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Bayesian Deep Learning for Dynamic Power
System State Prediction Considering

Renewable Energy Uncertainty
Shiyao Zhang and James J. Q. Yu

Abstract——Modern power systems are incorporated with dis‐
tributed energy sources to be environmental-friendly and cost-
effective. However, due to the uncertainties of the system inte‐
grated with renewable energy sources, effective strategies need
to be adopted to stabilize the entire power systems. Hence, the
system operators need accurate prediction tools to forecast the
dynamic system states effectively. In this paper, we propose a
Bayesian deep learning approach to predict the dynamic system
state in a general power system. First, the input system dataset
with multiple system features requires the data pre-processing
stage. Second, we obtain the dynamic state matrix of a general
power system through the Newton-Raphson power flow model.
Third, by incorporating the state matrix with the system fea‐
tures, we propose a Bayesian long short-term memory
(BLSTM) network to predict the dynamic system state vari‐
ables accurately. Simulation results show that the accurate pre‐
diction can be achieved at different scales of power systems
through the proposed Bayesian deep learning approach.

Index Terms——Bayesian deep learning, data analytics, Newton-
Raphson power flow, renewable energy source, system state.

I. INTRODUCTION

WITH the development of technology, the modern pow‐
er system has become more diversified than the con‐

ventional power system, such as the increase in the utiliza‐
tion of renewable energy sources (RESs). Although RESs
contribute to improving the environmental impacts to pre‐
vent global warming, the system uncertainties occur due to
the uncertain and intermittent renewable power generations.
In practice, the integration of RESs in the system results in
sudden instability phenomena of the entire power system.
Meanwhile, the power system state variables may also under‐

go drastic changes. To tackle such issues, the accurate state
prediction for power system is crucial to capture the massive
system uncertainties from RESs to support the system opera‐
tions and services. For instance, a suitable prediction tech‐
nique can be deployed for system data analytics and contrib‐
utes to the stable operation and planning in the power sys‐
tem.

Existing solutions to predict the dynamic system state in
the power system mainly involve in deploying the traditional
prediction tools [1], [2]. For instance, in [1], a robust ap‐
proach, namely extended Kalman filter, is developed to mon‐
itor system state dynamics in a faster and more reliable man‐
ner. Besides, a new robust generalized maximum-likelihood-
type unscented Kalman filter in [2] is proposed to predict
the state innovation vectors in the system. Although the pre‐
vious studies propose the statistical techniques on system
state prediction, they do not consider the penetration of
RESs in the power system. By considering the RESs de‐
ployed in the system, some existing researches deploy suffi‐
cient statistical tools on predicting system state [3] - [5]. For
example, a Markov model with the Viterbi algorithm is pro‐
posed in [3] for state prediction in different power systems
with the penetration of RESs. Furthermore, in [4], a statisti‐
cal Gaussian mixture model is developed to estimate the real-
time system measurements. Nonetheless, these approaches
are not practical since such models already assume that both
the system and models are linear. Lastly, a novel interval
state estimation algorithm is devised in [5] to consider differ‐
ent uncertainties of distributed generation outputs, as well as
line parameters in unbalanced distribution systems. In prac‐
tice, complex power systems have typical non-linear fea‐
tures, such as time-varying loads and multiple power genera‐
tions. Hence, to handle these non-linear features, several
studies are involved in deploying non-parametric methods
for prediction in the system. In [6], a non-parametric kernel
estimation method is applied to determine the state condition
to characterize the stability issues of the system.

However, there exists a research gap in the state predic‐
tion problem of traditional dynamic system. The above re‐
searches unilaterally consider linear or non-linear features in
the power system. In practice, a dynamic power system con‐
sists of various types of linear and non-linear features. For
example, the electrical loads in the system are either linear
or non-linear loads according to the network structure. As an
emerging technique to handle the problems in complex sys‐
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tems, machine learning approaches can be a good candidate
to fully respect both linear and non-linear factors in a gener‐
al power system. Some studies utilize machine learning tools
for system data prediction problems [7]- [9]. For instance, a
novel machine learning tool, support vector machine, can be
applied for time-series prediction in the power system [7].
Besides, a low-rank tensor learning model can be utilized to
predict system measurements such as solar power generation
[8]. Last but not least, the use of decision trees can handle a
large amount of wide-area information to keep the stability
of the power system [9].

Beyond the aforementioned studies, as a subset of ma‐
chine learning, deep learning has been widely utilized in the
related research fields [10]. In the power system, the imple‐
mentation of deep learning techniques can use multiple neu‐
ral network layers to extract latent system features, which
can further assist power system operations in practical sce‐
narios. Some existing research works have solved power sys‐
tem problems through deep learning tools [11]-[16]. In [11],
a method based on artificial neural network (ANN) is pro‐
posed to predict the long-term voltage status to ensure the
margin of the voltage stability. Additionally, an intelligent
system strategy is proposed in [12] to predict the dynamic
voltage deviation to observe the short-term instability of the
system based on the ensemble learning of neural networks.
However, these studies lack multiple degrees of data inter‐
pretability in the power system. For example, the one-layer
ANN cannot deeply learn the representation of large-scale
power system data due to its simple structure and parameter
settings. To tackle such issues, in [13], a model-specific
deep neural network (DNN) based power system state esti‐
mation scheme is proposed to estimate real-time power sys‐
tem state. Furthermore, the long short-term memory (LSTM)
model could be deployed to accurately capture the time-vary‐
ing dynamic behaviors of active distribution networks [14]
and to forecast the solar energy output [15]. Finally, by im‐
plementing a surrogate model, a novel LSTM model is ap‐
plied to capture the time-varying consecutive states [16].

Although the aforementioned studies have demonstrated
that deep learning is superior to perform prediction tasks,
these studies are indeed based on the deterministic models
so that they lack the ability of capturing uncertainty. In the
power system, the uncertainties from various sources may
expose potential safety issues to cause huge economic losses
[17]. Even though several non-deep-learning approaches can
deal with system uncertainties, e. g., [3] and [18], their
schemes become complex and time-consuming with the in‐
creasing size of power networks. In this paper, a probabilis‐
tic deep learning model, i.e., Bayesian deep learning, is ad‐
opted to incorporate the power system uncertainties into the
state estimation framework aiming at a more interpretable
model with reliable prediction by means of probability theo‐
ry in an efficient manner. There are several research works
that justify the feasibility of the Bayesian deep learning
methods in power system studies [19], [20]. For instance, a
probabilistic Bayesian deep learning model is proposed for
day-ahead load forecasting to capture the model and load un‐
certainties [19]. In addition, in [20], the state estimation
could be achieved through Bayesian deep learning with con‐

sideration of the bad-data circumstance. However, there is
no recent study using Bayesian deep learning model to con‐
sider the dynamic system state of the entire power system as
far as we are concerned.

To bridge the research gaps, we propose a Bayesian deep
learning approach to perform state prediction in the general
power system considering RES and model uncertainties. The
major efforts of this paper are shown as follows.

1) A Newton-Raphson power flow model is deployed to
estimate the dynamic system state, and we devise a new
state matrix to aggregate with all historical information.

2) By adopting Bayesian LSTM (BLSTM) network in the
system, both the model and data uncertainties can be remark‐
ably captured.

3) Accurate predictions can be achieved by means of the
proposed BLSTM network for different scales of systems.

The remainder of this paper is organized as follows. Sec‐
tion II presents and illustrates the proposed methodology. In
Section III, we formulate a Newton-Raphson power flow
model to generate the state matrix of a general power sys‐
tem. The deep learning approach, BLSTM network, is then
proposed in Section IV. In Section V, we conduct the perfor‐
mance evaluation of the proposed model with a general pow‐
er system. Finally, we conclude this paper in Section VI.

II. PROPOSED METHODOLOGY

In this section, we present the proposed methodology,
which is summarized in Fig. 1.

The proposed methodology consists of four main stages:
data pre-processing, power flow analysis, state prediction,
and aggregation. The first stage involves the dataset prepara‐
tion process, where we collect various types of power sys‐
tem data, such as various renewable power generation, time-
varying loads, and dynamic power state information. Then,
the input dataset is segregated into a training dataset and a
testing dataset. The size of the training dataset is determined
by multiple potential features of the entire dynamic power
system. After that, both the training and testing datasets are
used for the power flow analysis. Once the state matrix is

Training

dataset

Testing

dataset

Data pre-processing stage

Newton-Raphson power

flow model
Power flow

analysis stage

Power system data

BLSTM network

Predicted state variables Aggregation stage

State prediction stage

State matrix

(training set)

State matrix

(testing set)

Fig. 1. Workflow of proposed methodology.
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obtained and separated into training and testing sets, we in‐
corporate them into the complete training and testing datas‐
ets to fit in the proposed BLSTM network. By properly train‐
ing the learning system, the dynamic system states of gener‐
al power systems can be obtained via online inference. Final‐
ly, the aggregation stage clusters all the individual probabilis‐
tic prediction through convolution with the previously saved
weights to gain the final probabilistic dynamic state vari‐
ables.

A. Dynamic State Assessment

The dynamic state assessment is gained by using the New‐
ton-Raphson power flow model. Note that we consider the
alternating-current (AC) power system in the proposed meth‐
odology. Hence, we perform AC power flow analysis so as
to estimate the AC power state information. The power sys‐
tem network can be modeled as a graph that is defined as G =
(NE), where N ={12N} is the bus set, and N is the to‐
tal number of buses; and EÍN ´N is the transmission line
set. In the power network, we can model a branch (i j)Î E
with two common buses i jÎN as one equivalent π circuit.
Hence, the line admittance of this circuit can be expressed
as yij = gij + jbij, where gij ³ 0 and bij £ 0 are the branch conduc‐
tance and branch susceptance, respectively. In addition, the
shunt capacitance of branch (ij) can be denoted as cij = cji,
which is used for voltage and reactive power control. These
aforementioned parameters are the key components to devel‐
op the AC power flow model for a general power system.

Through the power flow analysis in the system, the dy‐
namic state variables can be estimated. The collection of
these variables can be sorted as the state matrix of the sys‐
tem. Since we need to fit this information into the neural net‐
work model, the large amount of historical dynamic state es‐
timations are covered and divided into training and testing
sets.

B. Uncertainty Investigation

Data uncertainty in general power systems is typically re‐
lated to the stochastic uncertainty of the power generation
and loads injected as power sources to the system, such as
load variability and intermittent power generation. It is more
challenging to handle both load and intermittent power gen‐
eration prediction than either of these individual tasks. Spe‐
cifically, the stochastic uncertainty of load and intermittent
power generation reflects the uncertainty characteristics from
different injected sources resulted from the variability of
weather and unpredictable human activities. Besides, most of
the existing approaches only predict the upper and lower
bounds of the forecasting power without the detailed infor‐
mation about the power distribution at every time step. Addi‐
tionally, most probabilistic prediction methods are indeed de‐
terministic approaches, which cannot fully capture the sto‐
chastic uncertainty. In this paper, as mentioned above, we
consider the integration with time-varying loads and RESs in
AC power systems. Hence, the data uncertainty is taken into
account in our proposed model. As existing probabilistic pre‐
diction techniques are primarily derived from deterministic
models, their capability in capturing the stochastic uncertain‐

ty is limited. Hence, most of the existing models cannot rep‐
resent the data uncertainty due to the stochastic time-varying
loads and RESs. It is important to develop a generic probabi‐
listic deep learning model to handle a large number of such
uncertainties to provide the confidence bounds for decision-
making.

Besides the data uncertainty, we need to investigate the
uncertainty of the model related to the output results on deal‐
ing with dynamic state prediction, which is defined as model
uncertainty. Besides the stochastic uncertainty, the model un‐
certainty also plays an important role in the probabilistic pre‐
diction task, which is used to identify the amount of output
uncertainty. Intuitively, the model uncertainty refers to the
uncertainty of the model parameters and network structure.
The challenge of such uncertainty is to know how much the
chosen combinations affect the results of dynamic state pre‐
diction in different circumstances. Thus, the aim is to investi‐
gate the degree of uncertainty of this model corresponding
to the outputs. Since we consider a large amount of model
parameters and numerous variations of structures evaluated
for different combinations, it is important to observe how
the accurate dynamic system state prediction varies under
different circumstances, e. g., days, weeks, seasons, and so‐
cial factors. In addition, to tackle such system conditions,
the proposed Bayesian deep learning model is developed by
implementing the related parameters inside. The remainder
of this paper will introduce how our proposed Bayesian deep
learning model can effectively handle both the data and mod‐
el uncertainties in a detailed manner.

III. NEWTON-RAPHSON POWER FLOW MODEL

This section presents the problem formulation of Newton-
Raphson power flow model. As shown in Fig. 1, the AC
power flow model can be utilized to obtain the correspond‐
ing state matrix for the power system after the data pre-pro‐
cessing stage, which is for the model training and testing in
the proposed BLSTM network. The procedure of AC power
flow analysis is shown below in a detailed manner [21].

A. AC Power Flow Model

Based on the dynamic state assessment mentioned in Sec‐
tion II, we further develop the power flow model of a gener‐
al power system. Considering the nodal equations at each
bus, the nodal admittance matrix in the system can be denot‐
ed as Y. Through an one-line diagram of the whole circuit,
for each bus, the current and voltage matrices are denoted as
I and V, respectively. By Ohm’s law, the nodal admittance
matrix Y of the entire system follows (1).
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For the representations of power injections in the system,
we denote Pi and Qi as the active and reactive power injec‐
tions at bus i, respectively, which are modeled as:
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Pi =Vi∑
jÎNi

Vj (gij cos θ ij + bij sin θ ij ) (2)

Qi =Vi∑
jÎNi

Vj (gij sin θ ij - bij cos θ ij ) (3)

where N i is the set of nearby buses connected with bus i;
and θ ij is the phase difference of branch (ij).

In addition, the active and reactive branch power flows of
branch (ij) are modeled as:

Pij =V 2
i (gsi + gij )-ViVj (gij cos θ ij + bij sin θ ij ) (4)

Qij =-V 2
i (bsi + bij )-ViVj (gij sin θ ij - bij cos θ ij ) (5)

where gsi and bsi are the shunt conductance and shunt suscep‐
tance at bus i, respectively.

For the specific implementation at bus i of the system, it
involves in both the renewable power generation and the
load demand of bus i, which can be denoted as PGi

and PLi
,

respectively. The active and reactive power injections at bus
i can also be expressed as:

Pi =PGi
-PLi

"iÎN (6)

Qi =QGi
-QLi

"iÎN (7)

In order to ensure the stable system operation, the active
and reactive power generation at time t of bus iÎN should
follow their operation limits.

PGimin £PGi
£PGimax (8)

QGimin £QGi
£QGimax (9)

B. State Matrix

The actual measurements for the state estimation in the
power system are obtained by means of the Newton-Raph‐
son power flow model. As mentioned before, a new state ma‐
trix is devised to aggregate with all the historical informa‐
tion. Through the power flow analysis, the crucial compo‐
nents in the system can be obtained, such as the voltage
magnitude, phase angle, active power, and reactive power at
each bus. Based on the previous definitions, we denote the
voltage magnitude and phase angle at bus i as |Vi| and θ i, re‐
spectively. There are totally 2N - 1 state variables related to
the common bus voltage in the system, which explicitly in‐
cludes N voltage magnitudes and N - 1 phase angles, where
the phase angle for each bus is defined related to the refer‐
ence bus. By considering the active and reactive power injec‐
tions at bus i, we define the state vector in the system as:

x T
i =[ |Vi| θ i Pi Qi ] "iÎN (10)

Then, the state matrix of a general power system can be
expressed as:

X =[x1 x2  xN ] (11)

The satisfaction of AC power balance conditions can be
modeled as the non-linear equation, which can be expressed
as:

g(X)= é
ë
êêêê

ù
û
úúúú

DP
DQ

= 0 (12)

where DP and DQ are the matrices of the active and reactive

power imbalance, respectively.
According to [21], the utilization of the Newton-Raphson

power flow model is capable of solving the above non-linear
equation through iterations. After the initial guess of state
matrix, the solution can be determined through an iterative
manner by means of the Newton-Raphson power flow mod‐
el. Specifically, given the non-singular Jacobian matrix, the
Newton-Raphson power flow model can be converged qua‐
dratically from a sufficient initial guess [22]. The actual mea‐
surements of the general power system can be estimated
through the power flow analysis. The complete process of
Newton-Raphson state estimation method is presented in Al‐
gorithm 1.

For every iteration k, the active and reactive power imbal‐
ance can be obtained, denoted as DP k and DQk, respectively.
In addition, by means of Jacobian matrix, the state matrix
X k can be computed. To satisfy the stopping criterion, the it‐
eration number is set as k =Mk, where Mk is the maximum it‐
eration number. For the tolerance of the convergence, Algo‐
rithm 1 follows the rule as:

|DP k
i | £ ϵ "iÎN (13)

|DQk
i | £ ϵ "iÎN (14)

where ϵ= 10-5 is a small positive number.

IV. BLSTM NETWORK

This section introduces the proposed BLSTM network. By
handling the segregated datasets introduced in Section II, we
can extract and analyze the input data features. The first step
is associated with the data pre-processing. Then, through the
power flow analysis stage, we aggregate all historical infor‐
mation to fit in the proposed BLSTM network. The steps for
network training are covered below in detail.

A. Data Pre-processing

Based on the proposed methodology mentioned in Section
II, we consider a predetermined period for both renewable
power generation and load demands, which can be denoted
as T ={12NT } with NT time slots. Given the time period
T, we use R t to denote the collection of renewable power
generation and load demand features in a general power sys‐
tem, where tÎ T. As mentioned in Section II, the complex
AC power system consists of various entries such as RESs
and time-varying loads. To tackle the complex system, the
implementation of deep learning approach can be a suitable

Algorithm 1: Newton-Raphson state estimation method

1: Initial setup for all buses in the system with reference to the slack bus
2: for k = 1:Mk

3: Obtain DP k and DQk through power flow equations in [22]
4: Develop the Jacobian matrix of the system
5: Compute D|V k| and Dθk and form the state matrix X k

6: if the stopping criterion is met then
7: Update the final solution as X =X k and then close the for loop
8: else
9: Return to Step 3 in the for loop for another iteration and set k=k+1.
10: end if
11: end for
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candidate for accurate state prediction. Specifically, we col‐
lect the input data from December 2015 to December 2016.
For solar generation, wind generation, and residential load,
the profiles during this period are captured with a time dura‐
tion of 15 min in a cumulative manner. Furthermore, the
time-varying loads fluctuate due to the practical electricity
usage patterns. In this paper, we collect the input power data
associated with 37 European countries. Specifically, using
the topology of the city power grid, the related power gener‐
ation and loads are implemented. By sorting out the input da‐
ta, we can extract multiple different features of the power
grid. In addition, since the training and testing datasets are
constructed by capturing the periodical changes of the pro‐
files, a cross-validation step is also required for the data pre-
processing stage to assess the exact separation of training
and testing sets. Besides, in order to improve the robustness
of the proposed deep learning model, the sufficient amount
of training dataset is considered. Furthermore, by consider‐
ing the state matrix, the extracted features can rapidly in‐
crease with the number of buses in the power system. Thus,
the total number of the features from the input data depends
on general power network information. Besides, before we
fit the input data to the BLSTM network, we first normalize
the input dataset to [01] with min-max normalization. For
the missing values in the input dataset, we utilize linear in‐
terpolation for recovering the values.

B. LSTM

The pre-processing input data with different items are fed
in the Bayesian deep learning model for the purpose of mod‐
el training. In this paper, we focus on the BLSTM network,
which is inherently a probabilistic model for handling time-
series data. The network parameters in the BLSTM network
are expressed by conditional probabilities, which are differ‐
ent from the typical LSTM network with fixed parameters.
Since the input data cover the features of renewable power
generation, it is crucial to capture the characteristics of
RESs. Hence, our proposed BLSTM network can capture
both the model uncertainty and stochastic uncertainty [10].

To illustrate the basic architecture of the proposed
BLSTM network, we first introduce the structure of one
LSTM cell shown in Fig. 2.

Let z t be the input of the neural network, which is formed
by:

z t =Concatenate(RtX t ) (15)

where Concatenate(·) is the function to concatenate a list of
inputs.

For the time sequence number in the LSTM model, we
consider the model input as the observations over the past L
time slots. The vector of observations can be denoted as
z t - Lt =[z t - Lz t - L + 1z t ]. The LSTM network topology con‐
tains the fully self-connected hidden layers with the memory
cells and related gate units installed. LSTM units implement
the hidden layers, and all units have direct connections with
each other. In Fig. 2, each LSTM cell is formed as the chain
structure and covers four interacting layers with individual
communication links, which are different from the traditional
recurrent neural network (RNN) with a single neural net‐
work structure. The key function for each LSTM cell con‐
sists of an input gate, forget gate, and output gate. First of
all, the input gate in the LSTM network at time t i t can be
expressed as:

i t = σ(z tU
i + h t - 1W

i ) (16)

where U i and W i are the coefficient and weighted matrices
of the input gate, respectively; and h t - 1 is the hidden state
for the previous time slot. By using the sigmoid function
σ(×), the non-linearity of the hidden layers is shown. The
backup cell state of LSTM network at time t C͂ t can be de‐
noted as:

C͂ t = tanh(z tU
g + h t - 1W

g ) (17)

where tanh(×) is the hyperbolic tangent activation function;
U g and W g are the coefficient and weighted matrices of the
backup cell state, respectively. Then, the forget gate of
LSTM network at time t f t can be denoted as:

f t = σ(z tU
f + h t - 1W

f ) (18)

where U f and W f are the coefficient and weighted matrices
of the forget gate, respectively. The function of the memory
cell is to activate the forget gate to decide whether to delete
the useless information from the previous time slot. The out‐
put gate of LSTM network at time t o t can be expressed as:

o t = σ(z tU
o + h t - 1W

o ) (19)

where U o and W o are the coefficient and weighted matrices
of the output gate, respectively. The function of the output
gate is to prevent from storing long time lag memories. Be‐
sides, the hidden state of LSTM network at time t h t can be
expressed as:

h t = o ttanh(C t ) (20)

where  denotes the Hadamard product operation. The cell
state of LSTM network at time t C t can be denoted as:

C t = f tC t - 1 + i tC͂ t (21)

where C t - 1 denotes the cell state from the previous time slot,
which can also be defined as the memory cell state.

C. BLSTM

The utilization of LSTM network has demonstrated that
the point prediction can capture the long-term dependencies

σ(·) σ(·) σ(·)tanh(·)

tanh(·)

ReLU(·)
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Fig. 2. Structure of LSTM cell.
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of the input dataset [23]. However, the standard LSTM net‐
work cannot capture the uncertainty. Hence, we propose the
BLSTM network for probabilistic prediction tasks. Specifi‐
cally, the BLSTM network involves in structure and parame‐
ter uncertainties. On one hand, the structure uncertainty re‐
fers to the way of choosing model structure to interpolate or
extrapolate the selected data. On the other hand, the parame‐
ter uncertainty is associated with the set of weight parame‐
ters in the network to indicate the uncertain observations.
For Bayesian neural networks, the prior distributions should
be relevant to the distribution of the network parameters, e.g.,
weights and bias. The reason is that they are hard to be iden‐
tified due to the unclear meanings of these parameters. Ac‐
cording to the demonstrations in [24], deploying standard
parametric distributions is effective when the prior is hard to
be identified.

As mentioned above, in order to capture the model uncer‐
tainty, a prior distribution that each parameter is set as a
standard normal distribution with zero mean can be placed
over weight parameters. Note that the posterior distribution
is used to produce the samples of forecasts after training the
BLSTM network. We define p(W|Z trainY train ) as the posterior
distribution of the network weights with training data, where
W is the weighted matrix for the network; and Z train and Y train

are the training sets. According to Bayes’s theorem, the pos‐
terior distribution can be expressed as:

p(W|Z trainY train )=
p(Y train|Z trainW )p(W )

p(Y train|Z train ) (22)

Then, we can have:

p(y|zZ trainY train )= ∫p(y|zW )p(W|Z trainY train )dW (23)

where z and y are the given input and output points, respec‐
tively.

For Bayesian deep learning, the network parameters are
assumed to follow the posterior probability distributions.
Hence, after the training process of the Bayesian neural net‐
work, the queries for the unseen data can be predicted by:

p( ŷ|ẑ)=Ep(W|ZtrainYtrain ) (p( ŷ|ẑZ trainY train ))=

∫p( ŷ|ẑZ trainY train )p(W|Z trainY train )dW (24)

where E(×) is the expectation over the posterior probability
distribution p(W|Z trainY train ); and ̂ represents the prediction
valnes. In this case, the Bayesian neural network is equiva‐
lent to taking the average predictions from an ensemble of
neural networks weighted by the posterior probabilities of
the parameters W.

Note that the true posterior is usually intractable for the
LSTM network. By considering the complexity of the poste‐
rior distribution of the network parameters, (24) is hard to
be performed due to its intractable computation. Therefore,
we introduce qδ (W ) with parameter δ as an approximating
variational distribution to ensure the optimal distribution by
minimizing the Kullback-Leibler (KL) divergence according
to [25]. To solve this issue, the variational inference can be
utilized to gain the latent parameters δ on qδ (W ) as:

δ* = arg min
δ

KL(qδ (W )||p(W|Z trainY train ))=

arg min
δ
∫qδ (W )lg

qδ (W )
p(W )p(W|Z trainY train )

dW =

arg min
δ

[KL(qδ (W )||p(W )-Eqδ (W ) (lg p(Z trainY train|W ))] (25)

Hence, given the optimal distribution, the predictive distri‐
bution is calculated approximately by:

p(y|zZ trainY train )= ∫p(y|zW )q*
δ (W )dW = q*

δ (y|z) (26)

where q*
δ (W ) is the optimal distribution. Meanwhile, consid‐

ering the dimension of the distribution of the parameters, we
follow the assumption in [26].

By repeating the calculation with the sample weight Ts,
the predictive mean of the samples can be calculated to pres‐
ent the model parameter uncertainty, which is shown as:

exp(y)=
1
Ts

f Wt (z) (27)

where f Wt (z) is the stochastic forward pass with its weight in
the network. Besides, given that W t~q*

δ (W ) and p(y|f Wt (z))=
N(y ; f Wt (z)σ)σ > 0, we have the following estimator:

exp(yT y)=
1
Ts
∑
t = 1

Ts

( f Wt (z))T f Wt (z)+ σ (28)

where σ is the data uncertainty and refers to the inherent
noise in the data. The measurement of this value can be de‐
termined by the residual sum of squares on the independent
validation sets of data. Then, the predictive variance can be
obtained as:

Var(y)=
1
Ts
∑
t = 1

Ts

( f Wt (z))T f Wt (z)-
1

T 2
s
∑
t = 1

Ts

( f Wt (z))T∑
t = 1

Ts

f Wt (z) + σ2

(29)

Besides, the loss function in the BLSTM network can be
defined as:

L(δ)=
1

T 2
train
∑
t = 1

Ttrain 1
2σ 2

||yi - f (zi )||
2 +

1
2

lg σ 2 (30)

To combine the data and model uncertainties, we define a
new expression for the output of this model by considering
the predictive mean and model precision as [ẑσ̂ 2 ]= f Wt

BLSTM (z),
where f Wt

BLSTM (z) is the proposed BLSTM network that is pa‐
rameterized by W t~q*

δ (W ). Thus, the final loss function can
be expressed as:

LBLSTM (δ)=
1

T 2
train
∑
t = 1

Ttrain 1
2σ 2

||yi - ŷi||
2 +

1
2

lg σ̂ 2
i (31)

Last but not least, the confidence interval (CI) can be cal‐
culated as:

CI =[μ̂ - tβ/2 σ̂ μ̂ + tβ/2 σ̂] (32)

where μ is the expection value; and tβ/2 is the t-score in the
table of t-distribution.

D. Training Algorithm

In the proposed BLSTM network, we train the network by
minimizing the loss function in (30) to adjust the predicted
results. Also, the BLSTM network is capable of capturing
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the uncertainty of the input data. Considering the process of
training BLSTM network, we incorporate the Adam optimiz‐
er [27] into the training algorithm for the LSTM network. In
addition, the LSTM cell in the network is designed so that
the updating complexity per time interval and weight does
not depend on the size of the neural network, and the stor‐
age does not rely on the sequence length of the input data
[28]. Besides, the historical data, known as the input data,
can be regarded as the prior information for input training.
When we apply the BLSTM network for the practical scenar‐
io, we should pre-train the network under different power
system operations. Thus, the state of the general power sys‐
tem can be predicted through our proposed BLSTM net‐
work. Consequently, the training of BLSTM network can be
summarized as follows.

1) Collect the power system data, and separate the data in‐
to training and testing datasets.

2) Normalize the input data and prepare the sample data ζ
with normal distribution.

3) Initialize network parameters: δ = μ + σζ.
4) Perform forward and back propagations on the batch.
5) Update μ and σ according to the gradients in the net‐

work respect to δ.
6) Fine tune the whole network with multiple trials and

output the predicted result.

V. PERFORMANCE EVALUATION

This section shows the performance evaluation of the pro‐
posed methodology. First of all, we introduce the simulation
setup. Then, we present the scenarios for comparison and
performance metrics for the simulation. Finally, we present
and discuss the simulation results in a detailed manner.

A. Simulation Setup

In the simulation, we evaluate the performance of the pro‐
posed model with the historical power system data. We em‐
ploy the IEEE 57-bus system as the testing power system
[29]. Real power system data from [30] are adopted in the
subsequent case studies. In particular, 13-month data from
December 2015 to December 2016 are obtained, which are
divided into a training dataset (the first twelve months) and
a testing dataset (the remaining month) for cross-validation.
The sampling period of all profiles is aggregated into 15
min. The historical data cover multiple entries, including so‐
lar generation, wind generation, and time-varying household
load. We scale the time-varying household load to fit the par‐
ticular IEEE 57-bus test system. In addition, the solar and
wind generators are installed at buses 13 and 37, respective‐
ly. According to the settings of the test system [29], the in‐
stalled capacities for these two renewable power generators
are set to be 150 MW and 70 MW, respectively.

For the purpose of simulation, the measurements of the
system data are used to obtain the actual values of voltages,
phase angles, and power by the Newton-Raphson power
flow model. Then, we design the BLSTM network as fol‐
lows. We empirically set the sequence length L (in time
slots) to be 4. The epoch number is 150 and the batch size

is set to be 64. The numbers of the three hidden units for
the LSTM network are set to be 64, 128, and 256, respec‐
tively. The dropout rate is 0.5. The value of β is set to be
5% to investigate the 95% confidence interval for the pro‐
posed BLSTM network. The number of samples Ts is set to
be 100. All the tested algorithms are implemented with Py‐
thon and PyTorch [31].

B. Scenarios for Comparison

The evaluation of our proposed BLSTM network is based
on the comparison with other typical prediction techniques.
In this paper, we introduce six widely-adopted techniques
for baseline comparisons, including multiple linear regres‐
sion (MLR) [32], ANN [11], LSTM [16], unscented Kalman
filter (UKF) [2], quantile regression (QR) [33], and quantile
random forest (QRF) [34]. Indeed, these tools have already
been widely used for the application in the power system.
The former three techniques belong to point prediction tech‐
niques while the latter three refer to probabilistic models.
Our proposed BLSTM and LSTM network can capture both
the data and model uncertainties simultaneously. The base‐
line techniques are fine-tuned for optimal parameter configu‐
rations to produce the best prediction results.

C. Performance Metrics

To assess the prediction accuracy of the proposed BLSTM
network, four performance metrics are employed, which are
shown as:

MSE =
1

NT
∑
tÎ T

(y(t)- ŷ(t))2
(33)

RMSE =
1

NT
∑
tÎ T

(y(t)- ŷ(t))2 (34)

MAE =
1

NT
∑
tÎ T

|| y(t)- ŷ(t) (35)

MAPE =
1

NT
∑
tÎ T

|

|
|
||
||

|
|
||
| y(t)- ŷ(t)

y(t)
´ 100% (36)

where y(t) and ŷ(t) are the actual and predicted values at
time t, respectively; and NT is the number of the sampling
period. These metrics are used to compare the predicted val‐
ue with the actual value for point prediction, namely, mean
square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE). For these metrics, a smaller value indicates a bet‐
ter performance in the prediction.

D. Simulation Result

1) Comparison of Different Prediction Methods
As previously introduced in Section V-B, we evaluate the

proposed BLSTM network compared with the other six base‐
line methods. Table I presents the four performance metrics
in evaluating these prediction methods. It is apparent that
our proposed BLSTM model outperforms the rest of the pre‐
diction methods with the smallest values in MSE, RMSE,
MAE, and MAPE. Even if both UKF and QRF can have rel‐
atively low MSE and RMSE, MAE and MAPE are both
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much higher than BLSTM, which indicate larger errors. In
addition, we can observe that since BLSTM network consid‐
ers both the model and data uncertainties, the predicted re‐
sult can be better even if for the point estimation. Owing to
the characteristics of capturing long-term dependencies of
time-series input data on LSTM network, the proposed
BLSTM network can help further enhance the prediction ac‐
curacy of the output results. The time complexity of the pro‐
posed BLSTM thus only depends on the number of sam‐
pling period NT and the number of features NF. Hence, the
time complexity of BLSTM is defined as O(NT NF ). It is ap‐
parent that a lower time complexity reflects a more effective
approach.

2) Probabilistic Prediction of Net Active Power Imbalance
In this part, we investigate the net active power imbalance

prediction for the entire month using the BLSTM network.
By considering both the model and data uncertainties, the
normalized prediction results can be obtained as shown in
Fig. 3. By comparing with the actual values, it is apparent
that the predicted results can better fit the trend of the actual
profile. According to Table I, we can demonstrate that our
proposed BLSTM network can outperform baseline tech‐
niques, which also yields the lowest errors through the four
evaluating metrics.

3) Probabilistic Prediction of Bus Voltage
In this part, we further focus on the monthly dynamic

state variables of each common bus. The relatively large-
scale solar power generation is integrated at bus 13. Mean‐

while, we capture both the phase angle and the voltage mag‐
nitude of this bus. The normalized results are presented in
Figs. 4 and 5. In Fig. 4, it is obvious that the lower and up‐
per bounds of 95% confidence interval can better fit the
trend of the real values of the phase angle at bus 13. Be‐
sides, in Fig. 5, most of the predicted values are close to the
real ones of the voltage magnitude at bus 13. In addition,
the similar results can also be demonstrated at bus 37, which
is integrated with wind power generation. Furthermore, by
observing Figs. 4 and 5, although the predicted values can‐
not fit well with the sudden fluctuations of the real values,
the occurrence of the confidence bounds of the BLSTM net‐
work show the effectiveness of capturing such features.

4) Tractability for Large Power System
In this part, we investigate the numerical performance of

the proposed BLSTM network in IEEE 118-bus system. Ta‐
ble II summarizes the prediction results by adopting differ‐
ent techniques in IEEE 118-bus system. Considering the
change of test case, all tools are fine-tuned to obtain the best
parameters to give the best prediction results. By comparing
with these techniques, it is apparent that our proposed
BLSTM network still obtain the lowest MSE, RMSE, MAE,
and MAPE values, indicating the highest prediction accura‐
cy. Besides, with the increase of the system complexity, the
model and data uncertainties may rise for the six baseline
techniques. However, according to the results in Table II, the
accurate prediction results can still be obtained by means of
BLSTM network, which shows the best performance.

TABLE I
COMPARISON OF DIFFERENT PREDICTION TECHNIQUES IN

IEEE 57-BUS SYSTEM

Method

MLR

ANN

LSTM

UKF

QR

QRF

BLSTM

MSE

2.100×10-3

2.820×10-4

1.870×10-5

1.490×10-5

6.060×10-5

1.194×10-5

5.660×10-6

RMSE

0.0460

0.0170

0.0043

0.0039

0.0078

0.0035

0.0023

MAE

0.0320

0.0110

0.0076

0.0034

0.0125

0.0029

0.0017

MAPE (%)

467.1

163.2

87.4

35.2

28.0

39.2

24.9
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5) Robustness of Proposed BLSTM Network
We further evaluate the robustness of the proposed

BLSTM network. In this part, we utilize two different sys‐
tems, IEEE 57-bus and 118-bus systems, to investigate the
robustness of the proposed BLSTM network. Note that, the
input datasets are different between the two systems because
the historical dynamic system states are generated based on
the structure information of the test systems. The results are
presented in Fig. 6. It is obvious that the loss curve of
BLSTM in IEEE 57-bus system converges around 18 ep‐
ochs. Meanwhile, the loss curve of IEEE 118-bus system
converges around 27 epochs. The results indicate the effec‐
tiveness of proposed BLSTM network for different systems.

VI. CONCLUSION

In this paper, we propose a Bayesian deep learning ap‐
proach to predict the dynamic system states in general pow‐
er systems. First of all, the model respects the implementa‐
tions of renewable generation and household loads in gener‐
al systems through data pre-processing. Then, by the New‐
ton-Raphson power flow model, the system state matrix is
developed. After combining multiple system features as a fi‐
nal complete input dataset, we train and validate the
BLSTM network to generate accurate prediction results. In
addition, we capture both the data and model uncertainties in
the proposed model. The simulation results indicate that the
accurate prediction can be obtained through our proposed
BLSTM network for different scales of power systems. Fu‐
ture work will consider exploring a more complex deep
learning model for a practical power system to further cap‐
ture the potential features of such system. In addition, the
proposed Bayesian deep learning model can be extended to

the application of other related research fields in the power
system.
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