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Abstract——As the share of wind power in power systems con‐
tinues to increase, the limited predictability of wind power gen‐
eration brings serious potential risks to power system reliabili‐
ty. Previous research works have generally described the uncer‐
tainty of wind power forecast errors (WPFEs) based on normal 
distribution or other standard distribution models, which only 
characterize the aleatory uncertainty. In fact, epistemic uncer‐
tainty in WPFE modeling due to limited data and knowledge 
should also be addressed. This paper proposes a multi-source in‐
formation fusion method (MSIFM) to quantify WPFEs when 
considering both aleatory and epistemic uncertainties. An ex‐
tended focal element (EFE) selection method based on the ade‐
quacy of historical data is developed to consider the characteris‐
tics of WPFEs. Two supplementary expert information sources 
are modeled to improve the accuracy in the case of insufficient 
historical data. An operation reliability evaluation technique is 
also developed considering the proposed WPFE model. Finally, 
a double-layer Monte Carlo simulation method is introduced to 
generate a time-series output of the wind power. The effective‐
ness and accuracy of the proposed MSIFM are demonstrated 
through simulation results.

Index Terms——Wind power forecast error (WPFE), epistemic 
uncertainty, multi-source information fusion method (MSIFM), 
operation reliability, extended focal element (EFE), double-layer 
Monte Carlo simulation.

I. INTRODUCTION 

WIND power is increasingly contributing to electricity 
supplies worldwide because of its low environmental 

impact and negligible generation costs [1]. Although many 
environmental benefits can be obtained, the uncertainty from 
considerable penetration of wind power also poses great chal‐
lenges to the reliable operation of power systems. Reliable 

electricity delivery is a core value in the power industry. Ef‐
fectively and accurately analyzing the impact of wind power 
uncertainty on the operation reliability of power systems can 
provide a theoretical basis for the effective use of wind pow‐
er. Reference [2] quantifies both the economic and reliability 
effects of improved wind power forecast. Reference [3] in‐
corporates wind power into the regional risk concept for op‐
eration reliability evaluation. Reference [4] proposes an im‐
proved importance sampling method to evaluate the reliabili‐
ty of composite power systems with wind energy integration. 
To measure the uncertainty of wind power output  accurate‐
ly, wind power forecast techniques have been rapidly devel‐
oped [5]. If the forecast technique is sufficient, the forecast 
error will be similar to white noise and exhibit completely 
random behavior [6], [7]. However, it is widely understood 
that wind power cannot be forecasted at high accuracy at all 
times, and analyzing the uncertainty of wind power forecast 
errors (WPFEs) can provide more useful information.

In recent years, researchers have performed extensive and 
thorough studies on how to apply forecast error information 
based on diverse perspectives and broaden its applications in 
different fields. The effects of WPFEs on unit commitment, 
economic dispatch, and branch limit violations have been 
studied [8], [9]. Reference [10] proposes a data preprocess‐
ing method with error correction to improve the forecast ac‐
curacy of wind power generation. WPFEs also affect the 
power balance of power systems and further affect the reli‐
ability of power systems. Reference [11] analyzes the effects 
of the standard deviation of forecast errors on reliability sen‐
sitivities.

In most previous studies, WPFEs are often assumed to fol‐
low a normal distribution or the so-called β distribution [12]. 
However, some research works have shown that the probabil‐
ity density function (PDF) of WPFEs varies with different 
forecast techniques and seasons. WPFEs may not follow a 
common distribution form [7]. Therefore, some research 
works apply non-parametric methods to model WPFEs. Ker‐
nel density estimation is a popular method for estimating da‐
ta distribution without the prior assumption of datasets [13], 
[14]. However, these types of methods require sufficient his‐
torical data to achieve sufficient accuracy. The lower-upper 
bound estimation method is used to construct the forecast in‐
terval of wind power [15], [16]. Interval method (IM) cannot 
make full use of known information, and the uncertainty 
model has not been well quantified [17]. Thus, the obtained 
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results are typically conservative.
The aforementioned methods either consider the selected 

probability distribution model to be perfectly accurate for 
modeling WPFEs or assume that the historical data are suffi‐
cient for parameter estimation. In reality, the two assump‐
tions are not always satisfied, which leads to epistemic un‐
certainty [18], [19]. Epistemic uncertainty is another type of 
basic uncertainty that substantially differs from aleatory un‐
certainty [20]. Aleatory uncertainty stems from the variabili‐
ty of wind, whereas epistemic uncertainty results from in‐
complete knowledge of the rules of wind power.

Previous studies have seldom quantified the uncertainty of 
WPFEs with sufficient accuracy because only aleatory uncer‐
tainty has been considered. The inaccurate modeling of WP‐
FEs may lead to an overly optimistic assessment of power 
system reliability and may pose potential risks to power sys‐
tem operations. By contrast, epistemic uncertainty is a type 
of uncertainty that can be reduced by acquiring additional 
knowledge. It is also critical to reduce epistemic uncertainty 
by applying as much known information as possible and us‐
ing appropriate methods. Thus, quantifying epistemic uncer‐
tainty in WPFE modeling is necessary, which has rarely 
been investigated to date.

To fill this research gap, this paper proposes a set of meth‐
ods that can describe both the aleatory and epistemic uncer‐
tainties of WPFEs within the same framework based on evi‐
dence theory. Evidence theory is widely regarded as a prom‐
ising mathematical tool for epistemic uncertainty analysis 
[21]. However, the traditional focal element method is gener‐
ally not suitable for WPFE modeling. Accordingly, the con‐
cept of an extended focal element (EFE) is introduced by 
considering the characteristics of wind power, and a method 
for selecting the EFE based on the sufficiency of historical 
data is proposed to improve the accuracies of the methods.

In addition, because expert information can be obtained 
from researchers and operators to assist in modeling, this  
paper constructs two types of expert information and propos‐
es a multi-source information fusion method (MSIFM) to 
deal with situations of insufficient historical data. Discount 
factors are used to measure the credibility of multi-source in‐
formation.

The proposed WPFE model is incorporated into an opera‐
tion reliability evaluation framework of power system to ana‐
lyze the impact of high-penetration wind power on the reli‐
ability indices. Because of the need to simultaneously deal 
with two diverse uncertainties, this paper also proposes a 
double-layer Monte Carlo simulation (MCS) method for eval‐
uating the operation reliability of power systems, where the 
outer and inner layers of the model handle aleatory and epis‐
temic uncertainties, respectively.

The innovative contributions of the proposed method are 
summarized as follows:

1) To characterize the epistemic uncertainty caused by in‐
sufficient data or knowledge, a WPFE modeling method is 
proposed and applied to the operation reliability evaluation 
of power systems.

2) Two types of expert information are constructed and 
combined with historical data through the proposed MSIFM 
to improve the accuracy of the model.

3) EFEs are proposed to reflect the characteristics of wind 
power more accurately, and the principle of choosing the 
number of EFEs is studied.

4) A double-layer MCS method is proposed that can deal 
with aleatory and epistemic uncertainties in the same frame‐
work.

The remainder of this paper is organized as follows. The 
uncertainty model of WPFEs is introduced in Section II. Sec‐
tion III proposes an operation reliability evaluation frame‐
work. Case studies are presented in Section IV. Section V 
presents conclusions derived from this paper.

II. UNCERTAINTY MODEL OF WPFES 

Wind power generation closely depends on natural factors 
and tends to suffer from the chaotic nature of weather sys‐
tems. Therefore, traditional wind power forecasts cannot 
avoid errors. The WPFE represents an uncertainty character‐
ization between the forecast value and the true value. In this 
paper, the wind power output PW is modeled as the sum of 
the forecast value F W and WPFE eW:

PW =F W + eW (1)

Probability distribution fitting is a common method used 
to describe aleatory uncertainty. It is generally believed that 
WPFEs conform to a normal distribution. WPFEs can be 
sampled from a fitting curve following the parameter fitting 
of the historical data. Under these assumptions, the aleatory 
uncertainty of WPFEs can be accurately described as long as 
the sample size is sufficiently large. However, the normal 
distribution fitting (NDF) curve of WPFEs has a large devia‐
tion from actual situations, as shown in Fig. 1.

In Fig. 1. the blue matchstick chart is the statistical data 
of true WPFEs from a wind farm in Northwest China [7]. 
Some research works have assumed that WPFEs conform to 
the Laplace distribution. It can be observed that the Laplace 
distribution fitting (LDF) model is sharper than the NDF 
model. However, the LDF model increases the probability of 
events with relatively small WPFEs to a certain extent.

Two reasons can explain the differences between the distri‐
bution fitting model and the actual data. First, WPFEs may 
not follow a specific distribution. Several research works 
have shown that describing WPFEs with any general distri‐
bution form is difficult considering the diverse forecast meth‐
ods and seasonal conditions [7]. Second, there is the possi‐
ble lack of data for accurately estimating the parameters of 
the distribution model. These two factors lead to epistemic 
uncertainty. Epistemic uncertainty arises from imperfect 
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Fig. 1.　NDF and LDF of WPFEs.
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knowledge or ignorance, which is also referred to as subjec‐
tive uncertainty, reducible uncertainty, or model form uncer‐
tainty. By contrast, aleatory uncertainty is an inherent varia‐
tion associated with a parameter, physical system, or environ‐
ment, and is also referred to as variability, stochastic uncer‐
tainty, or irreducible uncertainty [20]. Thus, obvious errors 
are inevitable in WPFE modeling when considering only ale‐
atory uncertainty. Subsequently, the accuracy of the opera‐
tion reliability evaluation of power system can be negatively 
affected. As the penetration level of wind power continues to 
increase, considering both aleatory and epistemic uncertain‐
ties of WPFEs is critical when evaluating the operation reli‐
ability of power system. To this end, this paper proposes a 
refined WPFE model that captures both aleatory and epis‐
temic uncertainties.

A. Uncertainty Modeling Framework for WPFEs

First, the fluctuation range of WPFEs is divided into N in‐
tervals, and each interval [ eW

k e
W
k + 1 ] is denoted as a basic ele‐

ment Ek. The width d of each interval is equal such that:

eW
k = eW

1 + ( )k - 1 d (2)

d = (eW
N + 1 - eW

1 ) /N (3)

where k is the index of eW; and eW
1  and eW

N + 1 are the lower 
and upper bounds of the WPFEs, respectively.

Then, an identification frame Θ is established to denote a 
set of all Ek:

Θ = { }E1E2EN (4)

The power set of Θ is denoted as 2Θ. Any subset of Θ can 
be denoted as an event A that belongs to 2Θ:

AÎ 2Θ:{{ }Æ { }E1 { }E2 { }E
N
{ }E1E2 { }E1E3 

}{ }E1E2Ek { }E1E3Ek + 1 Θ (5)

A basic probability assignment (BPA) (also called a mass 
function m) is introduced to allocate a certain probability to 
each event such that: ∑

AÎ 2Θ

m ( A) = 1 (6)

m ( A) ³ 0 (7)

m (Æ) = 0 (8)

Equation (7) indicates that the probability of an event can‐
not be negative. The empty set is meaningless for WPFEs, 
and the probability of Æ is set to be zero. Any event A with 
m ( A) > 0 is called a focal element in traditional evidence 
theory. Some events A with m ( A) = 0 must still be consid‐
ered because of the characteristics of WPFEs and the lack of 
historical data. Otherwise, the WPFE modeling will be inac‐
curate. Therefore, an EFE H is proposed in this paper, and 
H1-H4 are four different H. An EFE can be any focal or ba‐
sic element.

Traditionally, the probability of a WPFE is determined by 
aleatory uncertainty. However, the probability cannot be ac‐
curately obtained due to insufficient data or knowledge. To 
characterize the epistemic uncertainty, extending the probabil‐
ity of WPFE to a probability interval is more reasonable. 

The belief function Bel(H1 ) is defined as a measure of the 
lower bound probability, and the plausibility function Pl(H1 ) 
is defined as a measure of the upper bound probability, 
which can be calculated as:

Bel ( )H1 = ∑
H2ÍH1

m ( )H2  "H1H2ÍΘ (9)

Pl ( )H1 = ∑
H2H1 ¹ ϕ

m ( )H2  "H1H2ÍΘ (10)

The actual probability P ( H ) of EFE is determined by the 
belief and plausibility functions such that:

Bel ( )H £P ( )H £Pl ( )H (11)

The uncertainty model of WPFEs is illustrated in Fig. 2.

As shown in Fig. 3, the degree of epistemic uncertainty 
for the observed EFE H can be represented by the width of 
the interval [ ]Bel ( )H  Pl ( )H , which is related to the 
amount of known information. The number of EFEs can be 
appropriately increased when the amount of known informa‐
tion increases. Then, EFE H will be reduced to EFE H′, and 
the degree of epistemic uncertainty will also be reduced. The 
WPFE may belong to any EFE because of its aleatory uncer‐
tainty. If the degree of epistemic uncertainty is reduced to ze‐
ro because sufficient and accurate information is first ob‐
tained and then mastered, only aleatory uncertainty will re‐
main in the model. Bel and Pl will converge to the probabili‐
ty distribution of the WPFE.

The number of EFEs is crucial for ensuring the accuracy 
of the model and must be set reasonably according to the 
sufficiency of historical data.

B. Construction of Multi-source Information

The frequency statistics method is used to obtain BPA m0 
based on historical data. Each WPFE value will only count  
towards the basic element that contains the value. Thus, the 
number of EFEs derived from historical data equals the num‐
ber of basic elements. The procedure for the method is shown 
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in Algorithm 1, where Nhis is the number of historcal data.

Although we have obtained the original BPA derived from 
historical data, full belief in historical data may lead to incor‐
rect results because insufficient historical data are a major 
source of epistemic uncertainty. The sufficiency of historical 
data can be defined by the Kullback-Leibler divergence 
(KLD) [22], which measures the difference between two sta‐
tistical distributions. The KLD for a historical dataset can be 
evaluated as:

KLD =∑
k = 1

N

é
ë

ù
ûm̂0( )Ek lg m̂0( )Ek - m̂0( )Ek lg m0( )Ek (12)

where m̂0 is the BPA of the complete dataset.
Historical data are insufficient if the KLD is greater than 

0.1, whereas historical data are sufficient if the KLD is less 
than 0.05.

To adjust the credibility of historical data, a discount fac‐
tor α is used to preprocess the original BPA.

m1( H ) = (1 - α) m0( H )     "HÍΘ (13)

where m1 is the preprocessed BPA derived from historical da‐
ta; and 1 - α denotes the credibility of historical data.

Epistemic uncertainty is significant if historical data are in‐
sufficient. Therefore, the discount factor should be large to 
describe the low credibility of historical data in this situa‐
tion. By contrast, epistemic uncertainty is mild if historical 
data are sufficient. The discount factor should be small to en‐
sure that the epistemic uncertainty is accurately described 
within a reasonable range. The detailed selection principles 
of the discount factor are presented in Table I.

TABLE I
SELECTION PRINCIPLES OF DISCOUNT FACTOR

KLD

³ 0.1

0.05 - 0.1

£ 0.05

Discount factor

³ 0.2

0.05 - 0.2

£ 0.05

However, m1 does not meet (6) because of the remaining 
unassigned probability determined by the discount factor. 
This part of the probability represents epistemic uncertainty. 
The probability should be assigned to the interval [ ]-e

WēW  

to which all historical data belong, where -e
W and ēW are the 

minimum and maximum values of the historical data, respec‐
tively. Note that BPA is built on 2Θ. The calculation for BPA 
must be based on the EFE. Therefore, finding the minimum 

EFE {EpEq} is necessary such that [ ]-e
WēW Í [ ]eW

p e
W
q + 1 , 

where p and q are indices of the basic elements, which can 
be calculated as:

p = arg max
eW

k £ -e
W k = 12N

k (14)

q = arg min
eW

k+ 1 ³ ēW k = 12N

k (15)

1 £ p £ q £N (16)

The remaining probability is then assigned to { }EpEq  

as:

m1 (H)= α    H = { }EpEq (17)

In addition to the historical data of WPFEs, expert infor‐
mation is used to improve the accuracy of the WPFE model. 
For example, previous research works have shown that the 
PDF of a WPFE is conditional on its forecast value, where 
the forecast error has high bias and low variance when the 
forecast value is close to the upper and lower limits, and 
vice versa [23]. Operators can also provide effective experi‐
ence or suggestions. Combining these valuable research find‐
ings, this paper constructs two types of expert information 
for calculating the BPAs of WPFEs: expert informations I 
and II.

Expert information I is modeled to describe the relation‐
ship between the WPFE and predicted wind power value. 
Coefficient β is also introduced to determine the thresholds 
of the forecast values close to the upper or lower limits. The 
width of the critical region R1 is defined as:

R1 = βP W
e (18)

where P W
e  is the rated power of the wind turbine.

The upper and lower critical regions are set to be 

[ ]Pe -R1Pe  and [ ]0R1 , respectively. Expert information I 

will cause the forecast value in the critical region to be clos‐
er to the boundary after modification by the WPFE.

If the forecast value pertains to the upper critical region, 
the probability of the forecast error in the interval [0R1] is 
higher. BPA m2 derived from expert information I is formu‐
lated as:

m2( )H = γ + ( )1 - γ m0( H )     H = { }EpEq (19)

m2( )H = ( )1 - γ m0( H )     "HÍΘH ¹ { }EpEq (20)

where γ is the credibility of expert information I; and 

{ }EpEq  is the minimum EFE such that [ ]0R1 Í [ ]eW
p e

W
q+1 .

If the forecast value belongs to the lower critical region, 
the probability of the forecast error in the interval [ ]-R10  is 

higher. Similar methods have been used to obtain BPA for 
this situation.

Expert information II is modeled to represent the impact 
of extreme historical data. The lack of historical data will 
lead to narrowing the upper and lower limits of WPFEs. 
Therefore, appropriately widening the boundary of WPFEs 
based on the extreme value and credibility of historical data 
is necessary. The boundary value R2 is calculated as:

R2 =max (| -e W |  | ēW | ) / ( )1 - α (21)

Algorithm 1: frequency statistics method for calculating BPA m0 derived 
from historical data

Input: historical data and number of basic elements N

Output: BPA m0 derived from historical data

1:

2:

3:

4:

5:

6:

initialize: set m0 (Ek )= 0, where k = 12N

for k = 12N do

end for

if a historical datum belongs to Ek then

  m0 (Ek )=m0 (Ek )+
1

Nhis

end if
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In addition, it is known from operation experience that 
any possible WPFE in Θ cannot be ignored. Thus, Θ also 
must be assigned a probability based on the credibility of 
historical data. The BPA m3 derived from expert information 
II is given as:

m3( )H = α/2 + ( )1 - α m0( )H     H = { }EpEq (22)

m3( )H = α/2 + (1 - α) m0( )H     H =Θ (23)

m3( )H = ( )1 - α m0( )H     "AÌΘH ¹ { }EpEq (24)

C. Fusion of Multi-source Information

Notably, the fusion of multi-source information may help 
improve the accuracy. Moreover, the conflict among multi-
source information may have a negative effect on the accura‐
cy of the fusion. To avoid adverse effects and prevent the in‐
troduction of greater uncertainties after the fusion, based on 
evidence theory [24], this paper proposes an improved fu‐
sion method that is suitable for the aforementioned WPFE 
model.

q ( )H4 = ∑
H1H2H3ÍΘH1H2H3 =H4

m1( )H1 m2( )H2 m3( )H3 (25)

where q ( )H4  is a probability assignment function and the 

fused BPA m4 is given as:

m4( )H = 0    H =Æ (26)

m4( )H = q ( )H +wq ( )H q ( )Æ     H ¹ÆΘ (27)

m4( )H = q ( )H +wq ( )H q ( )Æ + ( )1 +wq ( )Æ -w q ( )Æ

H =Θ (28)

w =
1 - α

1 - q ( )Æ - q ( )Θ (29)

where w is the scale factor used for normalization, which is 
related to the credibility of historical data. The preprocessed 
historical data and expert information are fused to obtain 
BPA m4.

The uncertainty model of WPFEs is built based on the 
idea of the cumulative distribution function (CDF). The prob‐
ability PWPFE of the basic elements satisfies the following 
constraints:

0 £Bel ( ){ }E1E2Ek - 1 £PWPFE( )Ek £

Pl ( ){ }E1E2Ek - 1 £ 1 (30)

where { }E1E2Ek - 1  is used to calculate Bel and Pl, as 

any WPFE value in Ek must be greater than or equal to the 
maximum WPFE value in { }E1E2Ek - 1 . The calculations 

for Bel and Pl are based on m4.
To accurately describe the characteristics of WPFEs dur‐

ing different periods of a single day, the proposed method is 
used to model WPFEs for each hour of the day.

III. OPERATION RELIABILITY EVALUATION FRAMEWORK 

A. Generation of Random Wind Power Output

WPFEs have both aleatory and epistemic uncertainties. 

Therefore, the traditional sampling method is not suitable for 
the proposed WPFE model. In this paper, a double-layer 
MCS method is used to generate a random output sequence 
of wind power.

First, the outer-layer MCS is used to randomly choose the 
EFE of the WPFEs. This step deals with the aleatory uncer‐
tainty of WPFEs. Extreme WPFEs have low probabilities, 
but these may cause severe reliability accidents. To accurate‐
ly and quickly assess the risks associated with these low-
probability and high-impact WPFEs, the outer-layer MCS 
adopts Latin hypercube sampling (LHS), which is a variance 
reduction technique based on stratification [25]. A random 
number u1 ranging from 0 to 1 is selected in this step. A cor‐
responding relationship exists between u1 and the EFE. The 
EFE will be found if u1 is given as:

eW( )u1 =

ì

í

î

ï

ï

ï

ï

ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

[ ]eW
1 e

W
2         u1ÎPWPFE( )E1

                      

[ ]eW
r e

W
r + 1      u1ÎPWPFE( )Er

                      

[ ]eW
s e

W
s + 1      u1ÎPWPFE( )Es

                      

[ ]eW
N e

W
N + 1      u1ÎPWPFE( )EN

(31)

where r, s, and N are consecutive indices of basic elements 
that yield 1 £ r £ s £N.

Several PWPFE may overlap because of the epistemic uncer‐
tainty of WPFEs. Therefore, u1 may correspond to multiple 
consecutive EFEs. Then, the left and right boundaries of Er 
and Es generate the sampled interval [ eW

r e
W
s + 1 ] of the outer-

layer MCS, respectively. The width of [ eW
r e

W
s + 1 ] is deter‐

mined by epistemic uncertainty.
The inner-layer MCS is used for randomly choosing the 

sampled value of the WPFEs. This step deals with the epis‐
temic uncertainty of WPFEs. No significant difference exists 
in the probability of WPFEs in the interval [ eW

r e
W
s + 1 ] if the 

number of EFEs is selected appropriately. Therefore, the in‐
ner-layer MCS is used to sample the interval that follows a 
uniform distribution. The random number u2 selected in this 
step determines the sampled value eW of the WPFEs from 
[ eW

r e
W
s + 1 ]. An example of a double-layer MCS is shown in 

Fig. 4.
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The sampled value of the wind power output can be ob‐
tained by summing the forecast and WPFE sampled values 
using (1).

The double-layer MCS method is repeated to obtain the 
wind power output sequence for a given period.

B. Component Failure Simulation

The state duration sampling method is used to generate 
the state sequence of the component [26]. Suppose that each 
component has two states (up and down), and the compo‐
nent state duration is exponentially distributed. First, all com‐
ponents are initially in the up state. A uniformly distributed 
random number γj between [0,1] is sampled to determine the 
duration of the j th component residing in its present state. 
The state duration of the j th component can be calculated as:

ξj =-
1
λj

ln γj (32)

where λj is the transition rate of the j th component. If the j th 
component is in the up state, λj is the failure rate; if the j th 
component is in the down state, λj is the repair rate.

Equation (32) is repeated until the total simulation time is 
equal to or greater than the given time span to construct the 
chronological state transition process of each component. 
Then, the state sequence of each component is established.

C. System State Analysis

The simulated operation of the system is also assessed. 
The wind power output and operation state of each compo‐
nent are obtained from the wind power output sequence and 
component state sequence, respectively, and are used as the 
known values of the system state analysis at any time t.

The following optimization model for minimizing the load 
curtailment is used to reschedule generation outputs to main‐
tain the generation-demand balance, alleviate line overloads 
and avoid load curtailment, if possible, or minimize total 
load curtailment if unavoidable.

min E ( )∑
t

f ( )ẋ (33)

ϕ ( )ẋ = 0 (34)

φ ( )ẋ £ 0 (35)

gÎGlÎ LiÎBtÎ T (36)

where T is the evaluation period which is 24 hour in this paper.
In this model, ẋ indicates continuous variables:

ẋ = { |P G
gthP

l
lthP

Loss
ith δith "g"l"i"t} (37)

where h is the index of a given evaluation day; P G
gt and P L

lt 
are the active power output of unit g and power flow of line 
l at time t, respectively; P loss

it  is the load curtailment of bus i 
at time t; and δit is the phase angle of bus i at time t.

Constraints (34) - (36) include the power balance for each 
bus, power flow limits of every transmission line, limits of 
the power generators, limits of ramp up and down, limits of 
load curtailment, phase angles, and availability of compo‐
nents.

The system reliability indices LOLP and EENS are uti‐

lized to evaluate system reliability [27].
LOLP is defined as the loss of load probability, which can 

be expressed as:

LOLP =
1

TD ∑
tÎ ThÎD

Ith (38)

Ith =
ì

í

î

ïïïï

ïïïï

1    ∑
iÎB

P loss
ith > 0

0    ∑
iÎB

P loss
ith = 0

(39)

where D is the total number of evaluation days.
EENS is defined as the expected energy which is not sup‐

plied, which can be expressed as:

EENS =
1

TD ∑
iÎBtÎ ThÎD

P loss
ith (40)

The flow of this process is shown in Fig. 5.

IV. CASE STUDY 

The proposed methods are applied to a modified Roy 
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Fig. 5.　Flow of operation reliability evaluation of power systems.
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Billinton Test System (RBTS) [28]. The peak load of the 
test system increase to 240 MW. A 300 MW wind farm with 
200 wind turbines with a rated power of 1.5 MW is added 
to bus 1. The actual and forecast data of the wind power out‐
puts are obtained from a wind farm in Northwest China. The 
WPFE data are calculated based on (1).

A. WPFE Model Based on Historical Data

The WPFEs are first modeled with complete historical da‐
ta based on the proposed method. The reliability evaluation 
results based on the LDF model tend to be overoptimistic be‐
cause the LDF model increases the probability of events 
with relatively small WPFEs. Thus, for comparison, the 
NDF method is used as a typical distribution fitting method.

Figure 6 demonstrates the CDFs of WPFEs modeled with 
complete historical data, where the numbers of EFEs in the 
four subgraphs are selected as 5, 10, 20, and 50, respective‐
ly. The blue (true) curve derives from the original WPFE da‐
ta and is used as the reference. The fitting curve of the nor‐
mal distribution is roughly close to the reference curve, but 
it is too flat if the absolute value of the WPFE is small. The 
proposed method also envelops the reference curve well. At 
every point, the true WPFE value is always between Bel and 
Pl. For any possible value of WPFE, the difference between 
Bel and Pl represents the degree of epistemic uncertainty. 
For illustration purposes, only two boxes in each subgraph 
are marked with epistemic uncertainty. The greater the num‐
ber of EFEs selected, the smaller the difference between Bel 
and Pl, which means that the degree of epistemic uncertainty 
is less.

The distance between Bel and Pl further decreases to zero 
when the number of EFEs is sufficiently large. In other 
words, epistemic uncertainty is eliminated if sufficient histor‐
ical data exist. Note that the situation in Fig. 6 appears be‐
cause all historical data are used to construct Bel and Pl.

However, historical data obtained in actual situations are 
often limited. The WPFE data are divided into two parts. 
The first part is used to generate the WPFE model using the 
proposed method, and the second part is used as a validation 

dataset. In our paper, the discount factor is set to be 0.1. As  
shown in Fig. 7, the number of EFEs is selected to be high‐
er (e.g., 50) when the historical data are insufficient. The ac‐
tual value of some WPFEs is completely out of the range of 
Bel and Pl. When the number of EFEs reduces to 10, Bel 
and Pl could cover all possible values of the WPFEs. How‐
ever, the epistemic uncertainty of WPFEs also increases. 
Therefore, selecting an appropriate number of EFEs to mod‐
el the WPFEs is necessary so that the proposed model could 
cover possible scenarios without causing excessive epistemic 
uncertainty.

B. Fusion of Multi-source Information

The threshold coefficient β is set to be 0.1. The mean and 
variance of the true historical data are calculated and used as 
reference values for comparison. The calculation results are 
presented in the first two rows of Table II.

The mean and variance of the collected data conform to 
the rules found in [23]. The error of the forecast value in the 
critical region has a higher deviation and lower variance. 
This verifies the necessity of introducing expert informa‐
tion I.

The method based solely on historical data does not per‐
form information fusion, and therefore it can also be called a 
non-fusion method (NFM). To compare the effects of the fu‐
sion, the double-layer MCS is used to sample the two WPFE 
models obtained by NFM and MSIFM, respectively. The 
comparison results between these two methods and the tradi‐
tional NDF method are presented in Table II.

First, the errors of the forecast values in the middle region 
are compared. Little difference is observed in the mean val‐

-1.0 -0.5 0 0.5 1.0

WPFE (MW)

-1.0 -0.5 0 0.5 1.0

WPFE (MW)

-1.0 -0.5 0 0.5 1.0

WPFE (MW)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

-1.0 -0.5 0 0.5 1.0

WPFE (MW)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

True; NDF; Pl; Bel

Epistemic 
uncertainty

Epistemic 
uncertainty

Epistemic 
uncertainty

Epistemic 
uncertainty

(a) (b)

(c) (d)

Fig. 6.　CDFs of WPFEs modeled with complete historical data by differ‐
ent numbers of EFEs. (a) 5 EFEs. (b) 10 EFEs. (c) 20 EFEs. (d) 50 EFEs.
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TABLE II
MEAN AND VARIANCE OF DIFFERENT METHODS

Modeling
method

True for 
reference

NDF

NFM

MSIFM

Mean or 
variance

Mean

Variance

Mean

Variance

Mean

Variance

Mean

Variance

Lower
critical region

0.039

0.022

0.029

0.062

0.031

0.058

0.036

0.025

Middle 
region

-0.029

0.079

-0.024

0.124

-0.028

0.114

-0.029

0.085

Upper
critical region

-0.105

0.048

-0.087

0.098

-0.094

0.083

-0.101

0.052
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ues of the WPFEs simulated through the three methods. The 
variance values of the WPFEs simulated by NDF and NFM 
are relatively high, meaning that the simulated WPFEs are 
relatively scattered. The characteristic whereby the WPFE is 
concentrated near the zero value is not previously described 
accurately. Second, the errors of the forecast values in the 
critical region are compared. The mean and variance values 
of the WPFEs simulated by NDF are significantly different 
from the reference values. Therefore, the risk caused by 
some extreme WPFEs may not be measured correctly, which 
is not conducive to the operation reliability evaluation. By 
contrast, NFM performes better than NDF in terms of WPFE 
modeling. When the expert information is introduced to mod‐
ify the model of the WPFEs, the mean and variance values 
of the WPFEs simulated by MSIFM are very close to the ref‐
erence values in both the middle and critical regions.

The CDFs of the WPFEs modeled through different meth‐
ods are compared in Fig. 8. The true WPFE data are also 
plotted in this figure as a reference.

The NDF could not adequately describe the characteristics 
of the WPFEs. The curve of the NDF is relatively flat as 
compared with the true curve, indicating a large error. For 
the proposed model, the curve simulated by the double-layer 
MCS is roughly the middle line between Bel and Pl. Thus, 
even though NFM normally considers the credibility of his‐
torical data and correctly describes the epistemic uncertainty, 
the simulation results of NFM are still not sufficiently accu‐
rate. After expert information correction is conducted, the 
MSIFM reaches a very high accuracy.

C. Operation Reliability Evaluation

Results of operation reliability evaluation through differ‐
ent methods are presented in Table III. The references LOLP 
and EENS calculated using the true WPFE data of the valida‐
tion set are 0.0235 and 0.6380, respectively.

Through accurate WPFE modeling, the proposed method 
greatly improves the accuracy of the results of the operation 
reliability evaluation.

A historical dataset with 300 sets of daily data is consid‐
ered. Under these circumstances, the KLD is 0.0488, and the 
discount factor is recommended to be 0.05. Two cases are 
then modeled in which the discount factors are set to be 0.2 
and 0.05, respectively. The results of the operation reliability 
evaluation are presented in Table IV.

As shown in Table IV, choosing a discount factor of 0.05 
produces more precise reliability evaluation results. Numeri‐
cal simulations demonstrate the effectiveness of the selection 
principle for the discount factor.

The EENS evaluation results of different numbers of days 
of known historical data are shown in Fig. 9.

These three methods gradually approach the convergence 
as the amount of historical day data increases. The results of 
IM are the most conservative. In general, this means that the 
cost is the highest if the system reliability needs to be im‐
proved. The results of NDF converge to a value with a great‐
er error even when the amount of historical day data is suffi‐
ciently large. MSIFM achieves better performance than the 
traditional methods regardless of the amount of historical 
day data due to the appropriate number of EFEs being deter‐
mined. The relationship between the change in the number 
of EFEs or the amount of historical day data and the EENS 
error is shown in Fig. 10(a). The error in the evaluation re‐
sults decreases as the amount of historical day data increas‐
es. A clearer changing trend could be observed in the cumu‐
lative average error, as shown in Fig. 10(b).

The number of EFEs is first selected to be 5, which repre‐
sents the largest epistemic uncertainty. The results converge 
slowly and show the largest deviation when the amount of 
historical day data is sufficiently large. Then, the number of 
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Fig. 9.　EENS evaluation results of different numbers of days of known his‐
torical data.

TABLE III
RESULTS OF OPERATION RELIABILITY EVALUATION THROUGH DIFFERENT 

METHODS

Method

IM

NDF

LDF

MSIFM

LOLP

Value

0.0276

0.0259

0.0205

0.0239

Error (%)

17.45

10.21

-12.77

1.70

EENS

Value (MWh/day)

0.7445

0.6976

0.5508

0.6423

Error (%)

16.70

9.35

-13.67

0.67

TABLE IV
OPERATION RELIABILITY EVALUATION RESULTS WITH DIFFERENT DISCOUNT 

FACTORS

Discount 
factor

0.20

0.05

EENS (MWh/day)

Dataset 
1

0.6718

0.6401

Dataset 
2

0.7197

0.6885

Dataset 
3

0.6969

0.6769

Dataset 
4

0.7259

0.6568

Dataset 
5

0.6972

0.6672

Average 
error (%)

6.43

2.79
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Fig. 8.　CDFs of WPFEs modeled by different methods.
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EFEs is selected to be 50, which represents the smallest epis‐
temic uncertainty. However, the results do not show a con‐
vergence trend. In fact, the known historical day data are not 
completely credible, and the estimation of epistemic uncer‐
tainty is insufficient. This situation is similar to that reported 
in Fig. 7, which leads to an incorrect trend. It could also be 
understood that the amount of historical day data still does 
not match this high number of EFEs. Finally, the numbers of 
EFEs are selected to be 10 and 20. Both results have high 
convergence accuracy when the amount of historical day da‐
ta is sufficient. However, the results with 20 EFEs have larg‐
er errors when the amount of historical day data is small. 
Therefore, the cumulative average error with 20 EFEs is 
higher.

In short, the number of EFEs should be appropriately cho‐
sen to be in agreement with the amount of historical day da‐
ta. The fundamental principle for determining the number of 
EFEs is that the number of EFEs must increase as the 
amount of historical day data increases. More specifically, 
the recommended number of EFEs is 5-10 if the amount of 
historical day data is small (when KLD in (12) is larger than 
0.1), and should be 10-50 if the historical day data are rela‐
tively sufficient (when KLD in (12) is less than 0.05).

V. CONCLUSION 

This paper proposes a WPFE modeling method that con‐
siders epistemic uncertainty caused by insufficient data or 
knowledge. To improve the accuracy of the model, the 
MSIFM is proposed, and the number of EFEs is appropriate‐
ly chosen based on the proposed method. The double-layer 
MCS is used to simulate both the aleatory and epistemic un‐
certainties of WPFEs in the same framework to evaluate the 

operation reliability of power systems.
Simulation results demonstrate that accurate WPFE model‐

ing is critical for operation reliability of power systems. The 
uncertainty characteristics of WPFEs described by the NDF 
method are proven to be not very precise. Combining the 
proposed WPFE model and double-layer MCS could obtain 
accurate evaluation results of operation reliability. In addi‐
tion, the number of EFEs must be selected based on the 
amount of historical day data. More specifically, to improve 
the accuracy of the evaluation results, the number of EFEs 
must increase as the amount of historical day data increases.

This paper focuses on WPFE modeling, where WPFEs are 
mainly caused by the inherent variability associated with 
wind speed and insufficient historical data or knowledge nec‐
essary to precisely characterize it. Thus, the correlation be‐
tween the WPFEs of different wind turbines is not consid‐
ered. Nevertheless, the correlation of the WPFEs of different 
wind turbines can in fact be considered using the proposed 
method. The correlation information can be regarded as an 
independent information source and modeled as a type of ex‐
pert information. In addition, the proposed method can still 
be used to characterize epistemic uncertainty caused by the 
unknown correlation of the forecast errors of multiple wind 
turbines.
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