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Improved Generative Adversarial Behavioral 
Learning Method for Demand Response and Its 

Application in Hourly Electricity Price Optimization
Junhao Lin, Yan Zhang, and Shuangdie Xu

Abstract——In response to the imbalance between power gener‐
ation and demand, demand response (DR) projects are vigorous‐
ly promoted. However, customers’  DR behaviors are still diffi‐
cult to be simulated accurately and objectively. To tackle this 
challenge, we propose a new DR behavioral learning method 
based on a generative adversary network to learn customers’  
DR habits. The proposed method is also extended to maximize 
the economic revenues of generated DR policies on the premise 
of obeying customers’  DR habits, which is hard to be realized 
simultaneously by existing model-based methods and traditional 
learning-based methods. To further consider customers’  time-
varying DR patterns and trace the changes dynamically, we de‐
fine customers’  DR participation positivity as an indicator of 
their DR pattern and propose a condition regulation approach 
improving the natural generative adversary framework to gen‐
erate DR policies conforming to customers’  current DR pat‐
terns. The proposed method is applied to hourly electricity 
price optimization to reduce the fluctuation of system aggregate 
loads. An online parameter updating method is also utilized to 
train the proposed behavioral learning model in continuous DR 
simulations during electricity price optimization. Finally, numer‐
ical simulations are conducted to verify the effectiveness and su‐
periority of the proposed method.

Index Terms——Demand response, behavioral learning, rein‐
forcement learning, generative adversarial network, electricity 
price optimization.

I. INTRODUCTION 

WITH the growth of the social economy, the demand for 
electricity is increasing rapidly and energy shortages 

remain a severe problem. In response to the imbalance be‐
tween power demand and supply, countries and regions are 
not only vigorously developing renewable energy but also 
launching various active management projects on the power 

demand side, among which, demand response (DR) is an ef‐
fective way.

DR projects can relieve the staggering peaks of power 
consumption by introducing customers by electricity prices 
[1] or incentives [2]. Therefore, the fluctuation of system 
loads can be reduced, and the security level of power grids 
can be improved [3], making DR projects be worth promot‐
ing.

Accurately describing the uncertainties of customer’s DR 
behavior is one of the key issues in DR analysis. Studies 
have shown that electricity price is one of the essential fac‐
tors encouraging customers to reschedule their electricity 
consumption plans, which is the basics of price-based DR 
projects. Therefore, the correlations between economic prof‐
its and customers’  DR behaviors have been investigated by 
some studies. Based on the Cobb-Douglas function, varia‐
tions in customers’  electricity consumption can be estimated 
by variations in the electricity price via the customers elastic‐
ity coefficient models [4], [5]. However, the investigated 
elasticity coefficient can hardly describe the relation between 
electricity price and DR behavior for various customer indi‐
viduals in a different time and will eventually cause the devi‐
ations in further analysis considering customers’  DR behav‐
iors.

Besides, other model-based methods have also been pro‐
posed to describe the uncertainty of DR behaviors, including 
multi-scenario analysis [6], the probability model method 
[7], and robust optimization method [8]. Moreover, [9] for‐
mulates a customer’s demand function as a linear function 
of electricity price with a random variable with a o-mean 
random variable. In [10], a two-stage stochastic DR method 
is proposed. The first stage of the model aims to optimize 
the electricity price, and in the second stage, the appliance 
schedule is optimized to reduce electricity costs. The shift‐
able appliance loads are modeled by a group of manually ex‐
tracted features and the uncertainty of appliance usage is ana‐
lyzed by the multi-scenario method and scenario reduction 
technique. In [11], Monte Carlo simulation is employed for a 
day-ahead DR problem considering the uncertainty of renew‐
able energy outages and system security. A robust optimiza‐
tion method is used in [12] to solve the uncertainty of wind 
power output and the price-elastic-based demand curves by 
taking the worst case into account. In general, model-based 
methods rely on accurate physical or mathematical models 
to describe customers’  DR behaviors. However, they are usu‐
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ally hard to be obtained and usually contain prior knowledge 
or hypotheses.

Apart from model-based DR analysis methods, machine 
learning (ML) methods, especially supervised learning (SL) 
algorithms, have also been introduced into the prediction of 
customers’  DR behaviors. Learning-based methods can pre‐
dict DR behaviors by data-driven training methods with few 
human interventions. Reference [13] sets up a neural net‐
work to learn energy consumption modes of home heating, 
ventilation, and air conditioning. Reference [14] directly pre‐
dicts customers’  DR behaviors by a long-short-term memory 
(LSTM) network, with temporal state vectors and price infor‐
mation as its input. However, traditional learning-based DR 
analysis methods, which mainly adopt SL algorithms, can on‐
ly rigidly copy customers’  past response policies and will 
probably fail when the “domain drift” occurs, in which data 
distribution of a test data set is different from a training data 
set. Besides, traditional learning-based methods are hard to 
be directly applied in multi-objective optimization scenarios.

Some studies convert a DR problem to a Markov decision 
process (MDP) or an optimization model. In this case, the re‐
ward of executing a specific DR action in a decision or opti‐
mization process is needed to be defined. The reward of DR 
defined in [15] mainly focuses on gaining economic profits 
and improving grid reliability, but without taking customers’  
electricity consumption habits into account. Some studies es‐
tablish a DR reward function containing discomfort assess‐
ments to measure the compromise degree of the generated re‐
sponse policies. Reference [16] considers customers’  com‐
fort requirements based on empirical factors, including in‐
door temperature and relative humidity, in the optimization 
process of DR policies and inserts these constraints in the de‐
fined reward function. In [17], [18], the discomfort coeffi‐
cient is defined based on the difference between customers’  
real response behaviors and their original electricity con‐
sumption plan. The discomfort coefficient is then added to 
the total electricity consumption costs. From the current stud‐
ies, the reward functions are mainly defined manually and 
empirically. Thus, the individual differences of customers’  
DR behavior modes are hardly completely considered.

Reinforcement learning (RL) algorithms are widely used 
in solving DR models and are generally divided into two cat‐
egories: value-based and policy-based. Value-based RL algo‐
rithms such as Q learning [19] and deep Q learning (DQN) 
[20] are popular for their convenient implementation, but val‐
ue-based RL cannot directly deal with continuous variables. 
The discretization of continuous decision variables would 
dramatically enlarge the action space, making the solution 
process too time-consuming. Variable discretization also lim‐
its the accuracy of the solutions. In contrast, policy-based 
RL algorithms directly optimize the generated policies by a 
policy gradient descent (PGD) [21] approach, enabling them 
to deal with continuous variables directly. Some studies fur‐
ther fuse a policy-based algorithm with a value-based algo‐
rithm and propose the Actor-Critic (AC) algorithm [22], 
which demonstrates higher accuracy and greater convenience 
in solving optimization problems with continuous variables. 
However, the natural AC algorithm requires a large number 
of sampling calculations, and thus the computational efficien‐

cy will be reduced.
The literature review above shows that learning-based 

methods offer an objective way to learn customers’  DR hab‐
its while model-based methods are more flexible in consider‐
ing multiple DR objectives. However, some inherent draw‐
backs also exist in both model-based methods and traditional 
learning-based methods. On one hand, when considering cus‐
tomers’  electricity consumption habits, model-based meth‐
ods need to define the electricity consumption model manual‐
ly with prior knowledge or hypotheses, and will thus in‐
crease the subjectivity and inaccuracy of the generated DR 
policies. On the other hand, traditional learning-based DR be‐
havioral learning methods are difficult to be combined with 
other methods to consider multiple DR objectives due to 
their end-to-end framework. Therefore, traditional learning-
based methods can only rigidly copy customers’  past re‐
sponse behaviors, and thus DR agents on the customer side 
cannot offer customers’  DR policies with higher economic 
profits. To solve the problems in existing methods, threefold 
major contributions are proposed in this paper.

1) We propose a new DR policy generation method that si‐
multaneously considers customers’  electricity consumption 
habits in a learning way and maximizes economic revenues. 
The proposed method learns customers’  DR behaviors via a 
generated adversary network and realizes a multi-objective 
optimization by an RL algorithm. Therefore, the aforemen‐
tioned drawbacks of model-based and traditional learning-
based methods can be improved and DR policies can be gen‐
erated in an objective and flexible way.

2) An electricity price optimization model is proposed to 
reduce the system aggregate load fluctuations and enlarge 
electricity selling profits. The proposed behavioral learning 
method for DR is conducted by multiple agents and an itera‐
tion framework between the power utility company (PUC) 
and DR agents is built for the price optimization.

3) We consider the dynamic changes of customers’  DR 
behavior patterns and offer a learning-based tracing method. 
We define a DR participation positivity index (PPI) to indi‐
cate customers’  current DR patterns and constrain the gener‐
ated DR policies conforming to current PPI by proposing a 
regulated condition generative adversarial imitation learning 
(RCGAIL) method. This combined measurement increases 
the effectiveness and accuracy of customers’  DR behavioral 
learning results in the scenarios with various DR behavior 
patterns.

The rest of this paper is structured as follows. In Section 
II, we explore the electricity price optimization model of the 
PUC and the DR analysis model on the customer side. The 
customers’  DR behavioral learning method, its improvement 
for dynamic response patterns tracing, and the online param‐
eter updating method are presented in Section III. Section IV 
conducts case studies and evaluates the performance of the 
proposed model. Finally, conclusions are drawn in Sec‐
tion V.

II. ELECTRICITY PRICE OPTIMIZATION AND DR MODEL 

In this paper, we propose a DR policy generation model 
based on a new DR behavioral learning method and apply it 
to an electricity price optimization problem. A sketch of an 

1359



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

integrated system containing the electricity price optimiza‐
tion and customer-side DR behavior learning is shown in 
Fig. 1.

For price optimization containing a price-based DR proj‐
ect, the PUC first initializes a preliminary hourly electricity 
price. PUC then sends the price information to the DR 
agents and anticipates to obtain customers’  probable re‐
sponse to this preliminary price. The corresponding DR poli‐
cies are generated by DR agents (like the customer-side ener‐
gy management systems), which can be deployed in a cen‐
tralized or distributed way. Figure 1 offers an example of the 
distribution implement method, which is also adopted in 
[15], [23] - [25]. In this way, DR simulation results are up‐
loaded back to the PUC for further electricity price adjust‐
ment. This process may last several rounds for PUC to grad‐
ually update the preliminary price, during which customers 
won’ t be notified of the price information until the price op‐
timization has been completed. Till then, DR agents generate 
the recommended DR policies corresponding to the opti‐
mized electricity price and send the formal price information 
and the corresponding recommended DR policies to the cus‐
tomers. Customers’  actual response behaviors will be record‐
ed for the further training of the DR analysis model.

To reduce the computational and communication burdens 
of the proposed system, some techniques, like parallel-dis‐
tributed computing and cloud-edge computing, have been ap‐
plied in the power DR domain [24], [25]. For example, in 
the power communication network, edge nodes can be built 
to gather and process customer data. The results are also 
packaged in the message passed to the PUCs. Since fewer 
channels are required in this way, the communication burden 
can be greatly reduced.

A. Objective Function of Electricity Price Optimization Mod‐
el for PUC

In this paper, we set a twofold-objective for the PUC’s 
electricity price optimization model. The first objective is to 
reduce the fluctuation of daily aggregate loads (F1), which 
brings the long-term profits of PUC by improving the sys‐
tem security level and reducing the operation costs [26], 
[27]. The second objective is to maximize the electricity sell‐
ing profits of PUC (F2).

The fluctuation of the system aggregate loads in different 
hours of a single day can be described by the coefficient of 

variation (Cv) index. Therefore, the objectives of the PUC’s 
price optimization model can be formulated as:

F1 =min Cv (LSDR )=min
1
EL
∑
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where Nc is the number of customers in the system; LDRih is 
the actual load schedule after DR of the customer i in hour 
h; LSDR is the system daily load after DR; EL is the expecta‐
tion of LSDR; PDR is the profit after price optimization and 
customer DR; pDRh is the electricity price of hour h to be op‐
timized; and ch is the PUC’s cost purchasing of electricity 
of hour h from the market.

LDRih is related to the pDRh in a price-based DR project 
and this relation is difficult to be accurately described with a 
static and certain mathematic model. Therefore, a learning-
based approach is proposed in Section III to determine this 
correlation.

B. Constraints of Electricity Price Optimization Model

1)　Lower Bound of Daily Profits After Price Optimization
Although a PUC tries to reduce the fluctuation of system 

loads via DR projects, earning profits is also important. 
Therefore, a lower limit is needed for the daily profits of 
PUC, which can be expressed as:
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where PI is the original total electricity selling profits with‐
out price optimization and DR; dp is the lower bound coeffi‐
cient of the system daily profits; and LIih and pIh are the 
load demands of customer i and the original electricity sell‐
ing price of hour h, respectively.

dp can be set according to actual profit requirements of 
PUC. For the case of further optimizing an existing pricing 
result, pIh and LIih can be set as the price and the load 
schedule in this existing result, respectively. For an original 
pricing scenario, pIh is set as ch, and (3) means that the 
PUC must be profitable by the price optimization and cus‐
tomer DR. LIih for DR simulation, in this case, can be ob‐
tained by the load forecasting.
2)　Upper and Lower Bounds of Hourly Electricity Price

The hourly electricity prices should have upper and lower 
limits. This constraint can be expressed as:

κmin phmin £ pDRh £ κmax phmax (4)

where phmax and phmin are the upper and lower bounds of the 
hourly electricity price in hour h, respectively; and κmax and 
κmin are the adjustment coefficients for phmax and phmin, re‐
spectively.

phmax and phmin can be set as the maximum and minimum 
of the recent historical hourly electricity price, respectively, 
and we set κmax and κmin as 1.2 and 0.6 in the simulations of 

Foecasted load; DR policy; Elecricity price

PUC

CustomersDR agents

DR policy
generation

Fig. 1.　Electricity price optimization and customer-side DR behavior learn‐
ing system.
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this paper, respectively.

C. Model of DR Analysis Agents

For a higher adoption probability, customers’  electricity 
consumption habits need to be considered in a DR project. 
Some studies limit the deviation between generated DR poli‐
cies and customers’  original load schedules to reduce cus‐
tomer dissatisfaction. However, the deviations caused by DR 
may not inevitably result in customer dissatisfaction, be‐
cause conducting DR can also bring them extra economic 
revenues. Some customers may be attracted by such rewards 
and are willing to partly reschedule their electricity consump‐
tion plans. Therefore, we need to find an appropriate model 
to describe the complex correlations among electricity pric‐
es, customers’  original electricity consumption plans, and 
their actual response behaviors with various and variable in‐
dividual electricity consumption habits.
1)　Objective Function of Customer DR Model

In this paper, the DR analysis agents generate DR policies 
to both minimize customers’  daily electricity charges and 
conform to customers’  electricity consumption habits. The 
objective function of the DR policy generation process focus‐
es on minimizing a customer’s electricity charge Pi and can 
be expressed as:

min Pi =min∑
h = 1

24

pDRh LDRih (5)

Then, to increase the adoption probability of generated 
DR policies, we will consider customers’  electricity con‐
sumption habits in the constraints of the DR model in a data-
driven way.
2)　Constraints of DR Policy Generation Process

First, a lower bound of electricity consumption schedules 
after DR needs to be set. Considering customers may have 
different DR patterns, we set the lower bound of generated 
DR policies by defining a discount coefficient according to 
customers’  historical DR behaviors as bL = min{QDR1 /QI1, 
QDR2 /QI2, , QDRj /QIj }, where j is the number of the train‐
ing data; QIj and QDRj are the quantities of daily electricity 
consumption before and after DR of the j th data, respective‐
ly. bL needs to be updated when the new DR behavior data 
are collected. Then a constraint for the DR policies for cus‐
tomer i can be formulated as:

∑
h = 1

24

LDRih ³ bL∑
h = 1

24

LIih (6)

Second, to take the customers’  electricity consumption 
habits into account and increase the adoption possibility, DR 
analysis agents need to limit the deviation between the gener‐
ated daily DR policies (LDRi) and probable real response be‐
haviors (LCi) of customer i to a certain range ε (ε>0), which 
can be described as:

di (LDRiLCi )£ ε (7)

where di (·) is a distance measurement function for DR behav‐
iors of customer i.

However, di (·), LCi, and ε in (7) are all hard to be ac‐
quired in the simulation process without detailed prior 
knowledge of model-based methods. To overcome this diffi‐

culty, a data-driven DR behavioral learning method is pre‐
sented in the following section.

III. CUSTOMERS’  DR BEHAVIORAL LEARNING METHOD AND 
POLICY GENERATION METHOD 

A. Framework of Overall System

In this subsection, we will learn the rules of customers’  
DR behaviors. Figure 2 shows an overall framework of the 
electricity price optimization model for PUC and the pro‐
posed customers’  DR behavioral learning model.

The whole system consists of two submodules: an hourly 
electricity price optimization module and a customers’  DR 
behavior learning and policy generation module. The main 
process of the proposed system can be implemented with the 
following steps.

Step 1: the PUC initializes a preliminary hourly electricity 
price pIh and sends it to customer-side DR agents. For an 
original pricing scenario, DR agents conduct load forecast‐
ing. The forecasting result LIih is then sent back to the 
PUC. For a further price optimization scenario, the initial 
value of LDRih can be inherited from LIih. PPI is also pre‐
dicted once for this day.

Step 2: the PUC updates the daily preliminary price pDRt 
(pDRt =[pDR1t, pDR2t, , pDR24t ]), where pDRht is the electric‐
ity price of hour h during the price optimization (round t), 
which is sent to the customer-side DR agents.

Step 3: the DR agent simulates and updates the DR behav‐
iors of customer i using the RCGAIL algorithm based on the 
current pDRt, customer i’ s load demands LDRit - 1 (LDRit - 1 =

Update preliminary price 
p

DR,t based on (1)-(3) 

Hourly electricity price
optimization

pDR,t obtained?

 

Send preliminary price p
DR,t

to customer-side DR agents

Collect simulation results
of DR behaviors

Generate DR policies a
t
 based

on DDPG with p
DR,t and L

DR,t�1  

Discriminator outputs
genuineness judgment of a

t

Is better r
t

obtained?

Calculate daily electricity

charge reduction C
DR,t

Calculate final reward r
t

for all objectives

Update DDPG parameter

Calculate PPI for a
t
 and

regulated condition for DR
policies

Send the final L
DR,t back to PUCEnd

Start

Customers’ DR behavioral leaning
and policy generation

  

Y Y

NN

Are simulations

agents?

Y

N
received from

Is better

Fig. 2.　 Framework of electricity price optimization model for PUC and 
customers’  DR behavioral learning model.
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[LDRi1t - 1, LDRi2t - 1, , LDRi24t - 1 ], where LDRiht - 1 is the be‐
havior of customer i of hour h in optimization round t), and 
the predicted DR PPI. The simulated DR policies are sent 
back to the PUC.

Step 4: the PUC aggregates the simulation results of DR 
behaviors from DR analysis agents and optimizes pDRt using 
the electricity price optimization model in Section II. Then 
go back to Step 2 and repeat the above procedures until the 
optimal hourly electricity price is obtained.

Step 5: the PUC officially broadcasts the optimal hourly 
electricity price to customers and DR agents offer their cus‐
tomers recommended DR policies corresponding to this hour‐
ly electricity price. Then, a day-ahead electricity price opti‐
mization process is accomplished.

The rest of this subsection illustrates the detailed princi‐
ples of each module of the proposed DR behavioral learning 
and DR policy generation method, the definition and predic‐
tion approach of the customers’  DR PPI values, and an on‐
line model parameter updating method. A summarized nu‐
merical relation between electricity price and DR behaviors 
is presented in the part 4 of Section III-D.

B. Customers’  DR Behavioral Learning Method Based on 
Improved Generative Adversary Network

Though some studies formulate the DR analysis process 
as a prediction problem, and SL algorithms have been em‐
ployed in DR behavioral learning, a drawback still exists. In 
this prediction model, DR agents can only copy customers’  
existing DR patterns due to the end-to-end framework of SL 

algorithms, and can hardly be extended for other objectives 
(like reducing customers’  electricity charges). Actually, the 
DR behaviors of some customers are elastic to some extent 
if more profits can be gained. Therefore, the DR policies 
don’ t need to strictly follow customers’  DR habits. PUCs 
can try to actively induce customers to accept the recom‐
mended DR policies, which will also contribute to learning 
and reducing their DR behavioral uncertainties. In this way, 
multiple DR objectives are needed to be considered, and for‐
mulating the DR analysis problem as a predicting process 
with a single objective is not appropriate.

In this paper, we formulate this problem as an optimiza‐
tion-prediction combined model and apply the generative ad‐
versarial imitation learning (GAIL) algorithm to solve this 
problem. In this way, the function of learning-based methods 
can be covered, while the merit of the flexibility of model-
based methods is also maintained.
1)　GAIL-based DR Behavioral Learning Model

The GAIL works based on two networks shown in Fig. 3. 
The generator network tries to confuse the discriminator by 
generating DR policies similar to customers’  real behaviors, 
while the discriminator network executes genuineness judg‐
ment. The GAIL trains the two networks in an adversarial 
way. The equilibrium reaches when the discriminator cannot 
tell the differences between generated DR policies and cus‐
tomers’  real behaviors, indicating that the generator can con‐
trol the deviation of the behavioral learning results within a 
small limit, so that (7) is also satisfied in a learning-based way.

The implementation of GAIL training in a DR analysis 
can be illustrated as follows. Denote scd as the observed and 
environmental states for DR behaviors on day d in history of 
generating DR policies, including daily load schedule LDRit, 
daily preliminary price pDRt, and customers’  DR pattern indi‐
cator IE. The complete and detailed definition of IE will be 
presented in Section III-C. Customers’  DR behavior on day 
d in history is denoted as acd. Then the DR process can be 
simulated as a decision process from scd to acd. In this way, 
a customer’s historical DR records can be expressed as τc =
{(sc1, ac1 ), (sc2, ac2 ), , (scd, acd )}. The corresponding gen‐
erated DR policies by the GAIL can be expressed as τπ =
{(sc1, ag1 ), (sc2, ag2 ), , (scd, agd )}, where ag1 ag2 agd 
are the finally optimized DR policies for day 1 2 , and d.

In the training process, by given τc and observed s t = scd, 
GAIL tries to find DR policy agd (at the optimization step t, 
a t=agd) corresponding to s t and ensure the generated DR pol‐
icy, that is τπ={(s t,a t)}, conforms to the same rule as τc. Dur‐
ing this process, the output of the discriminator at the optimi‐

zation step t (DGAILt) serves as guidance to optimize the gen‐
erated policies. The adversarial training process of GAIL 
[28] with an objective as V (φθ) can be described as:

min
θ

max
φ

V (φθ)= E
(stat )Î τπ

(log2 Dφ (s ta t ))+

E
(stat )Î τc

(log2 (1 -Dφ (s ta t ))) (8)

where θ and φ are the parameters of the generator and dis‐
criminator networks, respectively; and Dφ (s ta t ) is the out‐
put function of the discriminator according to s t and a t.
2)　Improved GAIL for Customers’  DR Pattern Tracing

Since natural GAIL does not impose any constraints on 
the generator, the training process is uncontrollable, so natu‐
ral GAIL is sometimes hard to converge or converges slowly.

Moreover, in some specific cases, we know empirically 
that certain additional information has an inner correlation 
with customers’  DR behaviors, for example, customers’  cur‐
rent DR participation positivity. Such inner correlations are 
sometimes difficult to be described with mathematical func‐

Reward

Generator:
• increase 

Discriminator:
• increase 

• decrease 

 for ad

Customers’ historical DR records

Generated DR policies

( , )g,dD s g,daφ

( , )c,dD s c,daφ

τc = {(sc,1, ac,1), (sc,2, ac,2), …, (sc,d, ac,d)}

τπ = {(sc,1, ac,1), (sc,2, ac,2), …, (sc,d, ac,d)}
( , )g,dD s g,daφ

Fig. 3.　Framework of natural GAIL algorithm.
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tions or physical models, so we hope that they can be 
learned by the generator to make the DR analysis results 
more reasonable. However, the learning process of a neural 
network is hard to intervene and the additional information 
may be ignored by the neural network. If we use SL algo‐
rithms or a natural GAIL with additional information as gen‐
eration conditions [29] directly in this scenario, it would be 
hard to know whether the final output is related to the addi‐
tional information.

To solve the aforementioned problems, we propose a regu‐
lated conditional method to improve the natural GAIL for 
dynamic DR patterns tracing and call it RCGAIL. RCGAIL 
uses a conditional generator to generate DR policies con‐
forming to the expected additional information y, which is 
the generation condition. To ensure that y will be learned by 
the generator, RCGAIL inserts a regular term L(aty) for the 
generation condition y to the objective function V (φθ) in 
natural GAIL as:

min
θ

max
φ

V (φθ)= E
(stat )Î τπ

(log2 Dφ (s ta t| y))+

E
(stat )Î τc

(log2 (1 -Dφ (s ta t| y)))+ λL L(aty)   
(9)

where λL is the regulation coefficient.
Here we set λL = 0.9 and a t is influenced by both s t and ad‐

ditional information y.
In dynamic DR simulations, we expect to constrain the 

generated DR policies conforming to customers’  current DR 
behavior patterns. Thus, the additional information y in 
L(aty) represents customers’  DR behavior pattern and is re‐
lated to the probable environment states and action. Thus, 
we can calculate L(aty) as follows:

L(aty)= | yreal - ygen | = | ÎE (y1y2yd - 1 )- IE (s ta t ) |   (10)

where yreal is the real additional information about custom‐
ers’  current DR behaviors; ygen is the additional information 
calculated from the generated policy a t; y1y2yd - 1 are 
the real additional information (DR patterns) before day d; 
ÎE is the estimation of yreal based on y1y2yd - 1; and IE is 
an indicator of customers’  DR behavior pattern related to s t 
and a t in optimization step t.

We set the PPI as IE and will give a detailed definition of 
IE in Section III-C. Since customers have not executed cur‐
rent a t during the DR behavioral learning process, we pro‐
vide a prediction result ÎE to estimate yreal based on custom‐
ers’  historical DR patterns y1y2yd - 1 in Section III-C.

Since L(aty) is always nonnegative, to optimize (9), we 
should reduce L(aty), so that the generated policy a t, whose 
ygen have low deviations to the yreal, are more likely to be re‐
tained and the DR policies generated eventually will con‐
form the customers’  current DR patterns. By being given 
the predicted additional information continuously on differ‐
ent days, RCGAIL can dynamically trace customers’  latest 
DR behavior patterns. Formula (9) will be converted to re‐
wards for the generator of RCGAIL in the training process 
and will be explained later. To increase the robustness of the 
algorithm, if L(aty) is smaller than a limit δ, we can regard 

L(aty) as 0. We set δ as 0.1 in this paper.
The training process of the RCGAIL-based customers’  

DR behavioral learning model can be realized by the follow‐
ing steps in Algorithm 1. The DR policy generation process 
will be presented in Section III-D.

C. Definition of Customers’  DR Participation Positivity and 
Its Prediction Method

During the training process of the proposed behavioral 
learning model, customers’  historical DR records may con‐
tain multiple response patterns, e.g., customers may have dif‐
ferent sensitivities to electricity prices on different days and 
thus their DR participation positivity may be various. Such 
training data containing multiple DR patterns will confuse 
behavioral learning algorithms and make those algorithms 
hard or even unable to learn the real rules of the customers’  
response behaviors. To solve this problem, we define an in‐
dex to indicate the customers’  current DR pattern.

In this passage, we define customers’  DR PPI (IE) to be 
the latent code y in RCGAIL as the ratio of electricity 
charge changes and distance between electricity consump‐
tions before and after DR:

IE = sig ( Cropt

DJS (LILDR ) ) = sig

æ

è
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 (11)

where Cropt is the change of daily electricity charges before 
and after DR; LI and LDR are the daily electricity consump‐
tion schedules before and after DR, respectively; DJS (·) is the 
Jensen-Shannon (JS) divergence between LI and LDR; and 
sig(·) is the sigmoid function.

In the case that DJS (LI,LDR )= 0, we set IE as 0. The data 
for calculating IE are all available for PUCs by recording dai‐
ly electricity prices and collecting DR policies uploaded 
from DR analysis agents.

Since DJS (·) is nonnegative, Cropt controls the sign of IE. 
When LDR has a higher daily charge than LI, Cropt will be 
less than zero, which means that the customer is less sensi‐

Algorithm 1: customers’  DR behavioral learning method based on RC‐
GAIL

1.  Input:
2.        τπ: generated DR policies and state variables
3.        τc: customer’s historical DR records
4.  Output:
5.  DGAILt: genuineness judgments of generated DR policies at step t
6. Initialize generator parameter θ and discriminator parameter φ
7. Initialize the customer DR record buffer B
8. for each iteration do
9.   Sample policy trajectories τπ
10.   Update the buffer B using τπ
11.   Sample customer’s DR trajectories τc~B
12.   Update the discriminator parameter φ based on at and st via gradi‐

ent ascent method as:
                   ÑφlD =Eτπ

(Ñφ log2 Dφ (stat ))+Eτc
(Ñφ (1 - log2 Dφ (scdat )))

13.   Calculate ẏgen and calculate regular term via (10)
14.   Output the genuineness judgment of τπ as 

DGAILt =-log2 (1 -Dφ (stat ))- L(aty) and update the gener‐
ator parameter θ, which is also the ϖ in (14)

15. end for
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tive to the electricity price and prefers to behave according 
to his own scheduled electricity consumption plan in an un‐
economical way. Conversely, if Cropt is greater than 0, it 
means that the customer’s rescheduled power consumption 
plan has the same inclination as that advocated by the DR 
project. In this case, a profitable electricity price may be at‐
tractive to the customer.

In this passage, we use a gated recurrent unit (GRU) algo‐
rithm to predict customers’  current DR PPI values and its 
detailed model is presented in [30]. GRU is a kind of recur‐
rent neural network and also works as an SL and backpropa‐
gation way. The loss function of GRU (lGRU) in this paper is 
defined as a mean squared error (MSE), which is defined as:

lGRU =
1

Nb
∑
j = 1

Nb

(IErealj - ÎEj )
2 (12)

where IErealj and ÎEj are the real DR PPI calculated by (11) 
and the predicted results of the GRU for data j, respectively; 
and Nb is the size of the data batch in the training process.

D. DR Behavior Generation Based on RL

We apply the deep deterministic policy gradient (DDPG) 
[31] algorithm as the DR policy generator. DDPG uses two 
deep neural networks (DNNs), i.e., a main network and a tar‐
get network, in both the Actor and Critic networks.
1)　Mathematical Model of Actor Network in DDPG

The policy generation process πDR (at|s t ) can be realized 
with a DNN with parameter ϖ t. To apply DDPG in the DR 
analysis problem, the input state s t of the Actor in step t con‐
sists of the price information pDRt, current policy LDRt, and 
predicted pattern indicator ÎE. LDRt is initialized with the 
forecasted loads LDR0. LDR0 

 will be replaced with newly 
generated policies a t in the optimization steps. Suppose J(·) 
is the performance function of a policy from s t to a t 
(πDR (at|s t )), its gradient can be formulated as.

Ñϖt
J(πDR (at|s t ))=E(Ñϖt

log2πDR (at|s t )Ñat
Q(ats t )) (13)

where Q(s ta t ) is the Q value for the policy measured by the 
Critic network.

In DDPG, πDR (at|s t ) is determined by a certain function μ(·) 
from the main Actor network as πDR (at|s t )= μ(s t ), and thus 
accelerates the learning process compared with the natural 
AC algorithm. ϖ t can be updated as follows.

ϖ t + 1 =ϖ t + αϖÑϖt
μ(s t )Ñat

Q(s ta t )|at = μ(st ) (14)

where αϖ is the learning rate of the Actor network.
2)　Mathematical Model of Critic Network in DDPG

The main Critic network comments on the generated poli‐
cies by Q values with parameter wt. The loss function lc of 
the Critic network is as:

lc =
1
m∑t = 1

m

(yct -Q(s ta t ))
2 (15)

where m is the mini-batch size of records sampled from re‐
play memory; and yct can be determined as follows.

yct = rt + γQ
* (s t + 1a′t + 1 )= rt + γQ

* (s t + 1μ
* (s t + 1 )) (16)

where Q* (s t + 1a′t + 1 ) and μ* (s t + 1 ) are the outputs of the tar‐
get Critic and Actor networks with parameters w′t and ϖ′t, re‐

spectively; a′t + 1 is the action output by the target Actor net‐
work; and γÎ[01] is the probability to choose the action 
with a high reward in each step.

Algorithm 2 will show the parameter updating method. rt 
will be determined in the following part, but if the model 
constraints are violated, like (6) or upper and lower limits of 
loads in each hour, rt will directly minus a negative number 
to prevent further optimization in this way.

With (16), the parameters of the main Critic network (wt) 
can be updated with the following equation.

wt + 1 =wt - αwÑwt
lc (17)

where αw is the learning rate of the Critic network.
3)　Reward Function of DDPG-Based DR Policy Generation 
Model

In RCGAIL, the rewards of the generated policies are de‐
termined by the discriminator Dφ (s ta t ) to make the generat‐
ed policies conforming to the distribution of the real data. 
Meanwhile, the generated DR policy should also conform to 
the customer’s current DR behavior pattern, that is L(aty)=
L(atIE ). Therefore, the reward function of the RL module in 
RCGAIL can be expressed as:

rt =DGAILt =-log2 (1 -Dφ (s ta t ))- λL L(atIE ) (18)

Algorithm 2: electricity price optimization containing DDPG and RC‐
GAIL based DR behavioral learning

1. Input:
2.  LI0: initial load schedule
3.  ÎE: predicted customers’  PPI
4.  τc: customer’s historical DR records
5.  m: mini-batch size
6. Output:
7.  πDR (at|st ): DR policies for the customers
8.  pDRt: hourly electricity price weighting to be optimized
9. Initialize the parameters of the Actor network, Critic network, and the 

discriminator network
10. Initialize the replay memory B
11. for i = 1, 2, , Tmax, do the following until (1) is satisfied
12.   Update preliminary hourly price pDRt

13.   For each DR analysis agent, do the following steps
14.  Receive pDR0 from PUC and initialize the environment state s0 =

[pDR0,LI0,ÎE ]
15.  Initialize a random process ℏt for DR behavior exploration in step t
16.  for t = 1, 2,, do the following until (4)-(6) is satisfied
17.     Repeat generating a DR policy until (5) is satisfied by the Ac‐

tor with randomness ℏt as:
            at = μϖ (stIE )+ ℏt

18:     Input τπ ={stπDR (at|st )} and τc into the discriminator to obtain 
the genuineness judgment DGAILt and update φ of the dis‐
criminator via Algorithm 1

19.     Calculate rt for at according to (19)
20.     Update the state variable st + 1  =  [pDRt + 1  at ÎE ] and store the 

transition {statrtst + 1 } into B
21.     If |B| >m:
22:       Sample a mini-batch of the transition
23:       Train the main networks of DDPG via (14) and (17)
24:       Update target networks with a running average method
                  ϖ′¬ υϖ + (1 - υ)ϖw′¬ υw′+ (1 - υ)w′
25:     else
26:       continue
27:  end for
28:  Return optimal DR policies πDR (at|st ) for current pDRt

29:  end for
30: Output the optimized electricity price pDRt
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Formula (18) indicates that the DR policy generation pro‐
cess is controlled by the discriminator in GAIL without hu‐
man intervention. In this case, the DR behavioral learning 
has also become DR behavior imitation, and the subjectivity 
of the generated DR policies will be greatly reduced.

Since the generated DR policies will be recommended to 
customers before their electricity consumption, if the eco‐
nomic rewards of the generated DR policies are satisfactory 
considering their DR habits, customers may further adjust 
their original electricity consumption behaviors. PUCs’  pur‐
pose of promoting DR can also be achieved in this way. 
Therefore, we improve the reward function in (18) by defin‐
ing it from two aspects, i.e., an economic profit aspect and a 
customer behavior genuineness judgment aspect. The reward 
in step t is presented as:

ì

í

î
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ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

rt =DGAILtCDRt

CDRt =
∑
h = 1

24

pDRt (LIht - LDRht )

∑
h = 1

24

pDRht LIht

DGAILt =-log2 (1 -Dφ (s ta t ))- λL L(atÎE )

(19)

where CDRt is the electricity charge reduction rate represent‐
ing the economic profits by DR in step t.

In (19), DGAILt represents a genuineness judgment of the 
generated DR policy LDRht compared with the customers’  re‐
al DR records. Therefore, DGAILt can be regarded as the esti‐
mation of the DR policies’  adoption probability, and CDRt 
can be regarded as the potential economic revenues. Formula 
(18) indicates that the DR analysis agents try to generate DR 
policies with more economic revenues on the premise of con‐
forming to customers’  electricity consumption habits.

Since the RL-based GAIL algorithm also has an open 
framework that policy generation, behavioral learning, and 
policy comment are conducted by separated networks, it can 
realize a comprehensive consideration of objective behavior‐
al learning and further profit obtaining. Therefore, the merits 
of model-based methods and SL-based methods can be both 
kept.
4)　Numerical Formulation of Relation Between Price and 
DR Behaviors

With the learned reward function rt, the complete DR be‐
havioral learning method can be summarized with the follow‐
ing equations, in which the relation between electricity price 
pDRt and DR behaviors LDRt can be numerically modeled.

LDR = a t    t ³ Tmax (20)

a t = μ(s t )= μ([pDRta t - 1ÎE ])   t = 12 (21)

ϖ t + 1 =ϖ t + αϖÑϖt
μ(s t )Ñat

Q(s ta t )|at = μϖ (st ) (22)

wt + 1 =wt - αwÑwt( )1
m∑t = 1

m

(yt -Q(s ta t ))
2 (23)

yt = rt + γQ
* (s t + 1a′t + 1 ) (24)

rt¬(18) (25)

φt + 1 =φt + αφ [E(log2 Dφ (s ta t ))+E(log2 (1 -Dφ (scac )))] (26)

where LDR is the final DR policy; Tmax is the maximum itera‐
tions of the policy generation process; μ(·), Q(·) and Dφ (·) are 
the policy generation network, policy comment network, and 
DR behavioral learning network with parameters ϖ, w, and 
φ, respectively; and sc and ac are the agent’s observation 
states (including original load schedules and price informa‐
tion) and the corresponding DR behaviors of customers’  his‐
torical records, respectively.

The final action a t (t ³ Tmax) is output as the DR policy un‐
der price pDRt. Parameters of all the DNNs are trained with 
the collected historical data set {sc, ac} and generated data 
set {s ta t }.

Formulae (20) and (21) present a price-DR relation with 
parameters. Formula (22) updates the parameters for the poli‐
cy generation network. The Q value in (22) is given by the 
critic network. Formulae (23) and (24) update the critic net‐
work, with the learned reward function rt. rt is generated by 
the discriminator of the GAIL model as (25). The reward 
learning is present in Algorithm 1. In this way, even if cus‐
tomers’  DR behaviors are hardly formulated with mathemati‐
cal models, a numerical estimation method is proposed.

Based on the reward function, the proposed DR behavior‐
al learning and electricity price optimization process are sum‐
marized in Algorithm 2. The running average rate υ for tar‐
get network updating is set as 0.001 in this paper.

E. Model Parameter Updating Method for Dynamic and On‐
line DR Analysis

Since customers’  DR behavior patterns may change for 
various reasons like daily electricity prices, customers’  per‐
sonal willingness and short-term daily life arrangements, it 
leads to large amounts of uncertainties for DR behavioral 
learning. Thus, to trace customers’  DR behavioral patterns, 
beside the proposed condition regulation method, the behav‐
ioral learning model also has to update its network parame‐
ters dynamically and in time with continuously collected cus‐
tomers’  actual response data and daily electricity price. 
However, in traditional off-line training processes, the train‐
ing data need to be obtained once all together and are usual‐
ly input to the models in batch forms to update the model 
parameters. Therefore, an off-line optimization method is not 
appropriate for this paper and an online learning optimiza‐
tion algorithm is necessary.

To realize the dynamic and online DR policy generation, a 
follow-the-regularized-leader (FTRL) algorithm [32] is ap‐
plied. Supposing t is the optimization step and W it is the pa‐
rameter i of the DNN in step t in the proposed DR behavior‐
al learning model, the iteration formula to update Wit using 
FTRL can be expressed as:
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where gs is the gradient of a loss function in iteration s; λ1 
and λ2 are the regularization coefficients; and ηis is the per-
coordinate learning rate for DNN i in the sth iteration.

For step t, ηis can be calculated as:

ηit =
α

β + ∑
s = 1

t

g 2
si

(28)

where α and β are the hyper-parameters; and gsi is the ith co‐
ordinate of gs.

Reference [29] offers the empirical values for α, β, λ1 
and λ2.

IV. CASE STUDY 

In this section, we illustrate the results of the proposed 
DR behavioral learning model and assess its performance. 
The electricity price information and customers’  actual load 
data are derived from [33] and [34]. The day-ahead forecast‐
ed loads are generated with the collected data by an LSTM 
network. We regard customers’  actual loads as their DR be‐
haviors since customers’  DR behaviors are induced by the 
electricity price in a price-based DR project. Therefore, cus‐
tomers’  actual electricity consumptions also represent their 
DR behaviors corresponding to the electricity price. Random‐
ness is added to the used data for data augmentation and in‐
creasing their diversity, which also contributes to improving 
model robustness for noise-contained data. Considering a da‐
ta set with an excessive period may lead to inaccuracy of 
the results, since customers’  electricity consumption habits a 
long time ago may be greatly different from their recent DR 
behaviors. The testing system contains 280 customers and 
the used data have a period of 6 months.

In this paper, we set up a two-layer neural network as the 
Actor network of DDPG with 36 and 24 hidden units, re‐
spectively. The two-layer neural network containing 10 neu‐
rons each layer consists of the Critic network. Networks in 
DDPG are activated by the tanh function. In the discrimina‐
tor of RCGAIL, we build a 4-layer neural network using 30, 
20, 10, 1 hidden neurons, with leakly Relu active function 
for the first three layers and sigmoid function for the last lay‐
er. A dropout technique is applied in this paper with a drop‐
out rate as 0.1.

A. Customers’  DR PPI Prediction 

In this subsection, we verify the effectiveness of the DR 
PPI prediction model. We introduce a support vector regres‐
sion (SVR) algorithm to compare with GRU. We use elec‐
tricity prices and customers’  actual daily loads in 3 months 
for pre-training and data in the next 3 months for testing. 
The testing data are offered to the PPI prediction models suc‐
cessively for online parameter tuning after daily PPI has 
been predicted. Figure 4 shows the prediction results of the 
two algorithms for one of the customers.

To evaluate the performance of the prediction models, we 
apply the mean absolute error (MAE), mean absolute per‐
centage error (MAPE), and R2 score. Performance compari‐
sons between GRU and SVR are shown in Table I.

Table I indicates that the GRU has a better performance 
than SVR in prediction accuracy. This is because deep learn‐
ing algorithms have a more powerful ability in nonlinear 
mapping by deepening the network layers and adding nonlin‐
ear active functions. These measures help DNNs extract the 
features of the input data automatically and effectively, 
while traditional ML algorithms usually extract data features 
based on prior assumptions or feature engineering. Although 
SVR has improved its learning ability by introducing a ker‐
nel function, the chosen kernel function still has difficulty in 
distinguishing the data following arbitrary distributions, and 
thus its mapping ability is still limited.

B. Performance of DR Behavioral Learning Model

Before the behavioral learning, we conduct the load fore‐
casting. The used LSTM network contains 24 units for out‐
put and 4 layers. Historical load and price data are the input 
of the model. Actually, forecasted loads serve as an auxiliary 
indicating feature of customers’  current demands. Therefore, 
another well-performed forecasting can also be applied. Fig‐
ure 5 shows the load forecasting results on 3 different 
days.
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Fig. 4.　Results of customer’s DR PPI prediction.

TABLE I
PERFORMANCE OF PPI PREDICTION ALGORITHMS

Algorithm

GRU

SVR

MAE

0.0354

0.0476

MAPE

0.0942

0.1240

R2 score

0.9189

0.8436
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Fig. 5.　Load forecasting results. (a) Demand forecasting results for custom‐
er 1. (b) Demand forecasting results for customer 2.
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Using loads before day j and price before day j+1 for 
load forecasting on day j, we train the load forecasting mod‐
el before starting the behavioral learning simulations. When 
training the GAIL model and conducting subsequent simula‐
tions, we average prices from day j - 3 to j - 1 as a moving 
average method. The averaged prices are regarded as the ini‐
tial preliminary prices on day j. The forecasted loads for the 
GAIL model are generated with such preliminary prices.

The simulation results show that the forecasting errors are 
acceptable by using an independent forecasting model for 
each customer. Researches in [35] and [36] also present the 
methods to improve the accuracy of single customer load 
forecasting. Actually, the forecasted loads are not required to 
be completely accurate. This is because that the consistency 
of DR policies and customers’  real DR habits is judged by 
the behavioral learning network. Forecasted loads serve as 
an auxiliary indicator to the state recognition for the judg‐
ment, whose features will be extracted by the discriminator 
network. In this way, detailed information, also containing 
errors, is all probable to be filtered. Therefore, limited errors 
may not affect behavioral learning results.

Besides, we add random noises to the training data for the 
behavioral learning model, which helps the model adapt to 
the fluctuations of the input data, and the model robustness 
will also be improved. Combined with the generalization 
ability of neural networks, the forecasting errors for load 
forecasting may have few negative effects on the behavioral 
learning results.

As shown in Fig. 1, customer load forecasting is conduct‐
ed by the customer-side DR agents. Different well-trained 
load forecasting methods may still cause some limited devia‐
tions in different results. In our proposed method, due to the 
independence of each customer’s DR analysis agent, differ‐
ent agents can use different forecasting methods. However, 
we still suggest a certain agent to avoid changing the used 
forecasting method, to keep the consistency of distributions 
of forecasted loads and DR behaviors from slight changes. 
The added noise in the training data also contributes to free‐
ing the simulation results of the proposed method from be‐
ing affected by different forecasting results with limited devi‐
ations. Also, the stacked auto-encoder model can also be ap‐
plied to filter the deviations from different load forecasting 
methods [37].

Then, we will verify the effectiveness of the proposed DR 
behavioral learning model. The initial preliminary price is al‐
so set by the aforementioned moving average methods. The 
collected price data are used as the optimal preliminary price 
in this simulation. The presented results are the responses to 
these optimal preliminary prices. We set the reward function 
of the RL algorithm in the RCGAIL based on both (18) and 
(19) and name them as case 1 and case 2, respectively. By 
setting the two cases about RCGAIL, we can compare the 
DR analysis results purely considering customers’  electricity 
consumption habits and comprehensively considering con‐
sumption habits and economic revenues, so that the flexibili‐
ty of the proposed DR behavioral learning model can be ver‐
ified. We take the DR analysis model in [17] as control 

group 1 and the model based on LSTM adopted in [14] as 
control group 2. In control group 1, we set the weight of dis‐
comfort cost ωat as 0.6, and the reward function rt of this 

model can be expressed as rt =Pt +ωat| LDRt -LI |, where Pt 

is the daily electricity charge; LI is the daily original load 
schedule; and LDRt is the DR policy. Besides, we also make 
a comparison with an additional linear-program-based DR 
model, which only focuses on minimizing the daily charge 
Pt, and is labeled as control group 2.

Figure 6 shows the behavioral learning results for a cus‐
tomer in 24 hours according to day-ahead load forecasting 
results and the real hourly electricity price. The daily elec‐
tricity charge and error indices (MAPE and R2 score) be‐
tween generated DR policies and the customers’  real re‐
sponse behaviors are presented in Fig. 7.

In this simulation, we present the results of customers 
with three different types of DR behaviors in four days. The 
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price. (b) Load curves of customer 1. (c) Load curves of customer 2. (d) 
Load curves of customer 3.

1367



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

daily load curves of customer 1 have two peaks in the morn‐
ings and evenings, respectively. The highest load consump‐
tions appear in the evenings, and day-time loads are relative‐
ly lower. For customer 2, the highest loads also appear in 
the evenings, but the day-time loads are relatively flattened. 
The daily loads of customer 3 are almost two-side. The 
loads are low in the evenings and late at nights, but they dra‐
matically increase from the late mornings. Then the loads 
stay at high levels and last a long time to the late evenings.

Different response behaviors can be observed in custom‐
ers’  actual electricity consumption curves (regarded as real 
DR behaviors). Compared with customer 3, customers 1 and 
2 are more positive in participating in DR. In the high-price 
hours in the evenings, customer 2 responds as delaying 
some peak loads and transfering parts of loads to the deep 
nights. While customer 1 makes a slight reduction of loads 
in evening high-price hours rather than delaying the con‐
sumptions. The loads in the daytime are obviously reduced. 
The reduced loads are also transferred to the late nights with 

low prices. Customer 3 responds as reducing part of loads in 
the afternoon, which shows a lower elasticity for load re‐
scheduling. Therefore, we can conclude that customers 1 and 
2 are relatively more price-sensitive but the sensitivity is low 
during the evening high-price hours, and their DR behaviors 
may be more likely to be induced to some extent.

The simulation results also indicate that customers’  DR 
behaviors may be various even with similar electricity pric‐
es. A universal model to formulate different DR behaviors is 
hard to be obtained. Therefore, a learning-based method ex‐
tracting personalized DR habits from customers’  historical 
records is appropriate for this situation.

The indices in Fig. 7 indicate that the proposed method  
satisfactorily performs in DR behavioral learning for all the 
present customer classes. With historical DR records contain‐
ing multiple response patterns, the result of RCGAIL case 1 
with a high R2 score and low MAPE may be attributed to 
the PPI prediction and condition regulation methods, which 
offers the behavioral learning method the customer’s current 
response pattern to follow. The proposed models are trained 
with historical data containing noises. We can see that cus‐
tomers’  behaviors can still be learned with the forecasted 
loads, which are not completely accurate for the aforemen‐
tioned lack of price information during the forecasting pro‐
cess.

Figure 6 shows that control group 2 has similar response 
principles for different customers who usually reduce more 
loads in high price hours preferentially. Such policies can re‐
duce more charges, and may match the needs of customers 
having the desire for maximizing profits. However, large de‐
viations are also found in these policies and thus they are 
not suitable for customers having other response modes. Cus‐
tomers may also ignore the recommended DR policies with 
huge deviations to their habits. That’s why DR agents are 
recommended to conduct DR behavioral learning for the pol‐
icy generation.

According to the reward function, control group 1 offers 
DR policies trying to minimize electricity charges with the 
least modifications to the original load schedules. In this 
way, loads in high-price hours are also firstly reduced like 
control group 2. Even though the control group limits the ad‐
justment amount to the original load curves, its principle 
still doesn’ t conform to every customers’  electricity con‐
sumption habits, like customers 1 and 2. As a result, the DR 
policies may be more likely to be ignored by the customer 
due to their great deviations from the customer’s actual DR 
behaviors despite that they have lower daily electricity charg‐
es than customers’  original electricity consumption plans.

The DR results generated by LSTM mainly imitate the 
customer’s response behavior and also perform well in the 
MAPE and R2 score. The only objective of LSTM is to accu‐
rately predict customers’  actual DR behaviors, and thus it 
will not actively try to reduce the charges. Simulation results 
show that RCGAIL case 2 can generate the policies with 
lower charges while the load curve deviations have not dra‐
matically increased. This performance contributes to attract‐
ing customers to accept the recommended policies so that 
PUCs can actively induce customers’  DR behaviors, which 
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is hardly realized with the SL-based methods.
To further verify the effectiveness of the proposed meth‐

od, we conduct a test in a real-time DR case. In this case, 
the final price signal is a real-time price (RTP), and the RTP 
is set to be published hourly. The response time is the future 
rest hours of a day, and the DR process is conducted in a 
rolling form [38], [39]. RTP prediction for the rest of re‐
sponse hours can be applied [38], [40] and is also conducted 
in a rolling form. Since the dimensions of the state variables 
are dynamic, we use a 1-D convolution neural network 
(CNN) to extract the features from the data with variable 
length and use 1×1 convolution to replace the final full-con‐
nected layer. Simulation results are shown in Fig. 8.

Similar to the previous simulation, simulation results 
show that the drawbacks of model-based methods in DR be‐
havioral learning still exist. Even though they can reduce 
more daily charges, their policies still have large deviations 
from customers’  real DR behaviors. While the testing data-
driven methods still have satisfactory performances in learn‐
ing customers’  DR habits with relatively lower MAPE val‐
ues, so that the adoption probability of the generated poli‐
cies may be larger than control groups 1 and 2. Besides, 
compared with LSTM-based method, the proposed RCGAIL-
based method can further reduce the charges with a limited 
deviation increase. Therefore, the effectiveness and flexibili‐
ty of our proposed method can be verified in the real-time 
DR.

From the above cases, we can notice that the proposed 
method is more comprehensive for taking both the high prof‐
itability and customers’  electricity consumption habits into 
account. Moreover, the reward function in (19) can be conve‐
niently modified for more optimization objectives, so the 
proposed DR analysis method is more flexible than SL-
based DR behavior learning methods in generating DR poli‐
cies with multiple objectives.

C. Performance of RCGAIL in Tracing Different DR Pat‐
terns

In this subsection, we analyze the effect of PPI and verify 
the capability of RCGAIL to dynamically trace the custom‐
ers’  DR patterns. To make the simulation results easy to be 
compared, we set the reward function in the DDPG as for‐
mula (18) in this case.

First, we analyze the effect of PPI. Figure 9 shows the 
DR behaviors of two customers on different days. Figure 9 
indicates that customers may have different DR behaviors 
with similar state situations (price and forecasted loads). In 
Fig. 9(a), (c), (d) and (e), (g), (h), the two customers’  re‐
sponse behaviors show their desires for reducing the charg‐
es, as they reduce part of load consumptions in the high-
price hours compared with original schedules. In these cases, 
PPI is positive. The amplitude of PPI represents the efficien‐
cy of profit gaining with load rescheduling. Figure 9(b) and 
(f) show negative PPI values, in which, loads from the after‐
noon to the evening are larger than original schedules. These 
behaviors indicate that they respond in uneconomical ways, 
which may present customers’  personal preferences.
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The simulation results with and without matching to cus‐
tomers’  actual PPI are also presented in Fig. 9. Without the 
assistance of PPI, natural GAIL may generate different poli‐
cies under similar price and original load schedules, since 
customers may respond in various ways existing in history. 
PPI serves as a further indicator for similar input states and 
guides the behavioral learning model to choose a certain pat‐
tern among DR records. During the policy generation pro‐
cess, PPI works by generating an additional gradient to the 
generator network, making the actual PPI of the generated 
policy closer to the predicted one. 

In this way, the penalty item in (10) can be eliminated. 
Therefore, the PPI-RCGAIL model performs better than natu‐
ral GAIL in customer dynamic behavioral learning and infer‐
ring.

Second, since PPI needs to be combined with the pro‐
posed regulated condition methods in actual implements, the 

next case will show the simulation results in dynamic behav‐
ioral learning situations. In that simulation, we will analyze 
also the efforts of the combination of PPI, regulated condi‐
tion method, and the FTRL algorithm.

Figure 10 shows dynamic behavioral learning results of 
the natural GAIL-based methods and RCGAIL-based meth‐
ods on 9 days. On these testing days, we can see that the 
customer shows limited participation positivity to the DR 
project in the evening but may be interested in participating 
in DR in the daytime and after midnight on the first two 
days. During the high-price hours in the evening, only a 
small fraction of loads is moved to low-price hours. The ma‐
jority of the loads in the evening are still non-shiftable. The 
profile of the customer’s actual response changes greatly on 
days 3 and 6, which means that the customer changes his 
DR patterns on those days. On day 3, for example, the cus‐
tomer reduces the electricity consumption from midnight to 
morning and repeats this adjustment on the following 2 
days. On day 6, the customer returns to early electricity con‐
sumption habit at these hours.

We can note from the simulation results of the first 2 days 
shown in Fig. 10 that natural GAIL without the condition 
regulation method can keep the behavioral learning errors 
within a relatively low limit before the customer changes his 
response pattern, but natural GAIL fails to trace the dynamic 
changes after the DR pattern changes on day 3. This is be‐
cause that after the change occurs, the newly collected cus‐
tomers’  actual DR behaviors can only expand the experi‐
ence pool of the GAIL, but can’ t offer extra constraints 
about this new pattern to the generator. Therefore, the gener‐
ator will continue to follow one of the existing DR patterns, 
not tracing the new change in the data distribution. Natural 
GAIL may regard all the generated policies obeying one of 
the existing distribution rules as real.

RCGAIL also performs well in DR behavioral imitation 
on the first 2 days and the prediction errors are within rea‐
sonable limits. On the third day, when the customer greatly 
changes the electricity consumption plan for the first time 
during the testing, a great imitation deviation occurs. This is 
because no signs have been discovered in advance. RCGAIL 
still believes that the customer will repeat his previous re‐
sponse pattern. However, RCGAIL predicts the customers’  
DR PPI with the latest DR data and generates DR policies 
according to the customers’  newly predicted DR PPI, and 
constrains the generated policies to conform to this PPI by 
the condition regulation method. The FTRL algorithm also 
helps the RCGAIL update the parameters of deep networks 
by using the newly collected data effectively and efficiently. 
Therefore, on day 4 and day 5, the RCGAIL model succeeds 
in generating DR policies following the customers’  changed 
behavior pattern. Although the customer adjusts the response 
pattern again on day 6, RCGAIL continues to learn this ad‐
justment. The prediction deviation is reduced to a low level 
again on day 7 with a swift model parameter adjustment. 
Therefore, the effectiveness of RCGAIL can be verified.

Forecasted load; RCGAIL

Price; Real DR behavior; Natural GAIL

0.5
1.0
1.5
2.0

0.6
1.2
1.8
2.4

5 10 15 20 25
0

0.1

0.2

Actual PPI: 0.2255
RCGAIL PPI: 0.2263
Natural GAIL PPI: 0.1967

Actual PPI: −0.2956
RCGAIL PPI: −0.2982
Natural GAIL PPI: 0.2221

Actual PPI: 0.1156
RCGAIL PPI: 0.1097
Natural GAIL PPI: 0.1120

Actual PPI: 0.1792
RCGAIL PPI: 0.1734
Natural GAIL PPI: 0.0915

Actual PPI: 0.1015
RCGAIL PPI: 0.1148
Natural GAIL PPI: 0.1109

Actual PPI: −0.2765
RCGAIL PPI: 0.2480
Natural GAIL PPI: 0.0873

Actual PPI: 0.1058
RCGAIL PPI: 0.0891
Natural GAIL PPI: 0.1190

Actual PPI: 0.2820
RCGAIL PPI: 0.2715
Natural GAIL PPI: 0.1423

0

L
o
ad

 (
k
W

)
L

o
ad

 (
k
W

)

0.5
1.0
1.5
2.0

L
o
ad

 (
k
W

)

0.6
1.2
1.8
2.4

L
o
ad

 (
k
W

)

P
ri

ce
 (

$
)

0

0.1

0.2

P
ri

ce
 (

$
)

0

0.1

0.2

P
ri

ce
 (

$
)

0

0.1

0.2

P
ri

ce
 (

$
)

0.5
1.0
1.5
2.0

L
o
ad

 (
k
W

)

0.5
1.0
1.5
2.0

L
o
ad

 (
k
W

)

0.4
0.8
1.2
1.6

L
o
ad

 (
k
W

)

0

0.1

0.2

P
ri

ce
 (

$
)

0

0.1

0.2

P
ri

ce
 (

$
)

0.4
0.8
1.2
1.6

L
o
ad

 (
k
W

)

0

0.1

0.2

P
ri

ce
 (

$
)

0

0.1

0.2

P
ri

ce
 (

$
)

(a)

Time (hour)
5 10 15 20 250

(b)

Time (hour)

5 10 15 20 250

(c)

Time (hour)
5 10 15 20 250

(d)

Time (hour)

5 10 15 20 250

(e)

Time (hour)
5 10 15 20 250

(f)

Time (hour)

5 10 15 20 250

(g)

Time (hour)
5 10 15 20 250

(h)

Time (hour)

Fig. 9.　DR behaviors and simulation results with different PPI values. (a) 
Load curves of customer 1 in case 1. (b) Load curves of customer 1 in case 
2. (c) Load curves of customer 1 in case 3. (d) Load curves of customer 1 
in case 4. (e) Load curves of customer 2 in case 1. (f) Load curves of cus‐
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D. Electricity Price Optimization Results

Finally, we apply the proposed RCGAIL model to the 
electricity price optimization process. In this case, DR analy‐
sis agents need to consider both customers’  electricity con‐
sumption habits and economic revenues, so we apply the re‐
ward function of the RL model defined in (19) for DR poli‐
cy generation.

In this simulation, we conduct a price optimization for an 
existing data record to further adjust the system load sched‐
ule and enlarge PUC’s profits. Hence, pI and LI are the orig‐
inal price and load in this case, respectively. Referring to 
[15], [41], the cost c is estimated as the wholesale market 
price. We set the dp in (3) as 1 to ensure that the optimized 
price will bring PUC a higher profit than that without optimi‐
zation.

Some results of the price optimization problem in (1) and 
(2) locating at the Pareto front are presented in Fig. 11. With 
these results, PUC can find optimal pricing policies accord‐
ing to their preference for profit desire and load fluctuation 
reduction. In actual implementation, a weighting method can 
also be applied to find a certain solution to this optimiza‐
tion, when the PUC has specific preferences of the objec‐
tives or combined with the non-dimension operation and en‐
tropy-weighting method, like [42].

The optimized price and detailed indices of a result 
(marked red in Fig. 11) are presented in Table II and Fig. 12.

The results show that the PUC receives higher profits af‐
ter the price optimization. Meanwhile, the system load fluctu‐
ation, measured by the CV index, is effectively reduced, 
which flattens the daily load profile and will thus contribute 
to reducing the grid operation costs. By inducing customers 
to participate in DR, the system daily peak loads are also 
shaded, so that the grid security level in the heavy hours can 
be improved. Therefore, the PUC’s purposes of promoting 
DR are realized.
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Fig. 10.　DR behavior learning and generation results for 9 days. (a) Day 
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TABLE II
INDICES FOR ELECTRICITY PRICE OPTIMIZATION

State

Before price 
optimization and DR

After price 
optimization and DR

CV

0.7375

0.4937

System dai‐
ly profit ($)

1372.93

1453.74

Daily maximum 
load (MW)

1.4984

1.4091
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Fig. 12.　Simulation results of electricity price optimization and DR mod‐
ule. (a) Electricity price optimization results with DR behavior simulation. 
(b) Aggregate system loads with and without electricity price optimization 
and DR.

0.44 0.47 0.50 0.53 0.56 0.59
1430

1440

1450

1460

1470

m
a
x
(F
2
)

min(F1)

Fig. 11.　Tradeoff between F1 and F2.

1371



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

V. CONCLUSION 

In this paper, we propose a new DR behavioral learning 
method that overcomes inherent drawbacks in model-based 
and traditional learning-based methods. With the generated 
adversarial training and RL-based framework, the proposed 
method can comprehensively consider customers’  electricity 
consumption habits and economic revenues. We define and 
predict the PPI to indicate customers’  current DR patterns 
and propose a condition regulation method to improve the 
performance of the natural GAIL in tracing the DR pattern 
dynamics. The proposed DR behavioral learning method is 
applied in a price optimization problem for load fluctuation 
reduction and profit-maximizing. Besides, the FTRL algo‐
rithm is utilized to dynamically update the parameters of the 
proposed DR behavioral learning method with continuously 
collected data. From the case study, we can conclude as fol‐
lows.

1) The numerical results show that the proposed DR be‐
havioral learning method has lower deviations to the custom‐
ers’  real DR behaviors than model-based methods, and re‐
duces more electricity charge with limited deviation increase 
than LSTM based methods. Lower deviations and electricity 
charges contribute to increasing the DR policies’  adoption 
probability. Therefore, the effectiveness of the proposed 
method and its flexibility in considering multiple DR objec‐
tives can be verified.

2) The proposed RCGAIL method greatly improves the 
performance of natural GAIL in tracing customers’  time-
varying DR patterns. With the FTRL algorithm, the adjust‐
ments of RCGAIL parameters are completed rapidly when 
customers change their DR patterns, which ensures the effec‐
tiveness of the DR pattern tracing results.

3) By using the proposed DR behavioral learning method 
and electricity price optimization model, PUC succeeds in 
enlarging daily profits, and the fluctuation and peak of sys‐
tem aggregate loads are also reduced effectively.
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