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Abstract——The seasonality and randomness of wind present a 
significant challenge to the operation of modern power systems 
with high penetration of wind generation. An effective short-
term wind power prediction model is indispensable to address 
this challenge. In this paper, we propose a combined model, i.e., 
a wind power prediction model based on multi-class autoregres‐
sive moving average (ARMA). It has a two-layer structure: the 
first layer classifies the wind power data into multiple classes 
with the logistic function based classification method; the sec‐
ond layer trains the prediction algorithm in each class. This 
two-layer structure helps effectively tackle the seasonality and 
randomness of wind power while at the same time maintaining 
high training efficiency with moderate model parameters. We 
interpret the training of the proposed model as a solvable opti‐
mization problem. We then adopt an iterative algorithm with a 
semi-closed-form solution to efficiently solve it. Data samples 
from open-source projects demonstrate the effectiveness of the 
proposed model. Through a series of comparisons with other 
state-of-the-art models, the experimental results confirm that 
the proposed model improves not only the prediction accuracy, 
but also the parameter estimation efficiency.

Index Terms——Wind power prediction, wind generation, time 
series analysis, logistic function based classification.
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I. INTRODUCTION 

WIND power can provide a strong driving force for the 
future economic development, and combat energy cri‐

sis as well as climate change. Investment in wind power gen‐
eration experienced an explosive growth in the last decade. 
By the end of 2020, over 910 GW wind generation was in‐

Manuscript received: October 21, 2021; revised: March 2, 2022; accepted: 
April 26, 2022. Date of CrossCheck: April 26, 2022. Date of online publication: 
June 16, 2022. 

This work was supported by the Guangdong-Macau Joint Funding Project 
(No. 2021A0505080015), Science and Technology Planning Project of Guang‐
dong Province (No. 2019B010137006), and Science and Technology Develop‐
ment Fund, Macau SAR (No. SKL-IOTSC(UM)-2021-2023).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Y. Dong, S. Ma, and H. Zhang (corresponding author) are with the State Key 
Laboratory of Internet of Things for Smart City and the Department of Electri‐
cal and Computer Engineering, University of Macau, Macao S. A. R. 999078, 
China (e-mail: dyxiscool@outlook.com; shaodanma@um.edu.mo; hczhang@um.
edu.mo).

G. Yang is with the Institute of Physical Internet and the School of Intelligent 
Systems Science and Engineering, Jinan University, Zhuhai 519070, China (e-
mail: ghyang@jnu.edu.cn).

DOI: 10.35833/MPCE.2021.000717

1184



DONG et al.: WIND POWER PREDICTION BASED ON MULTI-CLASS AUTOREGRESSIVE MOVING AVERAGE MODEL WITH LOGISTIC FUNCTION

stalled worldwide according to the World Wind Energy Asso‐
ciation [1]. However, as wind is stochastic and intermittent, 
it is challenging to integrate high penetration of wind genera‐
tion into power systems that require real-time balance be‐
tween load and generation [2]. To overcome this challenge, 
highly accurate wind power prediction (WPP) is indispens‐
able, which is currently a research hot spot in both academia 
and industry [3].

WPP models and estimates the future wind power genera‐
tion. Based on the prediction time, they are normally divided 
into four cases, i. e., long-term, medium-term, short-term, 
and very-short-term predictions [4]. In addition, the short-
term case and very-short-term case are the most popular 
ones in the operation of wind generation farm and corre‐
sponding power systems [5], [6]. They are important compo‐
nents in wind farm control [7] and power system operation 
[8], [9].

In the technical literature, the major models used for WPP 
can be divided into five categories.

1) Linear models with simple smooth assumption. This 
kind of models assume the future wind power to be equal to 
a value in the past [10], e.g., persistence [11]. Linear models 
with simple smooth assumption are the simplest and most 
economical models for predicting wind power, so that they 
are widely adopted by wind farms in history. However, they 
are only reliable for very-short-term predictions (e.g., a cou‐
ple of minutes ahead), and when the prediction time range is 
extended, their prediction accuracy decreases rapidly.

2) Numerical weather models. These models predict wind 
power based on comprehensive weather parameters (e. g., 
temperature, pressure, and obstacles) observed from radio‐
sondes, satellites, etc. [12]. They can provide accurate long-
term macroscopic weather prediction. The main disadvantage 
of numerical weather models is the high computational time 
and the storage complexity of computation. When these mod‐
els encounter abnormal conditions during the prediction peri‐
od, the models would collapse. Besides, they are also unreli‐
able for microscopic short-term and very-short-term wind 
predictions.

3) Statistical models. Statistical models include the sup‐
port vector machine (SVM) [13], the dynamic models (e.g., 
autoregressive moving average (ARMA) model) [14], the 
Bayesian models, etc. [15]. These models need to ensure the 
data to be stationary. However, because there are random‐
ness and seasonality in the wind power generation, it is hard 
to apply statistical models to the wind power generation 
[16]. In the meanwhile, they are difficult to give an accurate 
estimate for wind power generation with implied volatility 
due to the scale hypothesis and distribution hypothesis [17]. 
For example, [18] employed multiple variables to predict tu‐
ples of wind power generation with the ARMA model. Al‐
though this method can model wind generation more effec‐
tively with additional variables, the much more variables 
greatly improve the difficulty in solving the model.

4) Machine learning (ML) based models. ML-based mod‐
els are widely used because it is capable of capturing the 
nonlinear relationship between input data (e.g., historical re‐

cords) and WPPs. There are shallow architecture in ML-
based models for WPP which includes extreme learning ma‐
chine model [19] and combined ensemble models [20]. Such 
models are plagued by sample imbalance and huge computa‐
tional time [21]. Therefore, they usually need complex fea‐
ture selection methods [22]. Some of the ML-based models 
employ deep architecture (e.g., recurrent neural networks) to 
achieve the multi-layer hidden computing units with high 
generalization ability [23], [24]. It is capable to implement 
complex feature selection automatically in its own hidden 
layers.

5) Combined models. The combined models employ the 
data processing model and the optimization model to jointly 
improve the performance of WPP [25]. Since the joint opti‐
mization goal of combined models is usually non-convex, 
the parameters of combined models are usually optimized by 
decoupling the problem [21], [26]. The combined models are 
also employed to solve the seasonality and randomness in 
wind power generation. Specially for WPP problems, they 
are usually necessary to establish multiple statistical models 
for different conditions or to employ the ML-based models 
with large parameter scales [27]. The data processing model 
of combined models is also an important part, which can en‐
sure that the input for prediction model meets the corre‐
sponding model assumptions, and the expected data distribu‐
tion can help the prediction model control the parameter 
scale [22]. Although the combined models need to solve the 
parameters of multiple models, they always have a clear 
mathematical structure [28], therefore, there is always a bet‐
ter model interpretability of combined models than ML-
based models [29].

Because a combined model needs to calculate the parame‐
ters of multiple models, its training difficulty is generally 
higher than that of a single model [30], [31]. To reduce the 
difficulty in training a combined model and ensure the quali‐
ty of prediction, a simple and effective cost function is nec‐
essary. In the meanwhile, effectively optimizing the parame‐
ters of the model helps improve prediction efficiency [32]. 
Reference [33] designed the cost function by weighted com‐
bination of the reliability and sharpness measurement and it 
enhanced the convergence ability of the model. However, its 
cost function is not differentiable, which makes the optimiza‐
tion algorithm unable to achieve global optimum. Besides, it 
also relies on computational effectiveness of classification or 
feature extraction in the data preprocessing model. Some 
combined models (e. g., [34]) optimize parameters based on 
non-convex optimization, which are solved by heuristic algo‐
rithms. However, these algorithms may fall into local opti‐
mum [22], [35]. Non-convexity also causes a prediction mod‐
el to be highly dependent on the initial parameters so that 
the results of independent operations are inconsistent [36]. 
Besides, the parameter scales of heuristic algorithms may ex‐
plode with the increase of problem complexity [37]. To 
solve the above problems, [26] proposed a two-layer struc‐
ture, where the first-layer model is responsible for optimiz‐
ing the weights of data preprocessing model, so that in the 
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second layer, a classic algorithm can be used to optimize pa‐
rameters in the prediction process. However, this model is 
still highly dependent on the initial parameters [36].

Taking into account the above challenges, this paper pro‐
poses a combined WPP model, i. e., the WPP model based 
on multi-class ARMA. There are two advantages in the pro‐
posed model.

1) It employs a two-layer structure to decrease the scale 
of parameters. In the first layer, the wind power data are 
classified into multi-class classification based on logistic 
function. In the second layer, an ARMA-based algorithm is 
trained for each class of data for prediction. This structure 
helps effectively tackle seasonality and randomness of wind 
power with moderate model complexity.

2) We model the WPP problem as a solvable optimization 
problem, and the non-dominated sorting genetic algorithm II 
(NSGA-II) is employed to find the optimal parameters. This 
algorithm effectively guarantees the convergence speed and 
training efficiency of the training process.

The rest of this paper is organized as follows. In Section 
II, the system model of the WPP problem is presented, and 
the proposed cost functions are described. In Section III, the 
process of proposed model is presented. Section IV conducts 
the numerical experiments and Section V present the conclu‐
sion.

II. SYSTEM MODEL OF WPP PROBLEM 

Taking into account various fluctuations and different 
types of seasonality and randomness in wind power genera‐
tion, we propose a WPP model based on multi-class ARMA. 
The key idea of this model is to divide the data samples into 
multiple classes based on logistic function, and the corre‐
sponding prediction models would be trained independently. 
Then, in application, the proposed model first classifies the 
new data, and then estimates the future data based on the 
corresponding WPP model. The structure of the proposed 
model is presented in Fig. 1. As shown in Fig. 1(a), the mod‐
el training consists of two layers, the first layer for classifier 
training can map the original series into discontinuous statis‐
tical features and use logistic function for classification. 
Then the second layer for model training would train differ‐
ent prediction models based on different classes, if the itera‐
tion termination condition is not met, the parameters of the 
classifier would be updated and the two-layers process 
would be employed again. After the training process, the 
achieved classifier and the prediction model would be em‐
ployed in the WPP process, as shown in Fig. 1(b).

The typical classes of wind power time series are shown 
in Fig. 2, where the sampling point is obtained every 30 
min. Obviously, different classes have quite different wind 
power profiles.

Without loss of generality, we will use formula derivation 
to show how the proposed model predicts time series 
through ARMA model. Mathematically, denoting the vector 
form of wind power generation as x = (xt )t = 12...T, the 
system model of WPP problem is given as:

 x̂t =∑
k = 1

K

I(dxt
ÎCk )((∑i = 1

I

φki xt - i +∑
j = 1

J

πkj εkt - j ) (1)

The two terms in the bracket in (1) correspond to the AR 
and MA terms in the ARMA model, respectively. The indica‐
tive function I(dxt

ÎCk ) models the multi-class classification 

defined as:

I(dxt
ÎCk )=

ì
í
î

1    dxt
ÎCk
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(2)

In this paper, we employ the logistic function through sta‐
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Fig. 1.　Structure of proposed model. (a) Model training. (b) WPP.
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tistical feature mapping for multi-class classification prob‐
lems. In practice, wind power is affected by numerous fac‐
tors and the complete wind power features for each class Ck 
are hard to be obtained so that the multi-class classification 
is quite challenging. The logistic function using statistical 
feature mapping effectively expands the basis of the classifi‐
cation space. Inspired by this feature, we extend the original 
logistic classification to multi-class case by adopting the fol‐
lowing logistic function:

pxt
=

1

1 + e
-αTdxt

(3)

Similar to original logistic classification, the bounded 
range [01] is uniformly partitioned into K subregions, i. e., 
[01/K), [1/K2/K), ..., [(K - 1)/K1]. The output of the logistic 
function pxt

 is compared with the thresholds k/Kk = 12...K 

to determine the class that dxt
 belongs to. Essentially, the 

multi-class classification based on logistic function leverages 
the logistic function to transform the multi-dimensional data 
dxt

 into one-dimensional data in the classification space. The 

mapping is nonlinear and involves a new classification pa‐
rameter α, which offers certain degree of freedom to control 
the performance of the classifier. The design of the mapping 
function will be discussed in the next section.

Incorporating the multi-class classification based on logis‐
tic function into (1), the WPP problem can be reformulated 
as:

x̂t =∑
k = 1

K

I ( pxt
Î é

ë
êêêêk - 1

K


k
K ) ) (∑i = 1

I

φki xt - i +∑
j = 1

J

πkj εkt - j ) (4)

Though we expect that the proposed model can effectively 
tackle the seasonality and randomness features in the origi‐
nal data, its training process, i. e., optimizing the classifica‐
tion parameter α and the ARMA parameters φk =
[φk1φk2φkI ]T and πk =[πk1πk2πkJ ]T, is computation‐
ally challenging due to the corresponding optimization prob‐
lem which is non-convex. In this paper, we decouple the 
original non-convex optimization problem with three parame‐
ters into two sub-optimization problems, one of which is 
solved by the NSGA-II, and the other of which is convex 
and can be solved by an analytical method. In this way, we 
reduce the complexity of solving the original problem and 
improve the convergence speed and training efficiency of the 
parameter estimation process.

III. PROCESS OF PROPOSED MODEL 

In this section, we present the proposed data processing 
method and the process of solving the objective function.

A. Data Preprocessing

In this subsection, we employ a dual-criterion optimiza‐
tion method to pre-process the wind power time series, 
which can remove obvious outliers in the original data. Usu‐
ally, wind power generations are observed through specific 
instruments (e.g., a windmill anemometer), and the observa‐
tions may be contaminated by certain errors. Considering the 

errors, the wind power observations can be generally mod‐
eled as:

x̄t = xt + vt (5)

Moreover, the wind power time series may contain some 
outliers due to extreme weather, malfunction of the measure‐
ment instruments and maintenance activities. The presence 
of outliers and errors in the data will degrade the prediction 
accuracy. Hence, preprocessing on the wind power data is 
necessary [38].

Different from the normalization preprocessing, which is 
frequently adopted by neural network based prediction, we 
aim to minimize the random observation errors as well as en‐
sure the smoothness of the data [39]. The data preprocessing 
can then be formulated as a regularized least squares optimi‐
zation problem [40]. The objective function with two items 

is ∑
t = 1

T

|xt - x̄t|
2 + σ(x) and the limitation is σ(x)=∑

t = 1

T - 1

(xt + 1 - xt )
2. 

The first item in the objective function denotes the sum of 
squared errors, and the second item σ(x) refers to the 
smoothness objective. Defining a difference matrix D for x 
as (6), the smoothness item σ(x) can be represented as (7).

D =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
1 -1 ... 0
0 1 ... 0

  
0 0 ... 1

(6)

σ(x)= ||Dx||2
2 (7)

Based on the convex optimization theory [40], the correct‐
ed data x can be straightforwardly derived as:

x = (E +DT D)-1 x̄ (8)

The original wind power generation usually contains miss‐
ing values ranging from 1 to 6 hours. This may be due to a 
system overhaul or measurement failure. Therefore, the wind 
power data finally used are different from the real data. In 
this paper, we employ quadratic smooth function to treat this 

kind of error as a dual-criterion problem, i.e., ∑
t = 1

T

|xt - x̄t|
2 and 

σ(x), under the assumption that the magnitude of error is 
very small. In this dual criteria optimization problem, the da‐
ta achieved by the first item would be smooth when the val‐
ue of the first item is large, and the second item σ(x) is set 
to be the penalty term to avoid the over-fitting problem 
when the first item is optimized. Therefore, we usually ex‐
pect the second item to be small.

B. Objective Function Design

In this paper, we employ the mean square error (MSE) as 
the training objective metric because it can be differentiated. 
The objective of WPP is to minimize the squared prediction 
errors. Assuming that a total of N samples are tested, MSE 
can be expressed as:

MSE =
1
N∑t = 1

N

(xt - x̂t )
2 (9)

Based on (3) and (4), the WPP problem can thus be for‐
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mulated as the following minimum squared error problem:
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       pxt
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-αTdxt
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       π = [ ]π1    π2        πK

(10)

Since the K subregions, i. e., [01/K), [1/K2/K), ..., [K -
1/K1], are mutually exclusive, the objective function can be 
rewritten as:

S(φπα)= I ( pxt
Î é

ë
êêêêk - 1

K


k
K ) )∑t

|xt - x̂kt|
2 (11)

Then the MSE problem can be decoupled into a two-level 
optimization problem, i.e.,

min
α
∑
k = 1

K

I ( pxt
Î é

ë
êêêêk - 1

K


k
K ) ) min

φkπk (∑t

|xt - x̂kt|
2 ) (12)

This optimization problem is non-convex and challenging. 
For the classification parameter α, because the objective 
function is non-convex, the original problem is easy to fall 
into local optimization when using the traditional optimiza‐
tion algorithm. Even if the enumeration method is only used 
to solve the classification parameter α, the time complexity 
of solving the original problem will increase at least 
O(104|Dx| ), which is unacceptable. In fact, we notice that the 
inner minimization problem with respect to φk and πk corre‐
sponds to the MSE design for each ARMA model and its op‐
timal solution can be derived in semi-closed form as detailed 
in Section III-C. In regards to the outer minimization prob‐
lem with respect to α, we can resort to a heuristic optimiza‐
tion algorithm with guaranteed convergence, i.e., the NSGA-
II [41]. Section III-D will introduce the process of NSGA-II 
and further details can be found in [42].

C. Closed-form Solution of ARMA Model

In this subsection, we present the analytical solution of 
the ARMA model. ARMA model is not only a widely used 
statistical model, but also one effective regression model 
with local interpretability for prediction [43]. In particular, 
the local interpretability of ARMA model can lay a founda‐
tion for future research on how to improve the performance 
of prediction model. As shown in [44], the ARMA model 
can be approximated by an infinite AR model. We employ 
this approximation and conduct certain truncation on the infi‐
nite AR model. The estimated value in the kth ARMA model 
can be approximated as:

x̂kt =∑
i = 1

I

φki xt - i +∑
j = 1

J

πkj εt - j »∑
i = 1

n

θki xt - i (13)

where n is a much larger value than the orders in ARMA 
model, i.e., I and J.

Substituting the approximation in (13) into the inner mini‐
mization in (12), the WPP problem can be represented as:
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This is a least square problem. By rewriting the problem 
with matrix form, the optimal solution of (14) is given 
as [40]:

Θk = (x T
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(18)

Considering the solution of θki in (15), the solutions of φk 
and πk to the inner MSE problem in (12) can be derived in 
analytical forms. Specifically, substituting εkt - j = x̂t - j - xt - j 

and x̂kt =∑
i = 1

n

θki xt - i into (13), we can obtain:

φk = [πk1    πk1        πkp ]
T
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T
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T
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θkp θkp + 1  θkp + n - 1

θkp - 1 θkp  θkp + n - 2

  
θkp - q + 1 θkp - q + 2  θkn

(22)

Solving (20), the analytical-form solution of πk can be de‐
rived as (23) and then the solution of φk directly follows 
(19). Through this solution, the predictor can be trained 
more efficiently. In the meanwhile, the order of the AR mod‐
el is defined by the autocorrelation analysis and the partial 
correlation analysis [14], which are effective in determining 
the parameters of the dynamic process.

πk = (Θ̄T
k Θ̄k ) -1

Θ̄T
k - [ ]θkp + 1    -θkp + 2        -θkp + n

T
(23)
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D. NSGA-II

In the previous subsections, we introduce the logistic func‐
tion based multi-class classification. Since the classification 
parameters are too complex to be obtained through enumera‐
tion, we employ the NSGA-II to find the optimal parame‐
ters. NSGA-II is an iterative optimization algorithm, which 
is applicable to general optimization problem with guaran‐
teed convergence [41]. It is applied here to achieve the opti‐
mal solutions of the parameters {αφπ} in the two-level opti‐
mization problem (12). Based on [45], the procedures for the 
NSGA-II in optimizing the objective function can be summa‐
rized as follows.

Step 1: randomly generate a set of vectors α0
1α

0
2...α

0
M as 

the initial candidates for the classification parameter α, and 
set the iteration index r = 0.

Step 2: conduct the multi-class classification based on the 
logistic function (3) for each candidate αr

m; compute the AR‐
MA parameters based on (15), (19), and (23); compute the 
MSE S(φr

kπ
r
k α

r
m ) for each ARMA class; and store the MSE 

and its corresponding parameter αr
m.

Step 3: encode the classification parameters αr
1α

r
2...α

r
M; 

increase the iteration index by 1, i. e., r = r + 1; and conduct 
the mutation and crossover process to generate a new set of 
classification parameters αr

1α
r
2...α

r
M. The details of the mu‐

tation and crossover process for NSGA-II can be found 
in [45].

Step 4: repeat Step 2 and Step 3 until the MSE converges, 
i.e., || S(φrπrαr

m )- S(φr - 1πr - 1αr - 1
m ) £ η, where η is a suffi‐

ciently small number, e.g., 10-3.
The hyper-parameters of NSGA-II are shown in Table I.

The key contributions of the proposed model are the intro‐
duction of a novel multi-class classification based on logistic 
function into the prediction model and the findings of the 
classification parameters and ARMA prediction parameters 
jointly to minimize the squared prediction error. We interpret‐
ed the parameter training problem as a solvable optimization 
problem. Meanwhile, we proposed an efficient iterative algo‐
rithm with semi-closed-form solutions for the parameters. 
The hyper-parameters in Table I are selected in the proposed 
model by the enumeration algorithm. The prediction accura‐
cy of the proposed model is demonstrated using open wind 
power data in Section IV. As a summary, the pseudocode of 
the proposed model is shown in Algorithm 1. The complete 
process of the proposed model includes four processes: the 
data preprocessing, the training process of the multi-class 
classification, the predictor training process based on multi-
class classification, and the prediction process.

IV. NUMERICAL EXPERIMENTS 

A. Data Description and Pretreatment

The proposed model is trained for the wind power genera‐
tion per half an hour provided by the Australian Energy Mar‐
ket Operator (AEMO) [46], which collects the wind power 
generation data of 10651 equipment in Australia. Half-hour‐
ly wind power data from 17 years (from 1999 to 2016) are 
available in five states, i. e., Queensland state (QLD), New 
South Wales state (NSW), South Australia state (SA), Tasma‐
nia state (TAS), Victoria state (VIC). The data from 15 years 
(from 1999 to 2014) are collected for training process, and 
the data from two years (from 2015 to 2016) are collected 
for testing process. In this paper, the results have the same 
granularity of 30 min. The smoothing model in (8) is em‐
ployed to smooth the training data and the parameters in (8) 
are automatically adjusted. The statistical features of wind 
power generation are presented in Table II. The prediction is 
made every half an hour, and the wind power generation in 
the next half an hour is predicted each time. In the mean‐
while, the order of AR model would be changed according 
to the data features.

Selecting the data sets with multiple features is helpful to 
present the performance of WPP models with a comprehen‐
sive perspective. The case studies of [47] show that the condi‐
tional variance of the power series from AEMO changes over 
time, i. e., seasonality. Therefore, we employ AEMO data as 
the data set for testing the performance of the proposed model.

B. Analysis of Classification Coefficient α

The regression structure in the ARMA model to perform 
prediction tasks is limited with the assumption of stationari‐
ty. In practice, the stationarity assumption of the ARMA 
model cannot always be satisfied. When the training data do 
not meet the assumption of the ARMA model, estimating the 
parameters of the optimal solution is a very difficult prob‐
lem. Hence, we use classification methods to relax the sta‐
tionarity assumption of the prediction model.

TABLE I
HYPER-PARAMETERS OF NSGA-II

Hyper-parameter

Updating rate

End error

The maximum iteration

Population scale

Number of objective parameters

Probability of crossover

Value

0.35

0.01

2000

100

3

0.9

Algorithm 1: pseudocode of proposed model

Require the original x, the initial α, and the MSE threshold value (judge‐
ment objective)

1. Return x̂kt

2. while input x do

3.   Get the modified input vector x̄¬ x

4.   Get the wind power generation vector dxt
¬ xt

5.   Get the current mapping vector of classification α

6.   Get the initial classification set of training data Ck¬(xtdxt
α), as 

shown in (10)

7.   Train the predictor of each class

8.   Get the initial parameters of ARMA model Φ and π from (13) to (23)

9.   Do prediction process and judge if the error meet the MSE threshold 
value

10.  Update α through the NSGA-II

11. end while

12. Get the estimated prediction time series of the testing data x̂kt¬ x, as 
shown in (4)

1189



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

Within each class, the stationarity can be easily assumed. 
Specifically, we select certain representative features dxt

 from 

the past observations for multi-class classification. In this pa‐
per, we utilize 12 statistical features to extract the features 
of training data, i. e., mean value (y1), median value (y2), 
modal number (y3), range of data (y4), variance value (y5), 
standard value (y6), 0.25 quantile (y7), 0.5 quantitle (y8), 0.75 
quantitle (y9), 0.95 quantitle (y10), the maximum value (y11), 
and the minimum value (y12). Based on this set of statistical 
features, an example of the classification parameters α, 
which can also be regarded as the optimal feature weights, is 
shown in Fig. 3. With a solvable parameter estimation pro‐
cess, the classification parameters are automatically opti‐
mized in the training phase.

C. Evaluation Metrics

In the meanwhile, we use two metrics, i.e., the root mean 
square error (RMSE) and the mean absolute percentage error 
(MAPE), to present the performance of the proposed model 
and the comparison models. Assuming that a total of N sam‐
ples are tested, RMSE and MAPE can be expressed as:

RMSE =
1
N∑t = 1

N

(xt - x̂t )
2 (24)

MAPE =
1
N∑t = 1

N |

|

|
||
|
|
||

|

|
||
|
|
| xt - x̂t

xt

´ 100% (25)

The MAPE measures the size of the error in percentage 
terms, and is generally regarded as the common measure 
metric used to predict errors. Roughly speaking, it can quan‐
tify the prediction performance of the proposed model and 
the comparison models while eliminating the misleading of 
magnitude to the evaluation. The RMSE only measures the 
deviation of the prediction from the actual value [48]. Al‐

though RMSE and MAPE are commonly used as prediction 
error metrics, they are not often used in the training process 
due to the existence of absolute value operation and open 
radical operation. Instead, MSE is usually employed as the 
metric in the training process as introduced in Section III.

D. Evaluation of Prediction Performance

In this paper, we compare the performance of the pro‐
posed model with two individual prediction models and two 
combined models, which include: ① the support vector re‐
gression (SVR) model, which is a popular basis model in 
WPP and is a statistical model as well [47]; ② the extreme 
learning machine (ELM) [19], which is an effective ML-
based model for modeling WPP problems (the parameters of 
ELM in this paper are optimized by back-propagation meth‐
od); ③ the neural network-based ARMA (NN-ARMA) mod‐
el [49], where the ARMA model is employed as the predic‐
tor and the parameters of the predictor are solved by neural 
networks; and ④ the k-nearest neighbor based ARMA 
(KNN-ARMA) model [50], where the k-nearest neighbor 
(KNN) is a famous method in classification task. This com‐
bined model classifies data sets with KNN, while employing 
ARMA as the predictor, in which the parameters of ARMA 
are solved by the maximum likelihood estimation. The KNN-
ARMA model can serve as a good benchmark for compari‐
son to verify the effectiveness of the classifier of the pro‐
posed model.

The comparison results of RMSE is presented in Table III 
and the results of MAPE are shown in Table IV. The results 
in the five individual states as well as the average results 
across all states are shown in the tables as well. The RMSE 
results show that the prediction accuracy of different states 
in the proposed model is better than that in the KNN-ARMA 
model. Specifically, we can observe from Table IV that the 
prediction error of the proposed model is the lowest among 
the five models, specially reaching 0.95% in the SA state. 
Moreover, the average MAPE error is 1.25%. From Table 
III, we can observe that the proposed model provides the 
lowest RMSE in the five states. Together with the results in 
Table IV, this means that the proposed model can not only 
track the changes of the wind power accurately, but also 
keep the prediction values very close to the actual values in 
a point basis. In terms of the average RMSE across all the 
five states, the proposed model is superior to the other four 
models. The superiority of the proposed model can also be 
further demonstrated by jointly considering the results of 
MAPE and RMSE in Tables III and IV. In addition, it can 
be observed from the results in Table III and Table IV that 

TABLE II
STATISTICAL FEATURES OF WIND POWER GENERATION

State name

QLD

NSW

SA

TAS

VIC

Sample scale

267298

315586

314098

192864

315586

Number of training 
samples

237598

276138

282688

160720

236690

Number of testing 
samples

29700

39448

31410

32144

78896

The maximum power 
(kWh)

14579.86

3385.42

3385.45

1760.23

10414.86

The minimum power 
(kWh)

4624.03

21.89

45.96

479.39

2726.88

Mean power 
(kWh)

8340.28

1462.44

1462.44

1134.71

5542.48

Variance

1871263.00

87924.00

3384908.00

23555.15

746433.20
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Fig. 3.　Optimal feature weights in classification.
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there are significant differences in the prediction results of 
different states. According to Table II, wind power data in 
different states have different statistical features. In the mean‐
while, we note that Table III shows that the RMSE results in 
the TAS state are much smaller than those in other states, 
this is because the wind power generation in the TAS state 
has a smaller magnitude and less variation. From Table II, it 
can be observed that the range of wind power generation 
variation in the TAS state is significantly smaller than that in 
other states.

The interval prediction results (5%, 10%, 25%, 50%, and 
95%) of wind power generation in 240 hours in the QLD 
state are presented in Fig. 4 as a special case.

It can be observed that the prediction result obtained by 
the proposed model could be covered by the confidence in‐
tervals well. Figure 4 also shows that the stationary of the 
predicted distribution changes significantly in temporal do‐
main.

E. Computational Efficiency Comparison

Among the comparison models, the KNN-ARMA model 
is a combined model that employs KNN as the classification 
method and ARMA as the predictor. It also has a two-layer 
prediction structure. Therefore, to compare the proposed 
model with the comparison models from different perspec‐
tives, we present the performance of classification and the 
computational efficiency between the KNN-ARMA model 
and the proposed model. The whole computational time of 
both models are presented in Fig. 5.

The numerical experiments are instantiated on a PC with 
the Intel Core Duo Intel® CoreTM i7-8700 processor (8 MB 
cache, the maximum frequency is up to 3.20 GHz). The com‐
parison models are realized by MATLAB Parallel Server. As 
shown in Fig. 5, the proposed model divides the data set in‐
to 17 categories, while the KNN-ARMA model divides the 
data set into 7 categories. In this paper, the enumeration al‐
gorithm is used to determine the number of clusters in the 
classification process. Specifically, when the average predic‐
tion error after classification is the smallest, we choose this 
classification number as the value selected by the proposed 
model. It can be observed from Fig. 5 that although the pro‐
posed model has more categories than the KNN-ARMA 
model, its computational time is much lower than that of 
KNN-ARMA model. The advantage of the proposed model 
over the KNN-ARMA model mainly comes from the effi‐
cient logistic function based classification whose complexity 
is much lower than the KNN classification which requires 
heavy Euclidean distance calculations. From the results in 
Tables III and IV and Fig. 5, we can conclude that the pro‐
posed model has not only higher prediction accuracy but al‐
so less computational time than the KNN-ARMA model.

V. CONCLUSION 

This paper proposes a model to conduct the short-time 
WPP by employing a logistic function based multi-class clas‐
sification method into the prediction model. The non-convex 
classification problem is interpreted as a solvable optimiza‐
tion structure, which enables an analytical solution. In the 
meanwhile, we adopt an iterative algorithm with a semi-
closed-form solution to efficiently solve the predictor. In ex‐

TABLE IV
COMPARISON RESULTS OF MAPE

Model

Proposed

SVR [47]

ELM [19]

NN-ARMA [49]

KNN-ARMA [50]

MAPE of different states (%)

QLD

1.14

1.41

1.38

1.47

1.35

NSW

1.40

2.51

1.69

1.72

1.57

SA

0.95

2.97

1.15

1.43

1.04

TAS

1.11

1.26

1.34

1.91

1.52

VIC

1.66

2.42

1.77

1.87

1.79

Average 
result (%)

1.25

2.11

1.47

1.68

1.45
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Fig. 4.　 Interval prediction results of wind power generation in 240 hours 
in QLD state.
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Fig. 5.　Comparison of computational time and RMSE of different models. 
(a) Proposed model. (b) KNN-ARMA model.

TABLE III
COMPARISON RESULTS OF RMSE

Model

Proposed

SVR [47]

ELM [19]

NN-ARMA [49]

KNN-ARMA [50]

RMSE of different states

QLD

115.7

189.7

154.9

183.6

177.9

NSW

167.6

176.4

185.7

231.4

226.3

SA

126.6

145.8

140.2

138.7

136.3

TAS

35.7

40.0

39.5

48.8

46.2

VIC

189.7

199.2

210.1

204.4

201.5

Average 
result

127.10

150.22

146.10

161.40

157.60
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periments, the proposed model achieves the best accuracy on 
WPP problems comparing with a series of state-of-the-art 
models.

Open data sets from AEMO are applied to present the per‐
formance of the proposed model comprehensively. The case 
studies show that the proposed model has superior prediction 
performance. Experimental results show that the proposed 
model can achieve more accurate prediction results. More‐
over, there is a lower training complexity in the proposed 
model to ensure prediction accuracy compared with tradition‐
al models.

There are still some limitations in the proposed model. 
From the perspective of the model mechanism, if the input 
data are non-stationary so that the proposed data preprocess‐
ing fails, the proposed model may not be able to obtain accu‐
rate prediction results. In the meanwhile, the classification 
number of the proposed model is selected by enumeration 
method, which may lead to high computational time. Further‐
more, the purposed model considers the case where the input 
features come from the temporal domain, and it may not be 
suitable for wind power generation prediction problems in‐
volving spatial domain data. In addition, to address some of 
the data challenges, the proposed model still needs improve‐
ment. Some possible research directions of future work in‐
clude: ① considering more detailed classification models to 
incorporate time-varying wind power features; ② improving 
the interpretability of the combined models for further accu‐
racy enhancement; and ③ incorporating the spatial correla‐
tion features into the classification and prediction.
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