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Optimization for Micro-energy Grid Dispatch
Based on Non-supplementary Fired Compressed

Air Energy Storage Aided Energy Hub and
Hybrid Hyper-spherical Search

Zhenlong Li, Peng Li, Jing Xia, and Xiangqian Liu

Abstract——Micro-energy grids have shown superiorities over
traditional electricity and heating management systems. This pa‐
per presents a hybrid optimization strategy for micro-energy
grid dispatch with three salient features. First, to enhance the
ability to support new storage equipment, an energy hub model
is proposed using the non-supplementary fired compressed air
energy storage (NSF-CAES). This provides flexible dispatch for
cooling, heating and electricity. Second, considering the unique
characteristics of the NSF-CAES, a sliding time window (STW)
method is designed for simple but effective energy dispatch.
Third, for the optimization of energy dispatch, we blend the dif‐
ferential evolution (DE) with the hyper-spherical search (HSS)
to formulate a hybrid DE-HSS algorithm, which enhances the
global search ability and accuracy. Comparative case studies
are performed using real data of scenarios to demonstrate the
superiorities of the proposed scheme.

Index Terms——Energy hub dispatch, hyper-spherical search,
micro-energy grid, sliding time window.

I. INTRODUCTION

THERE have been wide explorations on the use of clean
energies such as wind and solar energy for sustainable

development. The concept of microgrid based on distributed
power generation technologies is proposed. The micro-ener‐
gy grid is formulated as a new microgrid architecture which
integrates multiple energy carriers such as cooling, heating,
and electricity [1]. This architecture requires the coordina‐
tion of the natural gas network and the power network.

Thus, the combined heating and power (CHP) technology
plays an important role in coupling the natural gas system and
the power system.

For the micro-energy grid containing multiple energy carri‐
ers, some studies adopt a system framework called energy
hub for system analysis [2]. The energy hub adopts the CHP
and combines the energy storage with other energy conver‐
sion equipments. It provides high flexibility for the coordi‐
nated dispatch of various forms of carriers such as cold,
heating and electricity [3]. Despite various applications of
the energy hub, there still exist some problems in system
modeling and optimization solving.

For the modeling of micro-energy grid system with energy
hubs, the utility as well as the modeling and use of new de‐
vices for energy hubs should be considered. In [4], a model
is presented for economic dispatch of multi-energy grid sys‐
tems using energy hubs. In [5], a residential energy hub
model is proposed with a demand response program for the
optimal energy management. Some studies improve the ener‐
gy hub in the presence of uncertainties using searching algo‐
rithms [6] - [8]. In [9], the day-ahead and real-time energy
management models are established and formulated as a
class of distributed coupled optimization problems.

Obviously, these studies provide improved micro-energy
grid system models but some new issues need to be consid‐
ered for further applications. For example, the vehicle to
grid is effective to deal with flexible heating load, but the
model is too complicated for the solvers [4], [5]. New equip‐
ments like heating pump water heater and hydrogen storage
can enhance the energy hub, but they require simplified dis‐
patch model or reduced objectives for optimization [6], [8],
[9]. Recent studies use the compressed air energy storage
(CAES) equipment in power system dispatch. The CAES
provides not only electrical energy, but also other carrier
forms of energies such as cooling and heating. It also uses
natural gas combustion to generate electricity and causes en‐
vironmental problems similar to CHP. The advanced adiabat‐
ic CAES (AA-CAES) system and the non-supplementary
combustion CAES (NSF-CAES) system integrate the ther‐
mal energy storage system into CAES [10]. They can store
the heating generated in the air compression process and re‐
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lease it to heat the compressed air during the power genera‐
tion process. Thus, no gas combustion is required in the
CAES system. In [11], the normal CAES with gas supply is
introduced to reduce the system operating cost and uncertain‐
ty influence of wind power. In [12], the adiabatic CAES is
used as back-up power to support microgrid operation. In
[13], an energy hub based on adiabatic CAES is proposed
by considering the pressure behavior and mass flow chang‐
es. In [10], the micro-energy grid dispatch is addressed by
using the NSF-CAES to absorb electricity and release cool‐
ing, heating and electricity. The NSF-CAES can be dis‐
patched independently for more practical applications. In this
paper, considering the need for zero carbon emissions and
the characteristics of the energy hub based micro-energy grid
system, we introduce an NSF-CAES equipment to improve
the energy hub model.

For the dispatch of micro-energy grid system, there have
been many methods such as dynamic programming, game
theory, intelligent algorithms, etc. [14]. Generally, these
methods can be categorized into two types: analytical meth‐
ods and numerical methods. Analytical methods are limited
and used for some unique scenarios. Numerical methods can
be applied more widely owing to the strong searching ability
and less limitations on system model [15]. Thus, numerical
methods can effectively address typical linear programming
and convex optimization issues. They can also solve multi-
objective and non-linear problems conveniently. Moreover,
numerical methods show better generalization performance
for various scenarios, with straightforward logic flow for al‐
gorithm realization.

In this paper, we survey the two types of methods, respec‐
tively. For analytical methods, a three-level framework has
been used to optimize the microgrid with stochastic program‐
ming for uncertainties [16]. A priority-based energy dispatch
method for distributed networks is presented for multiple mi‐
crogrids [17]. A two-layer predictive energy management sys‐
tem is formulated with hybrid storages [18]. A multi-stage
stochastic programming of a transmission constrained eco‐
nomic dispatch is provided subject to multi-area renewable
production uncertainty [19].

In comparison, numerical methods focus more on intelli‐
gent algorithms. Some multi-objective energy management
methods for microgrids use bio-inspired mechanisms like im‐
perialistic competition algorithm (ICA) and Levy-harmony
algorithm to prevent premature convergence [20], [21]. The
trade-off between the searching speed and precision is a vi‐
tal issue determined by seeking mechanisms. Therefore,
some improved intelligent algorithms have been raised [22].
Besides, if the objective function or constraints cannot be di‐
rectly achieved, data-driven and robust algorithms are prefer‐
able [23], [24].

Most analytical methods rely on convex optimization, thus
the solutions to non-convex optimization need further study.
Intelligent algorithms can make trade-off between the search‐
ing speed and precision, but tackling scenarios with too
many constrains will lead to non-convergence. Recently, it is
found that the hyper-spherical search (HSS) algorithm per‐
forms well in micro-energy grid dispatch optimization, but

there exists the probability of falling into the local optimal
due to the searching limitation [7], [25].

Inspired by the above observations, we propose an energy
hub framework by introducing the NSF-CAES. Then, a dis‐
patch scheme is designed with the differential evolution aid‐
ed HSS (DE-HSS) algorithm. The major contributions of
this work are two-fold.

1) The NSF-CAES is involved in the energy hub, provid‐
ing flexible support for storage devices. Note that the NSF-
CAES needs to compress air during the energy storage pro‐
cess. This cannot ensure real-time dispatch. Therefore, we
adopt a sliding time window (STW) method for effective en‐
ergy dispatch and service life extension of the NSF-CAES.

2) To optimize the complex micro-energy grid, the DE-
HSS algorithm is presented for the energy dispatch. Com‐
pared with traditional intelligent optimization methods, the
DE-HSS has stronger searching ability and avoids the deficits
of long-time computation, low precision and local optima.

The rest of the paper is organized as follows. Section II de‐
scribes the framework and modeling for micro-energy grid.
Section III presents the formulation of multi-objective optimi‐
zation. Section IV presents the dispatch method using STW
and DE-HSS. Case studies and comparative analysis are car‐
ried out in Section V to validate the proposed methods. Final‐
ly, the concluding remarks are given in Section VI.

II. FRAMEWORK AND MODELING FOR MICRO-ENERGY GRID

A. Framework of Micro-energy Grid and Solution Process

This paper studies the community-scale micro-energy grid.
The first step to solve the micro-energy grid dispatch prob‐
lem is to build a model. Then an algorithm is used to solve
it according to the given model and data. Thus we divide the
overall calculation process into two layers: the micro-energy
grid layer and the dispatch layer.

The framework of micro-energy grid is shown in Fig. 1.
The gas company serves as energy supplier while the elec‐
tricity company serves as energy supplier or receiver. The en‐
ergy hub acts as a multi-energy aggregator, which is com‐
posed of wind turbines, solar panels, CHP equipment, elec‐
tric boiler (EB), gas boiler (GB), absorption chiller (AC),
electric storage (ES), heating storage (HS), and NSF-CAES.

It is assumed that the communication lines and all equip‐
ments are in normal status. On the input side, the electricity
company provides the electricity to energy hub via trans‐
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Fig. 1. Framework of micro-energy grid.
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formers. The gas company provides the gas to CHP and GB
with dispatch factor adaptively tuned by demand and equip‐
ment constraints. Inside the energy hub, the electric power
comes from solar, wind, and electricity output of CHP. The
heating power comes from EB, GB, and the heating output
of CHP. The cooling power comes from AC. Storage devices
balance the supply and demand. Electricity load, cooling
load, and heating load are different loads on the output side.

Figure 2 shows the framework of micro-energy grid dis‐
patch.

In this paper, the system advisor model (SAM) is used to
simulate wind and solar power without mathematical model‐
ing [26]. Three scenarios are studied: environmental cost
minimization, economic cost minimization, and environmen‐
tal and economic cost minimization. For each scenario, the
proposed DE-HSS seeks the optimal value for power man‐
agement.

B. System Modeling

1) CHP Modeling
The CHP is composed of a micro gas turbine and a bro‐

mine refrigerator [6]. We investigate a CHP in the normally
open state without consideration of the start and stop time.
The CHP determines the electric energy output by the ther‐
mal energy output. It is modeled as:
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where ηMT is the electricity generation efficiency of micro
gas turbine; P MT

t is the electricity output of micro gas turbine
at time t; PMT is the rated power of micro gas turbine; a, b,
c, and d are the fitting coefficients and set to be 0.0753,
0.3095, 0.4174, and 0.1068, respectively [27]; QMT

t is the re‐

sidual heating at time t; η l is the heating loss coefficient; ηh

is the heating generation efficiency; P CHP
ht is the actual heat‐

ing production from the residual heating at time t; and P CHP
t

is the power corresponding to the natural gas consumed at
time t.
2) Dispatch Factor Between CHP and GB

Natural gas is consumed through CHP and GB. The distri‐
bution formulations of natural gas between CHP and GB are:

ì
í
î

ïï
ïï

P CHP
t = vg P gas

t

P GB
t = (1 - vg )P gas

t

(2)

where P gas
t is the natural gas consumption at time t; and vg is

the dispatch factor of natural gas which is adaptively tuned in
different time intervals.
3) ES and HS Modeling

Due to the similarity of models, the ES and HS can be
mathematically described with the same model [5] given as:

Et = (1 - ηloss )Et - 1 + ηch PchDt -
PdisDt
ηdis (3)

where Dt is the time length; ηch and ηdis are the charging and
discharging efficiencies, respectively; pch and pdis are the
charging and discharging power, respectively; ηloss is the self-
loss rate; and E is the quantity of energy storage.
4) EB, GB, and AC Modeling

The EB cooperates with CHP to meet the heating load de‐
mand and increase the electricity consumption during the val‐
ley periods [28]. It enables the conversion from the electrici‐
ty to heating as well as peak-valley coordination between
electricity load and heating load, which can be modeled as:

P͂ EB
t = ηEB

h P EB
t (4)

where P EB
t and P͂ EB

t are the electric and heating power of the
EB at time t, respectively; and ηEB

h is the conversion efficien‐
cy from electricity to heating. In this paper, the electric ener‐
gy consumed by the EB is uniformly dispatched as part of
the electricity load for the micro-energy grid.

The heating power generated by the GB is related to the
efficiency:

P͂ GB
t = ηGB

h P GB
t (5)

where P͂ GB
t is the heating output of the GB at time t; and ηGB

h

is the model efficiency of the GB.
The AC converts the heating power into cooling power:

P͂ AC
t = ηAC

e P AC
t (6)

where P͂ AC
t is the cooling output of the AC at time t; P AC

t is
the consumed heating power of the AC at time t; and ηAC

e is
the cooling efficiency of the AC.
5) NSF-CAES Modeling

We model the NSF-CAES in two ways: ① component-lev‐
el modeling; ② STW-based system-level modeling.

1) Component-level modeling
The NSF-CAES used in this paper is mainly composed of

a compressor, a motor/generator, a turbine generator, a gas
storage chamber, a high-temperature medium storage tank, a
low-temperature medium storage tank, and heating exchang‐
ers. It operates in two processes: energy storage and energy

Fitness
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Optimal dispatch

N

Power management

Is iteration over?

Parameter input

Scenario selection

DE-HSS searching

Start

End

Fig. 2. Framework of micro-energy grid dispatch.
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release. Figure 3 describes the framework of NSF-CAES,
where Pi (i = 0 1 ... 8) is the corresponding power entering
or exiting each energy conversion sub-equipment of NSF-
CAES and Ti (i = 0 1 ... 8) is the temperature of the air be‐
fore entering the heating exchanger or after exiting from the
heating exchanger. More specific assumptions for NSF-CAES
can be found in [10]. Here we assume that both the compres‐
sor and the turbine generator use the rated voltage during the
operation, and the specific parameters are given in Section V.

The mathematical model for the NSF-CAES at runtime is
given as follows.

a) Electricity consumed by energy storage. The compres‐
sor can use wind power, solar power, and valley power to
compress air. The shaft power at each compression stage is:

Pci =
k

k - 1
Qmc RgT

in
ci

ηci

β
k - 1

k
ci (7)

where k is the adiabatic index; Qmc is the mass flow rate of
the compressor; Rg is the constant of the air; T in

ci is the tem‐
perature of the air entering into the ith stage compressor; ηci

is the efficiency of the ith-stage compressor; and βci is the
compression ratio of the ith-stage compressor.

The temperature of the air exiting into the ith stage com‐
pressor T out

ci is:

T out
ci = T in

ci

β
k - 1

k
ci - 1
ηci

+ 1 (8)

The number of compressor stages is 3, and the time of the
system energy storage process is tc. The electric energy con‐
sumed by the compressor unit in the energy storage process is:

Wc =∑
i = 1

3

Pcitc (9)

b) Heat stored by the heating recovery system. The low-
temperature medium in the regenerative system absorbs the
compression heating in the compression process through the
heating exchanger 1, and then stores it in the high-tempera‐
ture medium storage tank. The heating stored in the regenera‐
tive system is the heating released by the high-pressure and
high-temperature air passing through the heating exchang‐
er 1:

QTES =∑
i = 1

3

τcQmcCpa (T1 - T2 ) (10)

where Cpa is the specific heating capacity of the air at a con‐
stant pressure; and τc is the compressor working hours.

c) Electrical energy output by the system. By using the
adiabatic efficiency of the turbine, the output shaft power at
each stage of the turbine unit is calculated as:

Pei =
k

k - 1
Qme RgTeiηei( )1 - π

-
k - 1

k
ei (11)

where Qme is the mass flow rate of the turbine; Tei is the
temperature of the air entering the ith-level turbine during the
expansion process; ηei is the efficiency of the ith-level tur‐
bine; and πei is the expansion ratio in the ith-level turbine.

The number of the turbine stages is 2, and the actual out‐
put power of the entire turbine:

Ee = ηg∑
i = 1

2

Peite (12)

where ηg is the efficiency of the turbine; and te is the genera‐
tion time of turbine power.

d) Heat output by system. The heating output by the sys‐
tem is the heating released by the high-temperature medium
storage tank through the heating exchanger 3. The heating
can be stored and used during discharging. The heating out‐
put is:

Eh =XQTES (13)

where X is the heating ratio for the heating stored in the re‐
generative system.

e) Cold output by system. The cooling output of the sys‐
tem is the amount of heating exchange between the low-tem‐
perature exhaust of the turbine unit and the outside through
the heating exchanger 4. It is assumed that the temperature
of the low-temperature exhaust reaches the ambient tempera‐
ture T0 after heating exchange. The cooling output is:

Ec = teQmeCpa (T0 - T5 ) (14)

2) STW-based system-level modeling
By ignoring the operation details, we consider the charg‐

ing and discharging characteristics under the rated operating
condition. The NSF-CAES stores the energy just as typical
storage devices, and discharges the energy to the electricity
load, cooling load, and heating load in different proportions.
The charging model is:

Ecomt = (1 - η loss
com )Ecomt - 1 + ηch

com P ch
comtDt (15)

The discharge to electricity load, cooling load, and heating
load is modeled as:
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where η loss
com is the self-loss rate of NSF-CAES; P ch

comt and P dis
comt

are the charging and discharging power at time t, respective‐
ly; ηch

com and ηdis
com are the charging and discharging efficien‐

cies, respectively; E dis
comet, E dis

comct, and E dis
comht are the energies

that can be released to electric load, cooling load, and heat‐
ing load at time t, respectively; and ηcom

e , ηcom
h , and ηcom

c are
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Fig. 3. Framework of NSF-CAES.
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the ratios of energy discharging to electricity, heating, and
cooling, respectively. Due to the energy loss, there exists ηcom

e +
ηcom

h + ηcom
c < 1.

III. FORMULATION OF MULTI-OBJECTIVE OPTIMIZATION

A. Multi-objective Function

1) Economic Cost
It is assumed that there is no loss of energy during the trans‐

mission. We focus on the dispatch optimization for the energy
hub without consideration of the investment cost for operation
and maintenance. We consider the electricity and gas price sig‐
nals to guide users to participate in the demand side response
and adjust the energy structure. The energy purchase cost is:

F1 =∑
t = 1

T

(C e
t P grid

t +C g
t Qgas

t ) (17)

where P grid
t is the amount of power exchanged between the

energy hub and the external grid at time t; Qgas
t is the

amount of natural gas purchased at time t; C e
t is the external

grid price; C g
t is the natural gas price; and T is the time peri‐

od for the economic dispatch cycle. To tackle the day-ahead
dispatch problem, we take T as 24 hours.

We denote P b
t as the electricity for buying (positive val‐

ues) and P s
t for selling (negative values), so we can obtain:

P grid
t =P b

t +P s
t (18)

The purchase-sale price ratio can be set to be C buy
t : C sell

t =
1.3 in simulations [5]. In normal circumstances, this value
should be set between 1 and 2 based on experience. In this
paper, we set the ratio to be 1.3, which is actually a rough
ratio for validation. Then, we can obtain:

Qgas
t = βP gas

t (19)

where β is the conversion factor denoting the natural gas
amount required for 1 kWh. Usually, we take β as 0.0925,
which means we require 0.0925 m3 to produce 1 kWh pow‐
er [5].
2) Environmental Cost

The energy hub consumes electricity and natural gas sup‐
plied from external sources. The objective function of mini‐
mizing the carbon emissions is:

min F2 =∑
t = 1

T

[Qgas
t (μgas

CO2
CCO2

+ μgas
NOx

CNOx
+ μgas

SOx
CSOx

)+

P grid
t (μgrid

CO2
CCO2

+ μgrid
NOx

CNOx
+ μgrid

SOx
CSOx

)] (20)

where μ is the unit emission coefficient, the unit is g/kWh for
electricity, and g/m3 for natural gas; Qgas

t is the gas purchase
volume of the energy hub at time t; and C is the unit treatment
cost of the pollutants. The total objective function is:

min F =ω1 F1 +ω2 F2 (21)

where ω1 =ω2 = 1, denoting the equal importance of two ob‐
jectives.

B. Constraints

1) Power Balance Constraints
As shown in Fig. 1, the electricity-heating-cooling power

balance constraints can be given as:
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ïïïï

ï
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ï

Le
t +P EB

t +P ch
et +P ch

comt =P grid
t +P WT

t +P PV
t +P MT

t +P dis
et + ηcom

e P dis
comt

Lh
t +P AC

t +P ch
ht =P CHP

ht + P͂ EB
t + P͂ GB

t +P dis
ht + ηcom

h P dis
comt

Lc
t = P͂ AC

t + ηcom
c P dis

comt

(22)

where Le
t , Lh

t , and Lc
t are the total electricity load, heating

load, and cooling load at time t, respectively; P ch
et, P ch

ht, and
P ch

comt are the charging power of the ES, HS, and NSF-CAES,
respectively; P dis

et , P dis
ht , and P dis

comt are the discharging power of
the ES, HS, and NSF-CAES, respectively; ηcom

e and ηcom
h are

the efficiencies of converting NSF-CAES energy into elec‐
tricity and heating, respectively; and P WT

t , P PV
t , P CHP

t , P grid
t ,

and P gas
t are the power outputs of the wind turbine, solar pan‐

el, CHP, electricity, and natural gas, respectively.
2) CHP Power and Ramp Rate Constraints

For the CHP, the power and ramp rates meet the con‐
straints:

ì
í
î

P CHP
min £P CHP

t £P CHP
max

-DP CHP
down £P CHP

t -P CHP
t - 1 £DP CHP

up

(23)

where P CHP
max and P CHP

min are the upper and lower limits of the
natural gas power consumption, respectively; and DP CHP

up and
DP CHP

down are the maximum rates of ramping up and down, re‐
spectively.
3) EB, GB, and AC Constraints

The input energies of EB, GB, and AC are different, but
they meet the same power constraints as:

P EBGBAC
min £P EBGBAC

t £P EB GB AC
max (24)

where P EBGBAC
min and P EBGBAC

max are the lower and upper limits
of EB, GB, and AC, respectively.
4) ES/HS Equipment Constraints

In addition to the operating mode of (2), the energy stor‐
age equipment should meet the following constraints:
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î

ï

ï
ïï
ï

ï

ï

ï
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ï

ï

Emin £Et £Emax

0 £P ch
t £ δch

t P ch
max

0 £P dis
t £ δdis

t P dis
max

δch
t + δdis

t £ 1

E1 £ET

(25)

where Emax and Emin are the upper and lower limits of the
stored energy, respectively; δch

t and δdis
t are the normalized

charging and discharging states, respectively; P ch
max and P dis

max

are the maximum charging and discharging rates of each
time interval, respectively; δch

t + δdis
t £ 1 indicates that at any

time, the storage equipment can only charge or discharge;
and E1 £ET means that the energy reserve at the end of the
cycle ET should be equal or larger than the initial energy E1.
5) NSF-CAES Constraints

If NSF-CAES adopts an STW-based system-level model‐
ing method, we need to make further constraints in this mod‐
eling method. This enables the NSF-CAES to participate in
the dispatch process of the micro-energy grid in a reasonable
manner.

Considering the large inertia of NSF-CAES, its dispatch
strategy is designed as:
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E ch
com =P ch

comtDTch

E dis
com =P dis

comtDTdis

DTch ³A

DTdis ³B

DTchDTdis

(26)

where E ch
com and E dis

com are the total charging and discharging ener‐
gies of NSF-CAES, respectively; ΔTch and ΔTdis are the energy
charging and discharging periods, respectively; A and B are the
minimum time periods required for energy storage and release,
respectively; and ΔTchΔTdis denotes that the energy should
be charged first and then discharged. We assume that NSF-
CAES has no energy storage at the beginning and is charging
in higher-price period while discharging in lower-price period.

C. Optimization Problem Formulation

If the NSF-CAES adopts component-level modeling, it
will directly join the dispatch process and participate in dis‐
patch together with other equipment. If the NSF-CAES
adopts STW-based system-level modeling, it will be dis‐
patched separately from other equipment. We focus on the
superiority of STW-based NSF-CAES system-level modeling
for dispatch. The analysis of the dispatch results obtained by
the two NSF-CAES modeling methods will be given in Sec‐
tion V. According to (1) - (26), the optimization problem for
the micro-energy grid can be described as:

ì

í

î

ïïïï

ïïïï

min(F1 (x)F2 (x))

s.t. h(x)= 0

g(x)£ 0
(27)

where F1 (x) is the total economic cost; F2 (x) is the environ‐
mental cost; h(x) and g(x) are the equality and inequality
constraints, respectively; and x is the vector of the decision
variables for all time periods. Actually, this is a non-linear
programming problem and is difficult to solve using off-the-
shelf solvers like CPLEX and Gurobi. Therefore, an intelli‐
gent algorithm named DE-HSS is adopted.

IV. DISPATCH USING STW AND DE-HSS

A. Operation Time Determination of NSF-CAES Using STW

The NSF-CAES uses compressed air for heating supply
and low-temperature gas for cooling. It enables clean and ef‐
ficient electrical energy storage without fuel after burning
[10]. Compared with CAES, it coordinates cooling, heating,
and electricity flexibly. But it cannot start or stop frequently,
and frequent charging or discharging will aggravate its degra‐
dation. So the operation time should be properly dispatched.
Some methods compute the operation time during the optimi‐
zation using heuristic algorithms or linear programming. In
comparison, we use the STW to determine the working peri‐
od of NSF-CAES before dispatch. This method is suitable
for system-level modeling of NSF-CAES and is shown in
Fig. 4.

In Fig. 4, the actual time of use (TOU) electricity and nat‐
ural gas prices for 24 hours are listed in layer 1. For exam‐
ple, we take the charging and discharging time window as 2

hours, and charge or discharge the NSF-CAES twice a day
because of the two power peaks at noon and night. Similar‐
ly, by sliding layer 2 to layer 23, the dispatch of NSF-CAES
is realized. Obviously, if the time window length is 2 hour,
we can get 23 windows by using the STW method. Inside
each window, we compute the sum of TOU electricity and
natural gas prices. For example, the sum value of the 1st win‐
dow is E1 +E2 +G1 +G2. Thus we can get totally 23 values,
which constitute a constant scalar called comprehensive ener‐
gy price (CEP).

To determine the CEP, we first denote Ti as the time win‐
dow i, where length(Ti )= 2. Then, we slide the window. As
shown in Fig. 4, sliding layer 1 to layer 2 is called one-step
sliding. Continue slide until the end condition is satisfied,
i. e., to the end time slot 24. After each step, compute the
current window CEP as sum(Ti):
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sum(Ti )= T_EP(Ti )+ T_GP(Ti )

T_EP(Ti )= T_EP(ti )+ T_EP(ti + 1 )

T_GP(Ti )= T_GP(ti )+ T_GP(ti + 1 )

Ti = 1223

ti = 1224

(28)

where T_EP is TOU electricity price; T_GP is TOU natural
gas price; and ti is the dispatch time length.

To make the NSF-CAES charge in the minimum period
and discharge in the maximum period, we set four windows:
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min 1:T1 £ Tmin1 £ T17

max 1:Tmin1 £ Tmax1 £ T19

min 2:Tmax1 £ Tmin2 £ T21

max 2:Tmin2 £ Tmax2 £ T23

(29)

where min1 and max1 make the first couple of charging/dis‐
charging windows; and min2 and max2 make the second
couple of windows, e.g., Tmin1 is the minimum period of first
charging window. For the first inequality, when the charging
time is selected, there must be at least 6 hours left for the
other three windows. So the window number is no more
than 17. For the second inequality, there must be at least 4
hours left for the other two windows. So the window num‐
ber is no more than 19. For the third inequality, the window
number is no more than 21. For the last inequality, 23 is the
threshold of the loop. Obviously, STW is a straightforward
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Fig. 4. Schematic diagram for STW.
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and effective way without frequently starting and stopping
equipment during the dispatch process. This helps extend the
service life of NSF-CAES.

Experiments show that decreasing the window size, e. g.,
from 4 to 2, or increasing the window size, e.g., from 4 to
6, is not preferable. Smaller window size will lead to the in‐
crease of overall energy cost due to the absence of energy
provided by the NSF-CAES during load peaks while the
TOU electricity or natural gas price is relatively higher. Larg‐
er window size can reduce the energy cost to a very limited
degree but frequent charging and discharging of NSF-CAES
will deteriorate the life of NSF-CAES. Thus we adopt the
four-window scheme in case studies.

B. Optimization Using DE-HSS Algorithm

The HSS has been proven effective in optimizing complex
linear or non-linear systems [29]. However, it sometimes
tends to the local optimum. The seeking process of the HSS
particles lacks intelligent mechanism, leading to more time
cost but less accurate computation. Thus, we improve the
HSS algorithm with the DE, called DE-HSS. The basic steps
for the DE-HSS are as follows.
1) Step 1: Particle Initialization

1) Define the initial population number Npop, the number of
hyper-sphere centers (SCs) NSC, the upper and lower limits of
the HSS radius rmax and rmin, and angle change probability
Prangle.

2) A set of initial solutions is randomly generated. The de‐
cision variable xi is randomly selected from [Xi,min, Xi,max]
with a uniform probability. The solutions are called particles,
whose objective functions are calculated accordingly.

3) The particles are represented by P =[p1, p2, , pN ],
where pi (i=1, 2, , N) is the decision variable. The objec‐
tive functions for the particles are determined as f (P). The
particles are sorted in the ascending order based on their ob‐
jective function values. The best NSC particles (at the top of
the list) are selected as SCs.

4) The remaining particles are dominated by SCs. To di‐
vide the particles proportionally, the objective function differ‐
ence (OFD) of each SC is defined as the difference between
the value of the SC objective function and the maximum ob‐
jective function value of SCs. That is, OFDSC = fSC - max

SC
{ f },

where max
SC

{ f } is the SC with the largest value among all the

objective function values corresponding to SCs. Thus, the nor‐
malized dominance of each SC is defined as:

DSC =

|

|

|

|
|
||
|

|

||

|

|

|
|
||
|

|

| OFDSC

∑
i = 1

NSC

OFDi

(30)

where OFDSC is the OFD of a certain SC; and OFDi is the
OFD of SC i .

Then, the initial number of particles, which belongs to an
SC, will be equal to round{DSC (Npop -NSC )}, and will be cho‐
sen randomly by each SC from the remaining particles.
2) Step 2: Searching

1) A particle seeks a better solution within the bounded
sphere with the predefined center. The sphere radius r de‐

notes the distance between the particle and the center. The
origin is set at the sphere center. The searching program is
performed with varying particle parameters (the radius r and
angle θ).

2) There are N-1 angles for the N-dimension problem.
Any varying angle will cause the particle movement in the
searching space. For the DE-HSS, each angle θ changes by
α radians, and the probability of each radian change is
Prangle. α is randomly selected between (0, 2π) with uniform
distribution.

3) After changing all angles of the particle, the distance
between the particle and the center is randomly chosen in [rmin,
rmax]. In the N-dimension hyper-sphere, r is calculated as:

r2 =∑
i = 1

N

(picenter - piparticle )2 (31)

where picenter is the center of a hyper-sphere in i-dimension;
and piparticle is the particle belongs to a certain center in i-di‐
mension.

After changing θ and r, together with evaluating f, the
searching process of particles in the space is completed.

4) If there exists a particle whose position becomes lower
than the SC, we then use it to take the place of the SC.
3) Step 3: DE

Compared with HSS, the DE-HSS uses this step to en‐
hance the searching ability while ensuring the computation
accuracy.

1) For each particle belonging to an SC, if rand > MR
(MR is the mutation rate), we can obtain:

P = q1 +F(q3 - q2 )+ rand ×(SCbest - q) (32)

where q1, q2, and q3 are three randomly selected particles; F
is the scaling factor; SCbest is the best hyper-spherical center,
i.e., the globally optimal center; rand is a random value be‐
tween 0 and 1; and q is the mutation particle.

2) If CR > rand (CR is the crossover rate), judge whether
to perform differential crossover by using:

Di = {Pi rand <CR
qi otherwise

(33)

3) Calculate the objective function of the new particle,
and update the particle if the value is smaller than the origi‐
nal particle.

4) Compare the objective function of all the changed parti‐
cles to reselect SC.
4) Step 4: Dummy Particles Recovery

The particles searched within inappropriate spaces are
called dummy particles.

1) Particle sets should be classified according to their set ob‐
jective function (SOF) to seek the worst set with dummy parti‐
cles. The SOF of a set is mainly affected by the objective func‐
tion of SC fSC, and the objective function of the particles is less
important. Thus, we define the SOF for each group as:

SOF = fSC + γ ×mean{ fparticles SC } (34)

where mean{ fparticles SC } is the mean value of the objective
function values of all particles dominated by a certain SC.

A small γ ensures that a set of SOFs can be determined
by the objective function of SC. Increasing γ will increase
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the role of the particles in determining the SOF.
2) The process of dummy particles recovery is modeled

by selecting some dummy particles from the hyper-spheres
with the largest SOF and assigning them to other SCs. The
difference in the SOF (DSOF) of each group is expressed by:

DSOF = SOF -max{SOF} (35)

where max{SOF} is the maximum value among all SOFs.
Then, particles can be assigned to one of the SCs with the
calculated DSOF.

3) Calculate the assigning probability (AP) for each SC:

AP =

|

|

|

|
|
||
|

|

||

|

|

|
|
||
|

|

| NTOF

∑
i = 1

NSC

NTOFi

(36)

where NTOF is the normalized total objective function. The
set AP= {AP1, AP2, , APNSC

} divides the particles in SCs

based on their APs. The dummy particles are assigned to the
SC i with a probability of APi. Thus, the worst group (with
the highest SOF) will lose its dummy particles. The particles
seek a new SC in all SCs based on their AP. If an SC has
no particles, it will be treated as a particle and a new SC
will be set.
5) Step 5: Redefine SCs

At the end of each iteration, all particles and SCs are sort‐
ed according to their objective function values. The best par‐
ticles are selected as the new SCs for the next iteration.
6) Step 6: Judge and Output

The loop will be terminated in the case of one of the con‐
ditions as follows.

1) Reach the maximum number of iteration.
2) The iteration error is lower than the preset threshold,

e.g., 10-5. The optimal value is then obtained as the final out‐
put.

The deficit of the traditional HSS can be observed in Step
2, where α is randomly selected for one iteration. Moving
the particles according to this rule may lead to the local opti‐
ma. Step 3 formulates the hybrid DE-HSS using the differen‐
tial mutation of DE, so particles are distributed with in‐
creased diversity. Meanwhile, the differential crossover is
performed to retain the differentially mutated particles to
avoid unnecessary computation. Although the DE-HSS may
take a longer period for one iteration, the total iteration num‐
ber required to seek the optimal solution is reduced. In addi‐
tion, after adding the DE step, the algorithm can effectively
avoid falling into the local optima, so the searching ability is
enhanced.

V. CASE STUDIES AND COMPARATIVE ANALYSIS

A. Case Studies

We make case studies on the proposed optimization
scheme. The parameters of the computer are: Intel (R) Core
(TM) i7-7500 CPU @ 2.70 GHz and 2.90 GHz, 4 GB
RAM, 64 bit operating system, and MATLAB R2016a. The
simulation interval is set as 1 hour.

Based on some existing studies [2], [5], [13], [20], the sys‐

tem parameters are set using the data of community-level
load and energy price. The wind and solar data come from
the U.S. DOE [30]. Table I lists the parameters used for the
simulation.

The power unit is uniformly converted to kW. For calcula‐
tion convenience, the initial SOCs for ES and HS are both
set to be 50%. The minimum reserve is 10%. The maximum
charging or discharging energy of NSF-CAES per hour is set
to be 500 kW after unit commitment analysis. The price unit
is CNY. The power outputs of wind and solar energy are
shown in Fig. 5.

Figure 6 shows the information of electricity load, cooling
load, and heating load [31]. The peak loads appear in the
evening, night, and noon, respectively.

Figure 7 shows the TOU electricity price and natural gas
price. The price of the electricity or natural gas energy is set
based on the Australian Energy Market Operator (AEMO) in
Victoria on a certain day [32]. It can be observed that the en‐
ergy prices are generally higher during periods of high ener‐
gy usage. This encourages users to participate in demand re‐
sponse and makes efficient use of hybrid energies.

TABLE I
PARAMETERS OF SYSYEM MODEL

Model

CHP

ES

HS

EB

GB

AC

NSF-CAES

Pollution

coefficient

Parameters

P CHP
max , P CHP

min

P CHP
up , P CHP

down

ηch
e , ηdis

e , ηloss
e

E e
max, E e

min

P ech
max, P edis

max

ηch
h , ηdis

h , ηloss
h

E h
max, E h

min

P hch
max , P hdis

max

ηEB
h , P EB

max, P EB
min

ηGB
h , P GB

max, P GB
min

ηAC
e , P AC

max, P AC
min

ηch
com, ηdis

com, ηloss
com

ηcom
e , ηcom

h , ηcom
c

A, B

μgrid
CO2

, μgrid
NOx

, μgrid
SOx

μgas
CO2

, μgas
NOx

, μgas
SOx

CCO2
, CNOx

, CSOx

Value

3000 kW, 0 kW

1200 kW, 1200 kW

0.94, 0.94, 0.005

600 kW, 0 kW

150 kW, 150 kW

0.96, 0.96, 0.01

500 kW, 0 kW

125 kW, 125 kW

0.85, 1000 kW, 0 kW

0.8, 3500 kW, 0 kW

0.98, 1500 kW, 0 kW

0.95, 0.95, 0.05

0.47, 0.24, 0.245

2 hours, 2 hours

968 g/kWh, 2.5 g/kWh, 0.1 g/kWh

220 g/m3, 0.019 g/m3, 0.000262 g/m3

0.025 CNY/kg, 8 CNY/kg, 6 CNY/kg
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Fig. 5. Power outputs of wind and solar energy.
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We first analyze the performance of different modeling
methods of NSF-CAES in the calculation examples. Without
consideration of the energy storage at the beginning, we list
the parameters required for NSF-CAES “STW-based system-
level modeling” and “component-level modeling”, as given
in Tables I and II, respectively. Other relevant parameter set‐
tings can be found in [10].

We analyze the two modeling methods by considering the
two-objective function as an example. With the proposed
DE-HSS, the parameters of the methods have been opti‐
mized. The optimization results are shown in Table III.

First, it can be observed from Table III that for the opti‐
mal solution using method I, the NSF-CAES runs for 4 cy‐
cles. In comparison, the optimal solution using method II

runs for 2 cycles, which helps avoid unnecessary charging or
discharging and prolong the storage life to some extent. Sec‐
ond, for method I, the NSF-CAES and other devices are dis‐
patched together, so the calculation time to find the optimal
solution is longer than method II. Finally, although the opti‐
mal solution using method I reduces a certain cost, the fre‐
quent dispatch of NSF-CAES will have negative effect on
its lifespan. Using method II is simpler and easier to adjust,
without fluctuations in the dispatch process in case of fail‐
ure. So method II has potentiality for engineering applica‐
tions.

For method I, we use the genetic algorithm to perform
simulation analysis. The results show that the NSF-CAES
still dispatches 4 cycles, but the genetic algorithm (GA)
leads to larger computation time. The optimal time to thresh‐
old and total cost compared with the proposed DE-HSS algo‐
rithm are shown in Table IV.

Further, we make comparative simulations with different
scenarios using method II for detailed validation. Three sce‐
narios are used as follows.

1) Scenario 1: economic and environmental cost optimiza‐
tion.

2) Scenario 2: economic cost optimization.
3) Scenario 3: environmental cost optimization.
Based on the proposed model and scheme, the power dis‐

patch results of the nine components are shown as follows.
Figure 8 shows the one-day dispatch results for scenar‐

io 1.

Due to the renewable energy supplement and less power
consumption, the ES will be charged during night at 15:00-
17:00 with negative values. At 10:00-12:00 and 20:00-21:00,
it is discharged with positive values. At 04:00, the electricity
usage is negative, denoting selling electricity to electricity
company. During 14:00-15:00 and 19:00-21:00, the electrici‐
ty usage increases, and this fits the two electricity load
peaks in Fig. 6. In other periods, ES operates to reduce peak
and fills valley based on the TOU electricity price. During
the night and morning, the GB provides more power output.
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Fig. 8. One-day dispatch results for scenario 1.
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Fig. 7. TOU electricity and natural gas prices.

TABLE II
PARAMRTERS OF NSF-CAES COMPONENT-LEVEL MODELING

Parameter

Compressor rated power

T1

Qmc

Turbine rated power

Qme

Value

500 kW

190 ℃

0.77 kg/s

500 kW

1.54 kg/s

TABLE III
RESULT COMPARSION OF DIFFERENT NSF-CAES MODELING METHODS

Method

I

II
(proposed)

Modeling method

Component-level

STW-based
system-level

Cycle times

4 (calculated)

2 (predefined)

Optimal time
to threshold (s)

48.7

40.2

Cost
(CNY)

39185.1

39220.5

TABLE IV
COMPARSION BETWEEN GA AND DE-HSS

Algorithm

GA

DE-HSS

Optimal time to threshold (s)

52.1

48.7

Cost (CNY)

39200.6

39185.1
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During the two peaks of electricity consumption, the CHP
output decreases due to its lower efficiency.

As indicated in Fig. 6, the heating load is high during 01:
00-03:00 and 22:00-24:00 because of increased heating con‐
sumption, so the HS releases the heating correspondingly.
The cooling load affects the AC output, and the CEP deter‐
mines the charging and discharging of the NSF-CAES. It
can be observed in Fig. 8 that the NSF-CAES charges or dis‐
charges exactly at the peak or valley of the CEP, and this en‐
ables the energy consumption optimization.

For scenarios 2 and 3, the trends of electricity and natural
gas usage are basically the same as scenario 1. But for sce‐
nario 2 shown in Fig. 9, only the economic cost is consid‐
ered, so the power output time of the EB becomes longer
when the total output increases significantly. The overall
electricity usage is higher while the total natural gas usage is
lower than scenario 1. For scenario 3 shown in Fig. 10, only
the environmental cost is minimized, so the CHP ramps up
rapidly to the value where the maximum energy can be sup‐
plied. The EB output is correspondingly less, and the system
consumes more gas but less electricity than scenario 1. This
also leads to an increase of electricity sales.

Table V compares the energy consumption for the three
scenarios by taking the average values of multiple experi‐
ments. According to (17), (20), and (21), we have the eco‐
nomic cost F1, environmental cost F2, and the total cost Ftot

(i. e., F1+F2). Obviously, the total cost Ftot of scenario 1 is
less than those of scenarios 2 and 3 which only considers
the economic cost or environmental cost separately. For the
electricity usage, which is relatively cheaper but may lead to
more pollution, scenario 2 has the bigger value whereas sce‐
nario 3 has the smallest value because of minimizing the en‐
vironmental cost. Similarly, for the natural gas usage which
is environmentally friendly but more expensive, scenario 2
has the smallest value and scenario 3 has the most. Thus,

multi-objective optimization (scenario 1) achieves the small‐
est overall cost with balanced electricity and natural gas us‐
age.

TABLE V
COMPARISONS OF ENERGY CONSUMPTION FOR THREE SCENARIOS

Scenario

1

2

3

Cost
(CNY)

39221

38889+763

41434+151

Electricity
usage (kW)

14112

16999

5339

Natural gas
usage (kW)

99291

96323

109585

Electricity and natural
gas usage (kW)

113403

113322

114924

B. Comparative Studies

We compare the DE-HSS with weighted particle swarm al‐
gorithm (WPSO), ICA, and HSS using scenario 1. The pa‐
rameters have been tuned optimally, as listed in Table VI.

For WPSO, w is the inertia weight; wdamp is the variable
weight coefficient; and c1 and c2 are the learning factors. For
ICA, Nemp is the number of imperialist countries; Prev is the
revolution probability; μ is the revolution rate; and ζ is colo‐
ny mean cost coefficient. For HSS, Nparticle and NSC are the to‐
tal particle number and SC number, respectively; -r contdown

,

-r contup
and rcontdown, rcontup are the lower limit and upper limits

of the hyper-sphere radius, respectively; ζ is the dummy par‐
ticle parameter; and Num is the dummy particle number for
each iteration. For DE-HSS, we use F to denote the scaling
factor. MR and CR denote the mutation probability and cross‐
over probability, respectively. The results for 500 times of it‐
erations are shown in Figs. 11 and 12.

It can be observed that the DE-HSS shows the best con‐
vergence performance in Fig. 11. Figure 12 indicates that the
particle mean value of DE-HSS is the least, so it obtains the

TABLE VI
ALGORITHM PARAMETERS

Algorithm

WPSO

ICA

HSS

DE-HSS

Parameter

Npop, w, wdamp, c1, c2

Npop, Nemp, α, β, Prev, μ, ζ

Nparticle, NSC, -r contdown,

-r contup, ζ, Num

NParticle, NSC, rcontdown,

rcontup, ζ, Num, F, MR, CR

Value

500, 1, 0.99, 2, 2

100, 10, 1, 1.5, 0.05, 0.1, 0.2

1000, 50, 0, 1.1, 0.05, 5

1000, 50, 0, 1.1, 0.05, 5, 0.5,

0.3, 0.9
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Fig. 9. One-day dispatch results for scenario 2.
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Fig. 10. One-day dispatch results for scenario 3.
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optimal solution easily. We perform multiple tests with the it‐
eration threshold as 0.001 and list the average values in Ta‐
ble VII.

It is observed that both the searching ability and searching
speed of the DE-HSS are better than the HSS. The ICA con‐
verges the fastest but shows the worst accuracy. The WPSO
converges faster than HSS and DE-HSS but slower than
ICA. The DE-HSS has the best searching ability, but takes a
longer convergence time. Note that the time consumption is
acceptable for the hour-level dispatch scenarios, and can be
potentially applied in day-ahead optimization applications.

In addition, the selection of parameters in the DE step of
DE-HSS will also affect the performance of the algorithm.
Through multiple experiments, we get the following conclu‐
sions.

1) Keep MR and CR fixed, and change F: a smaller F en‐
ables faster convergence, but when F deviates from the opti‐
mal value, the seeking accuracy will decrease.

2) Keep MR and F fixed, and change CR: a larger CR en‐
ables faster convergence, but when CR deviates from the op‐
timal value, the seeking accuracy will decrease.

3) Keep CR and F fixed, and change MR: a larger MR en‐
ables faster convergence, but when MR deviates from the op‐
timal value, the seeking accuracy will decrease.

VI. CONCLUSION

We focus on two key issues in existing energy hub based
micro-energy grid: utilizing new storage equipment and im‐
proving the optimization algorithm. The key conclusions are
summarized as follows.

Firstly, at the model level, we introduce the NSF-CAES
into the energy hub and perform an accurate component-lev‐
el modeling. Furthermore, to prolong the life of NSF-CAES
and make it easy to adjust, we propose a system-level model‐
ing of NSF-CAES and use the STW method for dispatch.
Comparative numerical examples are performed to show the

superiority of the designed STW method. Then, at the algo‐
rithm level, considering the complex model and non-linear
optimization problem, the improved HSS algorithm named
DE-HSS is used for optimization. The DE-HSS has well bal‐
anced convergence speed and optimization accuracy, with en‐
hanced global searching ability and higher probability of the
proper searching direction. Finally, we perform three simula‐
tion scenarios for multi-objective analysis on the micro-ener‐
gy grid, demonstrating the superiorities of the proposed
STW and DE-HSS optimization algorithm. Future studies
may focus on multiple micro-energy grid dispatch to solve
the problem of energy coordination in multiple regions.
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