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Decomposed Modeling of Controllable and 
Uncontrollable Components in Power Systems 
with High Penetration of Renewable Energies

Hai Li, Ning Zhang, Yue Fan, Ling Dong, and Pengcheng Cai

Abstract——The high penetration of variable renewable ener‐
gies requires the flexibility from both the generation and de‐
mand sides. This raises the necessity of modeling stochastic and 
flexible energy resources in power system operation. However, 
some distributed energy resources have both stochasticity and 
flexibility, e.g., prosumers with distributed photovoltaics and en‐
ergy storage, and plug-in electric vehicles with stochastic charg‐
ing behavior and demand response capability. Such partly con‐
trollable participants pose challenges to modeling the aggregate 
behavior of large numbers of entities in power system opera‐
tion. This paper proposes a new perspective on the aggregate 
modeling of such energy resources in power system operation. 
Specifically, a unified controllability-uncontrollability-decomposed 
model for various energy resources is established by modeling 
the controllable and uncontrollable parts of energy resources 
separately. Such decomposition enables the straightforward ag‐
gregate modeling of massive energy resources with different 
controllabilities by integrating their controllable components 
with linking constraints and uncontrollable components with de‐
pendent discrete convolution. Furthermore, a two-stage stochas‐
tic unit commitment model based on the proposed model for 
power system operation is established. The proposed model is 
tested using a three-bus system and real Qinghai provincial 
power grid of China. The result shows that this model is able to 
characterize at high accuracy the aggregate behavior of massive 
energy resources with different levels of controllability so that 
their flexibility can be fully explored.

Index Terms——Aggregation, dependent discrete convolution, 
flexibility, stochastic unit commitment, virtual power plant.
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I. INTRODUCTION

POWER system operation has been significantly changed 
by new participants in the past few decades. Traditional‐

ly, the generation side has been fully controllable and the de‐
mand side fully uncontrollable in terms of active power. The 
goal of the power system is to use the fully controllable gen‐
erators to satisfy the uncontrollable active power demand. 
With the integration of variable renewable energy, uncertain‐
ty is introduced into the generation side. Hence, the genera‐
tion side becomes partly uncontrollable. In recent years, the 
emergence of demand response and demand-side energy stor‐
age system (ESS) has added flexibility to uncontrollable 
loads. The loads have therefore become partly controllable. 
A transition to using partly uncontrollable resources to bal‐
ance the partly controllable load demand is required for pow‐
er system dispatch.

The modeling of partly controllable energy resources pos‐
es challenges in power system operation optimization since a 
clear distinction is drawn between controllable and uncontrol‐
lable energy resources in the existing power systems. Tradi‐
tionally, variable renewable energy is considered as a fully 
uncontrollable energy resource, while thermal units are re‐
garded as a fully controllable energy resource. However, dis‐
tributed energy resources that have both controllable and un‐
controllable characteristics, e.g., prosumers with uncontrolla‐
ble distributed photovoltaics (PV), ESS, and plug-in electric 
vehicles (PEVs) with stochastic charging behavior and de‐
mand response capability, are being continuously integrated 
into power systems. Such partly controllable participants 
need to be modeled and considered in power system dis‐
patch as the resources to be optimized. Furthermore, an ag‐
gregate model is required for such participants since the 
amount is very large and they cannot be modeled individual‐
ly. How to model and aggregate controllable and uncontrolla‐
ble energy resources remains an open question in power sys‐
tem operation.

Stochastic models are the basis for capturing the uncon‐
trollable characteristics in power system operation. The prob‐
ability distribution is typically used to characterize the uncer‐
tainty. Scenarios and scenario trees are proposed by enumer‐
ating the possible future outcomes according to a probability 
distribution. Based on the description of uncertainty, two-

stage and multiple-stage stochastic unit commitment (SUC) 
models [1] are proposed to ensure that the power system can 
handle such uncertainty. Reference [2] proposes a data-driv‐
en method for characterizing the uncertainty of wind power 
instead of assuming the true distribution of wind power out‐
put. Reference [3] proposes a scenario map model to inte‐
grate a large number of scenarios into a compact model 
while preserving the uncertainty and variability features of 
wind power. Instead of fully accommodating the uncertainty 
of variable renewable energy, several studies also discuss the 
possibility of allowing wind power to provide reserves to the 
power systems [4]-[6].

Recent studies also focus on modeling flexibility on the 
demand side [7], i. e., modeling demand response (DR) and 
demand-side ESS. For DR, both price-based DR and incen‐
tive-based DR have been introduced to broaden the flexibili‐
ty of the demand side. Reference [8] models the residential 
load as a completely controllable resource to study the opera‐
tion model of a residential hybrid energy system based on 
the price response. Reference [9] proposes a reward-based 
DR algorithm for residential customers to reduce network 
peaks, in which the uncertainty of the residential customer’s 
behavior is not taken into account. Reference [10] models 
the parking lots as a flexible resource to study the optimal 
strategy of the parking lots considering the uncertainty of 
car arrival.

Attention has been paid to modeling the flexibility for de‐
mand-side ESS. Reference [11] studies the optimal operation 
of a neighborhood of smart household that comprises PEV, 
distributed energy storage (DES) and distributed generation 
(DG). Reference [12] proposes a hierarchical energy manage‐
ment system to aggregate multiple battery energy storage 
systems (BESSs) to participate in the energy and frequency 
regulation market. Reference [13] proposes a new type of 
DES named cloud energy storage capable of providing ener‐
gy storage services at a substantially lower cost. However, 
the above studies model the demand-side ESS as a fully con‐
trollable energy resource, ignoring the inherent uncontrolla‐
ble characteristics of ESS due to user interference.

Additionally, there are studies focusing on the aggregation 
of energy resources with different controllabilities, e.g., a vir‐
tual power plant (VPP) [14], which is defined as a combina‐
tion of different distributed energy resources that operate as 
a single entity. Reference [15] addresses the optimal bidding 
strategy problem of a VPP considering the uncertainty of 
wind farms and elasticity of demand. Reference [16] propos‐
es a model for the day-ahead self-scheduling problem of a 
VPP trading in both the energy and reserve electricity mar‐
kets, considering the uncertainty of wind farms and the flexi‐
bility of ESS. In these studies, the energy resources in the 
VPP need to be modeled individually.

The litterature review shows that the current uncertainty 
model for power system operation cannot fully address the 
issue of modeling and aggregating controllable and uncon‐
trollable energy resources. Since current models establish ei‐
ther a fully controllable or a fully uncontrollable model for 
energy resources with different controllabilities, it is difficult 
to aggregate energy resources with different controllabilities, 
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e.g., a generation company with multiple variable renewable 
energy stations bundled with flexible generators and ESS 
and a load aggregator with massive distributed PV and de‐
mand response units. If such energy resources participate in 
the power system operation as one entity, they cannot be 
modeled as either a fully controllable or a fully uncontrolla‐
ble energy resource.

In this paper, we propose a new perspective on the con‐
trollability of these energy resources. Each energy resource 
participating in power system operation is considered to 
have both controllable and uncontrollable characteristics, in 
which the controllable and uncontrollable parts are modeled 
separately. Such modeling facilitates a rigorous aggregation 
of energy resources with different controllabilities. The con‐
tributions of this paper are threefold: ① a controllability-un‐
controllability-decomposed (CUD) model that unifies the op‐
eration models of different types of generators, controllable 
loads, and ESS; ② the principle of aggregating CUD mod‐
els of energy resources with different controllabilities; and 
③ a CUD-model-based unit commitment model for power 
system operation.

The remainder of the paper is organized as follows. Sec‐
tion II states the basic framework of the CUD model. Sec‐
tion III describes the CUD model for various energy resourc‐
es. Section IV proposes the aggregate model for massive en‐
ergy resources based on the CUD model. Section V estab‐
lishes a two-stage unit commitment model based on the ag‐
gregate CUD model. Section VI analyzes the aggregate mod‐
el using an illustrative three-bus system. Section VII pro‐
vides the results from a real case study using Qinghai provin‐
cial power grid of China. Finally, conclusions are drawn in 
Section VIII.

II. PROBLEM STATEMENT AND FRAMEWORK OF CUD MODEL

The purpose of building the CUD model is to aggregate a 
large number of different types of generators, controllable 
loads, and ESS as a single generator that participates in pow‐
er system operation while keeping their original operating 
characteristics. Since it is difficult to aggregate energy re‐
sources with different controllabilities, the precondition of 
aggregation is that the model of each energy resource should 
be of the same mathematical form. To model the energy re‐
sources with different controllabilities using the same mathe‐
matical form, we consider all of the energy resources, e. g., 
generators, controllable loads, and ESS, to have controllable 
and uncontrollable characteristics at the same time. For ex‐
ample, wind power can be scheduled to operate at a derated 
output to reduce the uncertainty caused by wind power gen‐
eration and provide additional system reserves. Hence, the 
stochastic generators are also characterized by some control‐
labilities. Additionally, the output of thermal and hydropow‐
er units may be uncertain due to a lack of fuel supply, water 
inflow, or unit failure. Therefore, flexible generators may al‐
so be characterized by uncontrollability to some extent. Fur‐
thermore, some generators, such as those concentrating solar 
power (CSP) generators, are inherently characterized by the 
uncontrollability of the power source and controllability of 
the output.

As has been discussed above, it is inappropriate to consid‐
er only the stochasticity or flexibility of each energy re‐
source. Inspired by the superposition theorem in circuit theo‐
ry, we decompose the output of each energy resource into 
two components: the controllable component and the uncon‐
trollable component. The controllable component is defined 
as the part of electricity production or consumption that can 
be modified in response to an external signal (price signal or 
activation) to provide a service within the energy system. It 
can be modeled by operating constraints. The uncontrollable 
component is defined as the part of electricity production or 
consumption that cannot be known in advance in power sys‐
tem operation. It is modeled as a stochastic variable follow‐
ing certain probability distribution functions (PDFs). By do‐
ing so, the aggregation of energy resources with different 
controllabilities can be implemented by aggregating the con‐
trollable components and uncontrollable components. Figure 
1 illustrates the framework of the proposed methodology.

It should be noted that in this paper, the concepts of con‐
trollability and uncontrollability are different from those of 
flexibility and stochasticity, respectively. The former two 
terms denote the physical capacities that can and cannot be 
controlled, while the latter two terms denote the characteris‐
tics of a generator or a load. For example, wind power and 
PV are regarded as stochastic generators, but they are regard‐
ed as having both controllable and uncontrollable components.

The proposed framework transforms the problem into 
three subproblems. First, the determination of controllable 
and uncontrollable components of all kinds of energy re‐
sources in the power system will be addressed in Section III. 
Second, the aggregation of controllable and uncontrollable 
components of a large unit consisting of multiple energy re‐
sources will be addressed in Section IV. Third, dispatching 
these aggregate energy resources will be addressed in Sec‐
tion V.

Controllable
component

Uncontrollable
component

Output decomposition

Subject 
to

Subject 
to

Probability
distribution

CUD model

Constraints:

- Power constraints

- Energy constraints

- Ramping constraints

Linking of constraints

Dependent discrete convolution

Aggregation model

Generators and loads with different controllabilities

Apply to

CUD-model-based dispatch model

Fig. 1.　Framework of proposed methodology.
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III. UNIFIED CUD MODEL FOR DIFFERENT TYPES OF 
GENERATORS AND LOADS

A.　Unified CUD Model

The purpose of the CUD model is to build a unified mod‐
el for all types of generators and loads to simultaneously 
capture their controllable and uncontrollable components. 
Mathematically, a generator/load is the sum of a controllable 
component and an uncontrollable component, as shown in (1).

Pgt =P c
gt +P u

gt (1)

where the output of each energy resource Pgt is decomposed 
into a controllable component P c

gt and an uncontrollable 
component P u

gt.
Such decomposition facilitates the decoupled modeling of 

each component. The controllable component is modeled by 
a series of constraints, i. e., power constraints, energy con‐
straints, and ramping constraints. A unified model for the 
controllable component P c

gt can be expressed as:
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The uncontrollable component P u
gt is modeled as a sto‐

chastic process {Pu (t)tÎ T}. For a single time interval, 
Pu (tn ) is a random variable. It follows a certain PDF:

Pu( )tn ~ f ( )Pu( )tn (3)

The unified CUD model applies to various energy resourc‐
es, e. g., wind power, PV, thermal units, gas turbines, ESS, 
hydropower, and CSP. Each resource type has its specific 
CUD model and is described in the following subsections.

B.　Wind Power and PV

Natural-resource-constrained units such as wind farms and 
PV stations are considered to be flexible in that they can be 
scheduled to operate at a derated output to provide down 
and up reserves; hence, the capacity between zero and the 
forecasted output can be regarded as the controllable compo‐
nent. However, such flexibility is uncertain due to the incor‐
rect forecasting; therefore, the forecasting error is considered 
as the uncontrollable component. The energy constraint of 
wind farms and PV stations is unbounded since it is deter‐
mined by natural resources of wind and solar radiation, re‐
spectively. The ramp constraint is also unbounded since the 
adjustment of wind generators and PV inverters is very rap‐
id. Thus, the CUD model of wind and PV power units can 
be expressed as:
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where P fore
gt  is the point forecasting output; and Err u

gt is the 
forecasting error.

C.　Thermal Units and Gas Turbines

Coal-fueled and oil-fueled thermal units and gas turbines 
are regarded as flexible generators and can be scheduled to 
operate between their technical minimum power and the rat‐
ed power. Their outputs are constrained by the maximum 
ramping down and up rates determined by the thermal dy‐
namics of the steam turbine. This is considered to be the 
controllability of this type of unit, while the uncontrollability 
arises from the forced outages. The fuel constraints drive the 
units’  energy limits. Thus, the CUD model of thermal units 
and gas turbines is given by:
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where xgt is a binary variable denoting the on/off status of 

the unit (xgt = 1 represents the generator is on); 
-
P

rampdn
g  and 

-
P

rampup
g  are the maximum ramping down and up rates during 

the operation, respectively; 
-
P

rampsd
g  and 

-
P

rampsu
g  are the shut‐

down and startup ramping rates, respectively; and qg is the 
probability that the unit is operating in the normal state.

D.　ESSs

An ESS can be scheduled to operate between its maxi‐
mum discharging and maximum charging power levels. The 
stored energy must be within the minimum and maximum 
energy capacities, which form the energy constraint. The 
ramp constraint is unbounded since the adjustment of the rec‐
tifier and inverter is very fast. Thus, the CUD model of an 
ESS is given by:
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where Dt is the time interval; Tend is the time period of the 
end of an energy balancing cycle, e.g., a whole day; -E g, 

-
E g, 

and Eg0 are the minimum energy capacity, the maximum en‐
ergy capacity, and the initial stored energy of the ESS, re‐
spectively; the non-negative variables P cc

gt  and P cd
gt  are the 

charging and discharging power of the ESS, respectively; 
and ηc

g and ηd
g are the charging and discharging efficiency of 

the ESS, respectively.

E.　Hydropower and CSP

Both hydropower and CSP have uncertain primary energy 
inputs (water inflow and solar radiation, respectively), simi‐
lar to wind power and PV. At the same time, they are flexi‐
ble in their outputs since they both have the ability to store 
the energy. Therefore, their model is a combination of a sto‐
chastic generator and an ESS. The uncontrollable component 
can be regarded as the water inflow or solar radiation (con‐
verted to the equivalent power output), while the controlla‐
ble component can be regarded as the difference between 
the scheduled output and the input. Hydropower and CSP 
can be scheduled to operate between the minimum and maxi‐
mum outputs. The stored energy must be within the mini‐
mum and maximum energy capacities, which form the ener‐
gy constraint. Their outputs are constrained within the maxi‐
mum ramping down and up rates determined by the dynam‐
ics of the hydro turbine and the power block, respectively. 
Thus, their model is shown in (7).

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

Pgt =P c
gt +P u

gt

-P g -P u
gt £P c

gt £
-
P g -P u

gt

-E g £-∑
t′= 1

t

P c
gt′Dt +Eg0 £

-
E g    t = 12...Tend - 1

Egend £-∑
t′= 1

t

P c
gt′Dt +Eg0 £Egend    t = Tend

-
P

rampdn
g -P u

gt +P u
gt - 1 £P c

gt -P c
gt - 1 £

-
P

rampup
g -P u

gt +P u
gt - 1

P u
gt~f ( )P fore

gt

  (7)

For hydropower, P fore
gt  is the forecasted probability of wa‐

ter inflow (converted to the equivalent power output); -P g 

and 
-
P g are the lower and upper output limits of the hydro 

turbine, respectively; -E g and 
-
E g are the minimum and maxi‐

mum capacities of the reservoir (converted to the equivalent 
energy capacity), respectively; Eg0 is the initial amount of 
stored water of the reservoir; and Egend is the scheduled 
amount of final stored water of the reservoir after a certain 
period, e.g., one day. Note that if the hydropower does not 
have a reservoir, it does not have the capability to store ener‐
gy. In this case, the model would be similar to the wind 
power and PV as shown in (5).

For CSP, P fore
gt  is the forecasted probability of solar radia‐

tion (converted to the equivalent power output); -P g and 
-
P g 

are the lower and upper power limits of the power block, re‐
spectively; -E g and 

-
E g are the minimum and maximum capac‐

ities of thermal energy storage (converted to the equivalent 
energy capacity), respectively; Eg0 is the initially stored 

heat; and Egend is the scheduled final stored heat of the reser‐
voir after a certain period.

Note that the above model ignores the nonlinearity of the 
energy conversion process. Such nonlinearity can be mod‐
eled through piecewise linearization, which essentially splits 
one generator into multiple ones. Such a modeling technique 
has already been considered in the current literature and is 
not discussed in this paper.

F.　Controllable Load

Controllable loads refer to the loads that can be curtailed 
as long as the compensation fees are paid for the unserved 
loads. Hence, they are controllable from zero to the forecast‐
ed load. Besides, due to the incorrect load forecasting, the 
controllable loads also have uncontrollability which can be 
described by the forecasting error. Thus, the CUD model of 
controllable loads can be expressed as:
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where Lfore
gt  is the point forecasting value of the load.

IV. AGGREGATION METHODOLOGY FOR CUD MODEL

According to the “superposition theorem”, the aggregation 
of CUD models of various kinds of generators and loads is 
performed by aggregating their controllable components and 
uncontrollable components separately.

A.　Aggregation of Controllable Components

Controllable components are usually described by three 
kinds of constraints: power, energy, and ramping constraints. 
When multiple energy resources are considered as a whole, 
their overall controllability is the sum of all individual con‐
trollability values. Mathematically, the lower and upper con‐
straints of controllable components P c

ct can be obtained by 
summing the lower and upper bounds of all corresponding 
constraints, respectively, as shown in (9).
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DC ct =∑

gÎΩc

- -----
DC gt

(9)

Thus, the constraints of controllable component can be ex‐
pressed as:
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D
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(10)

For thermal unit and gas turbine clusters which have start‐
up costs, oct reflects the on-off status of the units, hence oct 
is related with the total startup costs of the cluster. For other 
units that do not have startup costs, oct always equals to 1, 
which means all the units are on-line [17].

The parameters K C
c , K S

c , and K D
c  are the modifed power co‐

efficient, energy coefficient and ramping coefficient of clus‐
ter c, respectively, which are used to discount the capability 
of each cluster so as to avoid the overestimation of flexibili‐
ty in the aggregate model. For example, if none of the con‐
trollable components of all the units in a cluster reaches the 
upper limit or lower limit, the cluster will have full ramping 
capability so that K D

c = 1. Otherwise, K D
c  would be smaller 

than 1, whose value can be obtained through a data-driven 
analysis using historical data. Figure 2 illustrates how to de‐
termine K D

c . The x-axis represents the difference between the 
controllable component P c

ct and its upper limit. The y-axis 
represents the ramping capability. Each red circle represents 
a historical operation state. If we assume K D

c = 1, the feasible 
region would be the trapezoid below the green line. All the 
points are inside the area, which means using the green line 
will lead to an overestimation of ramping capability. If we 
assume K D

c =
-
D ct /

-
C ct, the feasible region would be the tri‐

angle below the yellow line, which will lead to an underesti‐
mation of ramping capability. To obtain a more accurate 
model, regression methods could be used to determine K D

c , 
shown as the blue dashed line.

The rule of aggregation of controllable components is that 
an energy resource with a certain kind of unbounded con‐
straint cannot be merged with others that have bounded con‐
straints of the same kind, e. g., an energy resource with an 
unbounded ramping constraint cannot be aggregated with 
other energy resources that have bounded ramping con‐
straints. Otherwise, their aggregate energy will be partially 
constrained. Only the resources with the same set of bound‐
ed constraints can be aggregated into the same energy re‐
source; otherwise, they need to be modeled separately.

B.　Aggregation of Uncontrollable Components

Uncontrollable components are described by PDFs, so 
their aggregation can be achieved by convolutions. However, 
uncontrollable components may have mutual dependencies 
[18], e. g., the forecasting errors of multiple adjacent wind 
farms or PV stations can be highly dependent. For the depen‐
dent uncontrollable components, dependent discrete convolu‐
tion (DDC), which is an extension of the probabilistic convo‐
lution proposed in [19], is used. With known marginal PDFs 
of uncontrollable components F1 (P u

1t ), F2 (P u
2t ), and the cop‐

ula function c(F1 (P u
1t )F2 (P u

2t )) among them, the PDF of 
the aggregation P u

comt can be calculated as:
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(11)

where Dp is the discretization step; and -P͂
u

1t and -P͂
u

1t are the 

discretized lower bounds of P u
1t and P u

2t, respectively.
Furthermore, the DDC of two uncontrollable components 

can be extended to N components. The computational com‐
plexity of a high-dimensional DDC can be reduced to linear 
complexity by utilizing the independence of variables [20].

V. CUD-MODEL-BASED SUC MODEL

Based on the CUD model, an SUC model can be built to 
optimize the generation schedule while considering the con‐
trollability and uncontrollability for all energy resources. In 
this paper, a scenario-based two-stage CUD-model-based 
SUC model is established. It should be noted that other 
kinds of SUC models such as the robust model, chance-con‐
strained model, and risk-based model can also be built based 
on the CUD model. For robust models, they try to find the 
optimal solution for the worst scenario through PDF. Mathe‐
matically, the uncertainty set is obtained from the PDF of 
the stochastic variable. For the chance-constrained model, 
the PDF can be directly used in the chance constraints. For 
the risk-based model, the PDF can be used to formulate the 
associated risks. To sum up, the aggregate model is irrespec‐
tive of the optimization model since the proposed aggregate 
model aims at how to yield the aggregate PDF of uncontrol‐
lable components and the aggregation of controllable compo‐
nents.

A.　Model Framework

The proposed model simultaneously optimizes the energy 
and reserve scheduling decisions considering the uncertainty. 
The uncertainty input at the same bus is modeled by PDFs 
and then aggregated using DDC. The uncertainty input at dif‐
ferent buses is modeled by multiple scenarios. The proposed 
model has a two-stage structure. The first stage optimizes 
the day-ahead scheduling based on point forecasting results, 
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Fig. 2.　Estimation for modified ramping coefficient K D
c .
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while the second stage eliminates the power imbalance for 
all possible realizations in real time. The SUC model is opti‐
mized to minimize the overall expected operation cost.

The variables associated with each stage are explained as 
follows. For the first stage, the variables include: ① sched‐
uled power output of each unit; ② scheduled down/up spin‐
ning reserve of each unit; and ③ power flow on each 
branch. These variables are referred to as here-and-now deci‐
sions and do not depend on any particular scenario realiza‐
tion. For the second stage, the variables pertain to each par‐
ticular scenario for real-time re-dispatch, including: ① de‐
ployment of down/up spinning reserve of each unit; ② load 
shedding at each bus; and ③ actual power flow on each 
branch. These variables are referred to as wait-and-see deci‐
sions. The proposed model differs from the traditional SUC 
model in that all of distributed energy resources can be mod‐
eled together using the proposed CUD model. Using such a 
model, the controllability and uncontrollability of all types 
of energy resources are well captured so that the utilization 
of flexibility of all types of resources can be well optimized 
to tackle the uncertainty of such resources.

B. Model Formulation

1)　Objective Function　
The objective function Csys consists of two parts: the day-

ahead cost CDAsys and the real-time cost C RTsys
s , which are 

shown in (12)-(14). The day-ahead cost includes the startup 
cost, fuel cost and up and down reserve scheduling cost. The 
real-time cost includes the reserve deployment cost and the 
penalty cost of load shedding.

min Csys =CDAsys +∑
s = 1

NS

π RT
s C RTsys

s (12)

CDAsys =∑
t = 1

NT∑
c = 1

NC ( )C SU
c SUct +Cc P c

ct +C Ru
c RRu

ct +C Rd
c RRd

ct (13)

C RTsys
s =∑

t = 1

NT∑
c = 1

NC ( )C͂ Ru
c R͂Ru
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c R͂Rd

cts + θVoLL∑
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NT∑
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NN

L͂Cur
nts (14)

SUct - SDct = ( )oct - oct - 1
-
C ct (15)

2)　Constraints Involving First-stage Variables　
The first-stage constraints are formulated with day-ahead 

point forecasting of all controllable components.
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Among the above equations, (16)-(18) represent the pow‐
er, energy and ramping constraints of each energy resource, 
respectively. Equation (19) represents the power balance con‐
straint. Equation (20) represents the power flow constraints 
of all transmission lines. Equations (21) and (22) represent 
the constraints of up and down reserves.
3)　Constraints Involving Second-Stage Variables

The second-stage constraints are formulated with real-time 
realization of each uncontrollable component together with 
the controllable component.
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(27)

In the above equations, (23)-(25) represent the power, en‐
ergy, and ramping constraints of all energy resources, rese‐
pectively. Equation (26) represents the power balance con‐
straint, and (27) represents the power flow constraints of 
each transmission line.
4)　Linking Constraints Involving First- and Second-stage 
Variables

The first and second stages are linked together by the 
scheduled and deployed reserves.

P͂cts =P c
ct + P͂ u

cts - R͂Rd
cts + R͂Ru
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ct (29)

0 £ R͂Rd
cts £RRd

ct +max{0P͂ u
cts} (30)

Equation (28) demonstrates the relationship between day-
ahead scheduled power and the deployed reserves. Equation 
(29) limits the deployed up reserves to be within the sched‐
uled up reserves. Equation (30) limits the deployed down re‐
serves to be within the scheduled down reserves. Note that 
(29) and (30) are asymmetrical because the upper bound of 
renewable energy is uncertain (due to the forecasting error), 
while the lower bound is certain (always equals to zero).

Since (30) is not a linear constraint, by introducing a 
slack variable Rslack

cts  and adding a penalty term into the objec‐
tive function, the constraint can be transformed into the lin‐
ear constraint shown in (31)-(33).

0 £ R͂Rd
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ct +Rslack
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C.　Aggregation of Cost Functions

As the marginal cost of renewables is nearly zero, the to‐
tal energy cost of the system mainly depends on the energy 
cost of the thermal units and gas turbines. The energy cost 
of a thermal unit or a gas turbine can be expressed as a 
piecewise-linear function. The dispatch of thermal units de‐
pends on the incremental cost, i.e., the slope of the cost func‐
tion. The lower the incremental cost is, the earlier the unit is 
scheduled. Hence, we can sort the piecewise curves of cost 
functions by their slopes and then recombine them end-to-
end to obtain the aggregate cost function. An illustrative ex‐
ample of cost aggregation of three thermal units is shown in 
Fig. 3. The number above each line is the order of the 
slopes. It is clear that all objectives and constraints are lin‐
ear; therefore, the model is a linear programming problem 
that can be efficiently solved by a linear programming solver.

D. Discussions on Benefits of CUD-model-based SUC Model

It should be noted that the main benefit of aggregation is 
not to reduce the size of the SUC problem to increase the 
calculation speed. Instead, the main contribution of this pa‐
per is to propose a possible solution for incorporating mas‐
sive distributed resources in the unit commitment problem.

Since it is unlikely for independent system operators 
(ISOs) to acquire the exact model of all the distributed re‐
sources due to the lack of information or privacy protection, 
the “detailed SUC model” that considers all the detailed pa‐
rameters of distributed resources does not exist in actual 
practice. The ISO cannot formulate and solve the global “de‐
tailed SUC model” to reach a global optimal. We try to pro‐
pose a model that can help ISO to dispatch the massive dis‐
tributed resources without knowing the detailed model of 
these resources and to reach nearly optimal. We use the “de‐
tailed SUC model” as a metric in the next sections to dem‐
onstrate the effectiveness of the proposed aggregate model, 
not to improve the efficiency of the “detailed SUC model”.

The potential of the proposed model could be foreseen un‐
der both market and non-market environments. In the elec‐
tricity market, the proposed model is able to help the aggre‐
gators of distributed resources and microgrids to participate 
in the market as a virtual power plant, by aggregating the 
model of each resource together as an equivalent generator 

that has both flexibility and uncertainty. Under the non-mar‐
ket environment, the proposed model is useful for dispatch‐
ing the generator companies that own distribution-level re‐
sources with both flexibility and uncertainty.

VI. ILLUSTRATIVE EXAMPLE

A.　Data Description

To test the capability of modeling both controllability and 
uncontrollability for the proposed model, an illustrative ex‐
ample is carried out on a three-bus system. The system data 
are extracted from [1]. Two wind farms and two thermal 
units (50 MW) are connected to buses 1 and 2, respectively. 
The proposed aggregation method is conducted on each bus 
of two wind farms and thermal units, which could be consid‐
ered as the simplest aggregation demo. The rank correlation 
of wind farms at the same bus is 0.9, while the rank correla‐
tion of wind farms at bus 1 and bus 2 is 0.71. The load is lo‐
cated at bus 3, with an hourly load of 70, 120, 150, and 110 
MW, respectively. The load is assumed to be a constant, i.e., 
the load uncertainty is ignored in the case study. The model 
is implemented in MATLAB and solved by CPLEX.

B.　Results

This case is tested in two scenarios, i. e., the low-wind-
power-penetration scenario and high-wind-power-penetration 
scenario. The capacity of each wind farm is set to be 15 
MW and 75 MW, respectively. Figure 4 shows the scheduled 
and dispatched up and down reserves of the three-bus sys‐
tem in these two scenarios. Four color blocks represent the 
scheduled up and down reserves provided by thermal units 
and wind power.

The results of the illustrative example show that the aggre‐
gation model facilitates the wind power to provide reserves 
like the thermal units, demonstrating that the decomposed 
modeling of controllability and uncontrollability is able to ac‐
curately describe the characteristics of energy resources with 
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Fig. 3.　Illustrative example of cost aggregation of three thermal units.
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different controllabilities so that their flexibility can be fully 
explored. It lays a foundation for further illustrating the ef‐
fectiveness of exploring the flexibility of massive distributed 
energy resources using the aggregate model.

VII. CASE STUDY: QINGHAI PROVINCIAL POWER GRID OF 
CHINA

A.　Data Description

We apply the proposed method in Qinghai provincial pow‐
er grid of China, a real power system in west China, to test 
the aggregation accuracy of the proposed model.

The daily load profile is extracted from the practical oper‐
ation of Qinghai provincial power grid of China in 2018 
with a maximum load of 8000 MW. The modified genera‐
tion mix set of Qinghai provincial power grid of China is 
shown in Fig. 5. The total generation capacity is 27980 MW, 
including 15700 MW thermal and hydro, 2470 MW wind 
power, 9610 MW PV and 200 MW (400 MWh) energy stor‐
age. The capacity of variable renewable energy is 1.5 times 
the maximum load which requires great flexibility in daily 
operation.

To avoid wind power and PV curtailment, more renewable 
energy projects are co-installed with storage, hydro or ther‐
mal power generators such as Luneng Haixi 700 MW Wind, 
Solar, Heat and Storage Complementary Project [21]. The co‐
ordinated operation of small wind farms, PVs and other 
types of energy resources complicates the centralized dis‐
patch of these resources. Hence, the proposed aggregation 
model could be used to efficiently dispatch these resources. 
To test the effectiveness of our model, we assume that 75% 
of the total capacity is scheduled as large-scale centralized 
generation, while the rest is made up of small distributed en‐
ergy resources which belong to four aggregators. Each aggre‐
gator owns 100 units, including 20 wind, 40 PV, 20 thermal, 
10 hydro, 10 storage, the numbers of each type of units are 
listed in Table I. The proposed methodology is conducted on 
the distributed energy resources to aggregate these resources 
into four clusters, named clusters 1-4. It should be noted that 
the settings of aggregators and the generation mix set in 
each aggregator are not practical data from Qinghai, since 
currently, there is not enough such complementary project. 
The purpose of such a setting is to test the effectiveness of 

our method on a real power system when there are massive 
distributed units that need to be aggregated.

B.　Metrics of Comparison

In order to quantify the aggregation accuracy of the aggre‐
gate model to the detailed model, two metrics are evaluated. 
The results of the detailed model are indicated with the 
hat “^”.
1)　Operation Cost

The operation cost is the objective function value for opti‐
mization. The percentage difference is computed as:

DCost =
|Csys - Ĉsys |

Ĉsys

´ 100% (34)

2)　Output Average Deviation
The percentage difference of the average deviation of 

scheduled output for each cluster is computed as:

DOutput =
∑
"c"t

|| Pct - P̂ct

∑
"c"t

P̄c

´ 100% (35)

C.　Results

Table II shows a comparison of the detailed model and 
the aggregate model. The results illustrate that the aggregate 
model achieves a good aggregation performance on both op‐
eration cost and unit output in the real system.

The comparison of the total output of cluster 1 is shown 
in Fig. 6. The blue lines represent the output of the detailed 
model, while the red ones correspond to that of the aggre‐
gate model. The solid, dashed, and dash-dotted lines repre‐
sent the day-ahead output, the real-time output in a low-re‐
newable scenario, and the real-time output in a high-renew‐
able scenario, respectively. It can be observed from Fig. 6 
that the red lines are close to the blue lines, suggesting that 
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Fig. 5.　Generation mix set of Qinghai provincial power grid of China.

TABLE I
GENERATION MIX SET OF AN AGGREGATOR

Type

Wind

PV

Thermal

Hydro

Storage

Total

Number of units

20

40

20

10

10

100

Total capacity (MW)

154

1101

237

244

13

1749

Percentage (%)

8.8

62.9

13.5

14.0

0.7

100.0

TABLE II
COMPARISON BETWEEN DETAILED MODEL AND AGGREGATE MODEL ON 

QINGHAI PROVINCIAL POWER GRID OF CHINA

Model

Detailed model

Aggregate model

Operation cost 
(￥107)

2.9519

2.9567

Cost deviation 
(%)

0.16

Output average 
deviation (%)

1.50
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the proposed aggregate model is a good approximation of 
the detailed model in a real system.

VIII. CONCLUSION

To model and aggregate controllable and uncontrollable 
energy resources in power system operation, this paper pro‐
poses a CUD model for various energy resources. In this 
model, all types of energy resources are modeled by control‐
lable and uncontrollable components. Such a unified decom‐
posed modeling framework enables the aggregation of ener‐
gy sources with different controllabilities. A two-stage SUC 
model using the proposed model is established. Case studies 
of a modified three-bus system and real Qinghai provincial 
power grid of China demonstrate that the proposed model is 
able to fully capture the uncertainty of energy resources 
while utilizing their flexibility.
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Fig. 6.　Comparison of output between detailed and aggregate models on 
Qinghai provincial power grid of China.
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