, e. g., load growth
[5], future share of RES in power systems, future fuel cost,
and policy regulations. In contrast, the short-term uncertain‐

ties correspond to those which will be realized in the opera‐
tion stage, e. g., power generation of RES and consumption
of loads. Reference [4] proposes a TEP model considering
both long-term (the future installed capacity of units and fu‐
ture peak demand) and short-term uncertainties (daily varia‐
tion of demand and power production). Reference [6] propos‐
es a coordinated investment for transmission and storage sys‐
tems considering both long- and short-term uncertainties.

2) For the short-term uncertainties concerned, in terms of
uncertainty sources, the uncertainties are mainly caused by
load, RES output, and contingencies caused by equipment
outage events. References [7] and [8] propose TEP models
considering the uncertainty of wind power production. Refer‐
ence [9] proposes a TEP model considering the uncertainty
of load. References [4], [10] - [14] propose more complex
TEP models which consider several uncertainties together,
and [15] considers the correlation between different uncer‐
tainties.

3) In terms of the methods for addressing the uncertain‐
ties, the uncertainties can be described by probability distri‐
bution functions (PDFs) or discretized scenarios, uncertainty
intervals, and set of PDFs, etc. Then, stochastic optimization
(SO) [16], robust optimization (RO), and distributionally ro‐
bust optimization (DRO) can be applied in TEP models [17].
References [11], [15], [18], and [19] consider the uncertain‐
ties of RES output and load, and build three- or two-stage
RO models with different ambiguity sets such as the uncer‐
tainty interval set and the ellipsoidal uncertainty set. Refer‐
ences [10], [20], and [21] describe the uncertainties of load,
wind power, and natural gas demand by scenarios and estab‐
lish SO TEP models. Reference [22] establishes a DRO mod‐
el for TEP which considers both long- and short-term uncer‐
tainties of RES output and load.

It can be found that when the uncertainties are concerned
in TEP, the existing research mainly concentrates on analyz‐
ing the effect of uncertainties caused by RES output and
load. Although the uncertainty of contingencies caused by
equipment outage events is also an important source of un‐
certainty, its effect is not explicitly considered.

In TEP models, the uncertainty of contingencies caused
by equipment outage events can be considered either in a de‐
terministic approach or in a probabilistic approach [23]. For
the deterministic approach concerned, usually the N - k secu‐
rity criterion is applied [24], [25]. This approach is easy to
understand, but the contingency probability is ignored, and
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the result may be conservative or radical. The probabilistic
approach determines the optimal planning results by balanc‐
ing the investment cost, pre-contingency, and post-contingen‐
cy cost simultaneously [26], and it can strike a good balance
between the security and economics. However, the solution
of the probabilistic approach is closely related to the contin‐
gency probability which can be analytically expressed as a
function of equipment outage rate. Usually, a fixed equip‐
ment outage rate obtained from historical statistics and/or op‐
eration experience is usually applied [27]. But it is difficult
to obtain the exact value of equipment outage rate due to the
insufficient quality and quantity of historical data [28], [29],
and the law of large numbers is not available. Therefore, an
estimated equipment outage rate is usually used. However,
the estimated equipment outage rate would be significantly
deviated from the real value, which would cause suboptimal
solution of TEP problem.

Various models have been proposed to model the uncer‐
tainties of contingencies caused by equipment outage events.
Reference [28] proposes a transmission system hardening
model and constructs an ambiguity set for N - k contingency
probability distribution in which the contingency probability
is described by interval. Then, the reliability assessment is
implemented for each given harden plan considering the
elaborately-selected contingency events. However, the uncer‐
tainty of contingency probability is only used in the post-pro‐
cessing for each given harden plan, and it is not involved in
the optimization model. Reference [30] models the contin‐
gency probability by ambiguity set, and a DRO approach is
proposed for the unit commitment problem considering con‐
tingency. The ambiguity set of contingency probability pro‐
posed in [30] is extended in a TEP problem in [31] and a
distributionally robust TEP model is proposed. However, the
ambiguity set of contingency probability is not well ana‐
lyzed. Instead, there are many research works on the equip‐
ment outage rate.

Compared with the distributionally robust TEP model in
[31], the ambiguity set of contingency probability is further
analyzed in this paper. Considering the analytical relation‐
ship between the contingency probability and equipment out‐
age rate, the distributionally robust TEP model considering
the ambiguity set of equipment outage rate is proposed in
this paper, and the existing research works on equipment out‐
age rate can be applied in the TEP model. For the calcula‐
tion of the uncertainty of equipment outage rate, the interval
probability approach is most widely applied. For example,
[32] establishes the relationship between the equipment out‐
age rate and operation conditions based on the imprecise
Dirichlet model, and the interval of the outage rate is finally
obtained. When the ambiguity set of equipment outage rate
is boiled down to an interval, the proposed distributionally
robust TEP model can be recast as a robust stochastic optimi‐
zation (RSO) model [33], which is easier to be solved com‐
pared with the original DRO model. The proposed model
can be transformed into a multi-level optimization problem
and can be solved by the mixed-integer linear programming
(MILP) commercial solver based on the dual theory, epi‐
graph reformulation [34], and Benders decomposition. Final‐

ly, the effectiveness and validity of the proposed model are
illustrated using the IEEE RTS system and the IEEE 118-bus
system.

The major contributions of this paper are as follows.
1) A novel distributionally robust TEP model is proposed

considering the uncertainty of equipment outage rate. An in‐
terval equipment outage rate is applied and the TEP model
is transformed into an RSO model.

2) Combining the techniques of dual theory, epigraph re‐
formulation, and Benders decomposition, the proposed mod‐
el can be efficiently solved by MILP commercial solver.

The remainder of this paper is organized as follows. Sec‐
tion II presents the proposed the mathematical formulation
of the proposed model. Section III describes the uncertainty
set of contingency probability. Section IV gives the solution
methodology. In Section V, numerical results are provided
and analyzed, and the relevant conclusions are drawn in Sec‐
tion VI.

II. MATHEMATICAL FORMULATION OF PROPOSED MODEL

The proposed model is explicitly formulated as:
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where g, i, and s are the indexes of units, buses, and contin‐
gencies, respectively; NG, NI, and NS are the sets of units,
buses, and contingencies, respectively; l is the index of trans‐
mission lines, including existing lines and candidate lines;
NL and N +

L are the sets of the existing lines and candidate
lines, respectively; ul is a binary variable which represents
whether transmission line l is constructed (1) or not (0); Cl

is the investment cost of candidate transmission line l; λnormal

is the probability of normal operation condition; Cg is the op‐
eration cost of unit g; λs is the random contingency probabili‐
ty of contingency s; NΛ is the set of the distribution func‐
tions of λs; VOLL is the value of lost load; B(g), Bstart(l), and
Bend (l) are the bus on which unit g is located, the start bus of
line l, and the end bus of line l, respectively; lolsi is the loss
of load on bus i under contingency s; Pg and Psg are the
power outputs of unit g under normal operation condition
and contingency s, respectively; di is the forecasted load on
bus i; fl and fsl are the power flows of transmission line l un‐
der normal operation condition and contingency s, respective‐
ly; Xl is the reactance of transmission line l; θ i and θsi are
the voltage phase angles on bus i under normal operation
condition and contingency s, respectively; T max

l is the capaci‐
ty of transmission line l; Iref is the set of reference buses;
and P min

g and P max
g are the minimum and maximum output

power of unit g, respectively.
The objective function (1) minimizes the total cost, which

includes the investment cost, operation cost, and expected
load-shedding cost. Constraints (2)-(8) correspond to the nor‐
mal operation condition. Formula (2) describes the nodal
power balance constraint. Formulas (3) and (4) calculate the
power flows on the existing and candidate transmission
lines, respectively. Formula (5) imposes the phase angle re‐
quirement on the reference bus. Formulas (6) and (7) give
the line flow limits on the existing and candidate transmis‐
sion lines, respectively. Formula (8) gives the limits of unit
output power.

Formulas (9)-(16) are the constraints corresponding to the
contingency scenarios considered. In this paper, the outages
of units and transmission lines are considered. Both the sin‐
gle-equipment outage and multi-equipment outage are consid‐
ered. The output power of outage units and the power flow
on outage transmission lines are set to be zero. These con‐
straints have similar meaning compared with those corre‐
sponding to the normal operation condition, while (16) lim‐
its the loss of load under contingency s on each bus.

Since λs is a random parameter, the model cannot be
solved directly and it needs to be transformed into determin‐
istic form by constructing the uncertainty set.

III. UNCERTAINTY SET OF CONTINGENCY PROBABILITY

The probability of the system-wide contingency can be an‐
alytically expressed by the probability of equipment outage
rate. For a contingency s which corresponds to m equipment
that malfunction simultaneously and n equipment that oper‐
ate normally, the contingency probability can be expressed
as [35]:

λs =∏
i = 1

m

γ i∏
j = 1

n ( )1 - γ j (17)

where γ i and γ j are the outage rates of equipment i and j, re‐

spectively. Since γ j is usually very small, ∏
j = 1

n ( )1 - γ j is ap‐

proximately equal to 1 and can be ignored. Then the contin‐
gency probability can be expressed as:
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m
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When γ i varies within an interval [γmin
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i ] [36], the con‐
tingency probability also varies within an interval, and the
upper and lower limits of the interval [λmin
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s ] can be ex‐

pressed as:
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Similar to that addressed in the traditional robust model,
the random contingency probability can be equivalently ex‐
pressed as a deterministic form with the introduction of aux‐
iliary variable αs.

λs = λ̄s + αs λ̂s
(21)

where αs is an auxiliary variable which describes the contin‐
gency probability deviating from midpoint and -1 £ αs £ 1;
and λ̄s and λ̂s are the midpoint and radius of the uncertainty
interval of contingency probability, respectively. λ̄s and λ̂s

can be expressed as:

λ̄s = ( )λmax
s + λmin

s 2 (22)

λ̂s = ( )λmax
s - λmin

s 2 (23)

Meanwhile, the sum of all contingency probabilities con‐
cerned should be equal to 1, i.e.,

∑
sÎNs

λs =∑
sÎNs

( )λ̄s + αs λ̂s = 1 (24)

In order to limit the conservativeness, the number of sce‐
narios that reach the worst case at the same time is con‐
strained by the corresponding budget constraint, which is ex‐
pressed as: ∑

sÎNs

||αs £ Γ (25)

where Γ is the conservativeness parameter, which represents
the number of contingency scenarios that reach the worst
case. Then, the entire ambiguity set of contingency probabili‐
ty can be written as:
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ì
í
î
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ïï
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IV. SOLUTION METHODOLOGY

After the random contingency probability is expressed in
the deterministic form, the entire optimization will be trans‐
formed into an RSO [37] TEP model and can be expressed
as a min-max-min optimal problem. The original objective
function can be transformed as:
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The objective function (27) minimizes the investment cost
and operation cost under normal operation condition, and the
load shedding cost against the worst case of contingency
probability.

A. Linearization of Nonlinear Terms

In this paper, a quadratic operation cost function which
can be easily piecewise linearized is applied. The products
of binary variables and continuous variables exist in con‐
straints (4), (7), and (11), and can be linearized by the big M
method [21]. The constraints (4) and (11) can be linearized
as:
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Another nonlinear term is caused by the absolute sign in
(26). ||αs can be linearized as:

|αs | = α+
s + α-

s "s (30)

αs = α+
s - α-

s "s (31)

where α+
s and α-

s are the auxiliary non-negative variables.

B. Model Simplification and Duality

For the contingency probability concerned, the uncertain
range is significant compared with the forecasted value.
However, the interval width of the contingency probability
under the normal operation condition is relatively small com‐
pared with the forecasted value, thus the contingency proba‐
bility under normal operation condition can be simplified as
the fixed forecasted value.

In order to transform the three-level optimization problem
of (27) into a single-level model, firstly, the optimal value of
the loss of load, i. e., the recourse function, is reformulated
as:
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Then, the three-level objective function possesses a form
of bi-level optimization, i.e.,
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Considering the inner maximization problem can be equiv‐
alently expressed as a minimization problem based on the
duality theory, the bi-level optimization problem can be re‐
cast as a single-level optimization problem. The inner maxi‐
mization problem can be expressed as:

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

max
α+s α

-
s

∑
sÎNS

( )α+
s - α-

s λ̂sQ ( )s

s.t. ∑
sÎNs

( )α+
s - α-

s λ̂s = 1 -∑
sÎNs

λ̄s (r1 )

∑
sÎNs

( )-α+
s - α-

s ³ Γ (r2 )

α+
s - α-

s ³-1 "s (r 3
s )

-α+
s + α-

s ³ 1 "s (r 4
s )

α+
s ³ 0
α-

s ³ 0

(34)

where r1, r2, r 3
s , and r 4

s are the dual variables of correspond‐
ing constraints. The dual model can be written as:
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Based on the epigraph reformulation [34], the optimal val‐
ue of (35) can be directly expressed as:
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Through the above operation, the variables r 3
s and r 4

s and
constraints (36) and (37) are eliminated, and the computa‐
tional burden can be significantly reduced. By substituting
(37) into (33), (33) can be expressed as:
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The objective function (39) can be further transformed in‐
to (40) based on the epigraph reformulation [34] by introduc‐
ing auxiliary variables z 1

s , z 2
s , and z 3

s , which is also subjected
to constraints (2)-(10), (12)-(16), (28), (29), and (41)-(44).
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This model cannot be solved directly due to Q(s) in con‐
straints (41) - (43). When the inner maximization problem
(32) is regarded as a sub-problem, the same configuration of
Benders decomposition can be shared by the bi-level maxi‐
mization problem. Especially, considering the inner problem
is dependent with the contingency and the contingency
events are independent with each other, the Benders decom‐
position is applied to iteratively solve the bi-level optimiza‐
tion problem [33]. For the sub-problem, Q(s) is the objective
function, and (9), (10), (12) - (16), and (29) are the corre‐
sponding constraints with some variables given in the master
problem.

C. Benders Decomposition

When Benders decomposition is applied, the correspond‐
ing model has to be divided into master problem and sub-
problems. The master problem and sub-problems involve the
constraints related to the normal condition and contingen‐
cies, respectively. Meanwhile, the sub-problems are trans‐
formed to dual sub-problems. The procedure of the Benders
decomposition is shown in Fig. 1 [38] - [40], where UB and
LB are the upper bound and lower bound of the convergence
gap of Benders decomposition, respectively.

V. CASE STUDIES

The proposed model is tested on the IEEE RTS system
and IEEE 118-bus system. The data of equipment outage
rate are taken from [41] and [42]. In the cases presented in
this paper, the simultaneous outage of three or more equip‐
ment is not considered. The convergence tolerance of the
Bender decomposition is set to be 0.01%. The proposed
model is coded on the GAMS platform and is solved by the
commercial solver CPLEX [20]. The optimization is imple‐
mented on a computer with Win7 system, Intel Core i7-4790
processors at 3.6 GHz, and 4 GB of RAM.

A. Case 1: IEEE RTS System

The IEEE RTS system consists of 24 buses, 26 units, and
38 existing transmission lines, and the corresponding data
can be found in [42]. The load is 2850 MW. Similar to [1],
two transmission lines are allowed to be constructed in each
transmission corridor. The maximum capacity of each trans‐
mission line is reduced to half of the original value [42].
The investment cost of each candidate transmission line is al‐
so given as in [42]. VOLL is set to be 5000 $/MWh and the
conservativeness parameter is set to be 30. A width parame‐
ter (WP) is introduced to quantify the interval width and the
relationship is expressed as:

[ γminγmax ] = [ γ̄ WPγ̄ ×WP ] (45)

where γ̄ is the average outage rate of a single equipment
based on the historical data.

Three scenarios are considered in this case. In scenario 1,
a fixed estimated contingency probability is applied. In sce‐
nario 2, the contingency probability is described by an inter‐
val and the WP is set to be 10. In scenario 3, the perfor‐
mance of the construction plan in scenario 1 is tested with
the uncertain contingency probability. The costs of the three
scenarios are shown in Table I and the construction plans of
scenarios 1 and 2 are shown in Table II.

Start

Set UB=+∞, LB=�∞

Solve the relaxed master problem

and get the initial solution

Substitute the solution obtained in master problem into

the dual sub-problems and solve the sub-problems 

Update UB

Form and add the optimal

cut to the master problem

Form and add the

feasibility cut to

themaster problem

Is sub-problem

feasible?

Does sub-problem

have bounded solutions?

Terminate

algorithm

Solve new master problem;

update LB with the optimal

solution of master problem

|UB�LB|≤ ε ?

End

N

N

Y

Y

Y

N

Y

N

Find the optimal solution

UB does not change

Is

every sub-problem

feasible and the sum of optimal

solution less than

UB?

Fig. 1. Flowchart of Benders decomposition.

TABLE I
COSTS OF THREE SCENARIOS IN CASE 1

Scenario

1

2

3

Total cost
(M$)

533.247

552.241

552.889

Investment
cost (M$)

166.150

173.440

166.150

Operation
cost (M$)

366.850

366.167

366.850

Expected load-
shedding cost (M$)

0.248

12.635

19.889

TABLE II
CONSTRUCTION PLAN OF SCENARIOS 1 AND 2 IN CASE 1

Scenario

1

2

Newly constructed transmission line

6, 10, 16, 23, 28

6, 10, 16, 23, 28, 30
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In Table I, it can be observed from scenarios 1 and 2 that
when considering the uncertainty of contingency probability,
the total cost, investment cost, and expected load-shedding
cost increase while the operation cost almost does not
change. The increase of investment cost means that new
transmission lines are constructed when the contingency
probability is considered, which illustrates that the planning
of transmission lines is affected by the contingency probabili‐
ty. Moreover, the expected load-shedding cost increases tens
of times when the contingency probability is considered.
Meanwhile, it can be observed from the costs of scenarios 3
that the construction plan in scenario 1 will lead to a higher
expected load-shedding cost, so the construction plan needs
to be changed in order to minimize the total cost. The com‐
parison reveals that using a fixed estimated contingency
probability would over-estimate the system reliability level
and the results may be over-optimistic. From Table II, it can
be found that when considering the uncertainty of contingen‐
cy probability, a new transmission line which is located in
the corridor of transmission line 30 is constructed.

The total cost and expected load-shedding cost with differ‐
ent WPs and VOLL are given in Tables III and IV.

From Tables III and IV, it can be observed that the total
cost and expected load-shedding cost increase when the
VOLL or WP increases.

The construction plans with different WPs and VOLL in
case 1 are given in Table V, where the symbol √ means that
a new transmission line is constructed in the corridor of
transmission line 30. In Table V, it can be found that new
transmission lines are intended to be constructed when the
VOLL or WP becomes larger. The construction plan of new
transmission lines depends on the balance between the ex‐

pected load-shedding cost and line construction cost and op‐
eration cost.

The relationship between the total cost and conservative‐
ness parameter Γ in case 1 is shown in Fig. 2. The VOLL is
set to be 5000 $/MWh, and the WP is set to be 10.

From Fig. 2, it can be found that when Γ increases, the to‐
tal cost also increases and finally becomes saturate. This is
because the more serious situation with less occurring proba‐
bility is considered.

B. Case 2: IEEE 118-bus System

The IEEE 118-bus system consists of 118 nodes, 186
transmission lines, and 54 units. All data of the system can
be found in [43]. Two transmission lines are allowed to be
constructed in each transmission corridor. The construction
price for each candidate transmission line is 0.4 M$/(km·
MW). The load is 6350 MW. The VOLL and Γ are set to be
5000 $/MWh and 30, respectively. Table VI shows the costs
with different WPs in case 2.

Similar to that in case 1, it can be found from Table VI
that the total cost, investment cost, and expected load-shed‐
ding cost increase when the WP becomes larger. Table VII
shows the construction plans with different WPs in case 2.

Table VIII shows the costs with different VOLL in case 2.
The influence of VOLL is also similar to that in case 1.
From Table VIII, it can be found that the total cost, invest‐
ment cost, and expected load-shedding increase when VOLL
becomes larger. The operation cost is almost unchanged. Ta‐
ble IX shows the construction plans with different VOLL in

TABLE III
TOTAL COST WITH DIFFERENT WPS AND VOLL IN CASE 1

VOLL
($/MWh)

5000

6000

7000

8000

9000

10000

Total cost with different WPs ($)

5

538.0

539.0

540.0

541.0

542.0

543.0

6

540.2

541.6

543.0

544.5

545.9

547.8

7

542.8

544.7

546.7

548.6

550.8

552.0

8

545.7

548.3

550.9

552.6

554.2

555.8

9

549.1

551.9

554.0

556.0

558.0

560.1

10

552.2

554.8

557.3

559.8

562.4

564.9

TABLE IV
EXPECTED LOAD-SHEDDING COST WITH DIFFERENT WPS AND VOLL IN

CASE 1

VOLL
($/MWh)

5000

6000

7000

8000

9000

10000

Expected load-shedding cost with different WPs ($)

5

4.97

5.97

6.96

7.96

8.95

9.95

6

7.16

8.59

10.03

11.46

12.89

8.22

7

9.75

11.70

13.65

15.61

11.14

12.38

8

12.73

15.29

11.32

12.94

14.56

16.17

9

16.12

12.28

14.33

16.38

18.42

20.49

10

12.64

15.16

17.69

26.82

22.77

25.30

TABLE V
CONSTRUCTION PLANS WITH DIFFERENT WPS AND VOLL IN CASE 1

VOLL
($/MWh)

5000

6000

7000

8000

9000

10000

Construction plan with different WPs

5 6

√

7

√
√
√

8

√
√
√
√

9

√
√
√
√
√

10

√
√
√

√
√
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Fig. 2. Relationship between total cost and Γ in Case 1.
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case 2. It can be found that the construction plan changes
with different VOLL.

The computation time with different WPs in case 2 is giv‐
en in Table X. It can be observed that when considering the
uncertainty of contingency probability, the computation time
increases nearly 10 times. Although a longer computation
time is required, it does not affect the feasibility of the pro‐
posed model since the computation time is not vital in the
planning problem. Besides, a lot of techniques [44] such as
the critical constraint screening and parallel computation can
be applied to enhance the computation efficiency.

VI. CONCLUSION

In this paper, an DRO TEP model considering the uncer‐
tainty of contingency probability is proposed. The uncertain‐
ty of contingency probability can be expressed by the uncer‐
tainty of the outage of equipment. The proposed model in‐
volves random parameters and can be reformulated into a tri-
level optimization problem. It is finally recast as a bi-level
model by using the epigraph reformulation and dual theory,
which can be solved by the Benders decomposition. The
case studies show that the cost and construction plan are sig‐
nificantly influenced by the uncertainty of contingency prob‐
ability. Using a fixed contingency probability would cause a
less reliable construction plan and the result would be over-
optimistic.
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